Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Potential Distribution Areas of Oreochromis niloticus in Turkey: Ecological Niche Modeling Approach

Yıl 2025, Cilt: 10 Sayı: 4, 485 - 492, 31.07.2025
https://doi.org/10.35229/jaes.1713798

Öz

Oreochromis niloticus (Nile tilapia) is a globally cultivated aquaculture species capable of readily adapting to natural environments following escapes from aquaculture facilities. Identifying suitable habitats for this species is critical for effective aquaculture management. This study employed hydrological, physiographic, anthropogenic, soil, hydroclimatic, and bioclimatic data to determine the current and future suitable habitats of O. niloticus in Türkiye, aiming to assess its potential responses to climate change-induced habitat shifts. The results indicate that annual mean temperature (BIO1, 31.7%), actual evapotranspiration (aet_mm, 20.5%), and mean temperature of the driest quarter (BIO9, 15%) are key environmental and bioclimatic variables influencing the species’ distribution. Future projections suggest that rising temperatures may facilitate the species’ expansion into broader areas, potentially leading to the establishment of new invasive populations. Consequently, stringent management practices in aquaculture are essential to mitigate ecological risks.

Kaynakça

  • Akçakaya, A., Sümer, U.M., Demircan, M., Demir, Ö., Atay, H., Eskioğlu, O., Gürkan, H., Yazıcı, B., Kocatürk, A., Şensoy S., Bölük, E., Arabacı, H., Açar, Y., Ekici, M., Yağan, S., & Çukurçayır, F. (2015) Yeni Senaryolarla Türkiye İklim Projeksiyonları ve İklim Değişikliği-TR2015-CC. Meteoroloji Genel Müdürlüğü yayını, Ankara, 149s. https://www.mgm.gov.tr/FILES/iklim/ iklim-degisikligi-projeksiyon2015.pdf Erişim tarihi: 11.12.2024.
  • Aksu, S., Başkurt, S., Çiçek, A., & Emiroğlu, Ö. (2018). Seydisuyu Balık Faunasının Belirlenmesi. Biyoloji Bilimleri Araştırma Dergisi, 11(1), 42- 46.
  • Aksu, S. (2020). Possible effects of climate change on the habitats of the trout species: predicting the current and future distribution of anatolian sea trout (Salmo coruhensis Turan, Kottelat & Engin, 2010) under climate change, using the maxent model. Fresenius Environmental Bulletin, 29(10), 9031-9042.
  • Aksu, S. (2021). Current and future potential habitat suitability prediction of an endemic freshwater fish species Seminemacheilus lendlii (Hankó, 1925) using Maximum Entropy Modelling (MaxEnt) under climate change scenarios: implications for conservation. Journal of Limnology and Freshwater Fisheries Research, 7(1), 83-91. DOI: 10.17216/limnofish.758649
  • Aksu, S., Başkurt, S., Emiroğlu, Ö., & Tarkan, A. S. (2021). Establishment and range expansion of non-native fish species facilitated by hot springs: the case study from the Upper Sakarya Basin (NW, Turkey). Oceanological and Hydrobiological Studies, 50(3), 247-258. DOI: 10.2478/oandhs-2021-0021
  • Aksu, S., Mercan, D., Arslan, N., Emiroğlu, Ö., Haubrock, P. J., Soto, I., & Tarkan, A. S. (2024). Determining environmental drivers of global mud snail invasions using climate and hydroclimate models. Hydrobiologia, 851(16), 3991-4006. DOI: 10.1007/s10750-024-05554-x
  • Aktaş, Ö. (2014). Impacts of climate change on water resources in Turkey. Environmental Engineering & Management Journal (EEMJ), 13(4). DOI: 10.30638/eemj.2014.092
  • Alexandre da Silva, M.V., Nunes Souza, J.V., de Souza, J.R.B., & Vieira, L.M. (2019). Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail Potamopyrgus antipodarum (Gray, 1843). Freshwater Biology, 64(8), 1504-1518. DOI: 10.1111/fwb.13323
  • Alqadhi, S., Mallick, J., Talukdar, S., Ahmed, M., Khan, R.A., Sarkar, S.K., & Rahman, A. (2022). Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia. Natural Hazards, 113(1), 641-671. DOI: 10.1007/s11069-022-05318-7
  • Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11(9), 1504-1513. DOI: 10.1111/j.1365- 2486.2005.01000.x
  • Arslan, P., İnnal, D., & Özeren, S.C. (2021). Notes on the Distribution of the Genus Oreochromis in the East Mediterranean Region of Turkey. Commagene Journal of Biology, 5(1), 18-23. DOI: 10.31594/commagene.824644
  • Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species?. PloS one, 13(3), e0193085. DOI: 10.1371/journal.pone.0193085
  • Bezault, E., Balaresque, P., Toguyeni, A., Fermon, Y., Araki, H., Baroiller, J.F., & Rognon, X. (2011). Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC genetics, 12, 1-16. DOI: 10.1186/1471-2156-12- 102
  • Canonico, G.C., Arthington, A., McCrary, J.K., & Thieme, M.L. (2005). The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 15(5), 463-483. DOI: 10.1002/aqc.699
  • Copp, G.H., Bianco, P.G., Bogutskaya, N.G., Erős, T., Falka, I., Ferreira, M.T.M., Fox, G., Freyhof, J., Gozlan, R.E., Grabowska, J., Kováč, V., Moreno-Amich, R., Naseka, A.M., Peňáz, M., Povž, M., Przybylski, M., Robillard, M., Russell, I.C., Stakėnas, S., Šumer, S., Vila- Gispert, A., & Wiesner, C. (2005). To be, or not to be, a non‐native freshwater fish?. Journal of Applied Ichthyology, 21(4), 242-262. DOI: 10.1111/j.1439-0426.2005.00690.x
  • Çiçek, E. (2021). Türkiye’deki egzotik tilapya türlerinin mevcut durumu. Ege Journal of Fisheries and Aquatic Sciences, 38(1), 111-116. DOI: 10.12714/egejfas.38.1.14
  • Çiçek, E., Eagderi, S., & Sungur, S. (2022). A review of the alien fishes of Turkish inland waters. Turkish Journal of Zoology, 46(1), 1-13. DOI: 10.3906/zoo-2109-13
  • Demir, A. (2009). Küresel iklim değişikliğinin biyolojik çeşitlilik ve ekosistem kaynakları üzerine etkisi. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 37-54. DOI: 10.1501/Csaum_0000000013
  • Diken, G. (2020). Antropojenik iklim değişikliğinin balıkçılık ve su ürünleri üzerine etki ve yönetim stratejilerine genel bir bakış. Journal of Anatolian Environmental and Animal Sciences, 5(3), 295- 303. DOI: 10.35229/jaes.718925
  • Emiroğlu, Ö. (2011). Alien fish species in upper Sakarya River and their distribution. African Journal of Biotechnology, 10(73), 16674-16681. DOI: 10.5897/AJB11.2502
  • Emiroğlu, Ö., Başkurt, S., Aksu, S., Giannetto, D., & Tarkan, A.S. (2018). Standard weight equations of two sub-/tropic nonnative freshwater fish, Clarias gariepinus and Oreochromis niloticus, in the Sakarya River Basin (NW Turkey). Turkish Journal of Zoology, 42(6), 694-699. DOI: 10.3906/zoo-1802-36
  • Emiroğlu, Ö., Aksu, S., Başkurt, S., Britton, J.R., & Tarkan, A.S. (2023). Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 25(6), 1907-1920. DOI: 10.1007/s10530-023-03016-4
  • Esmaeili, H.R., & Eslami Barzoki, Z. (2023). Climate change may impact Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) distribution in the Southeastern Arabian Peninsula through range contraction under various climate scenarios. Fishes, 8(10), 481. DOI: 10.3390/fishes8100481
  • Esri. (2024). ArcGIS Pro (Version 3.4) [Computer software]. Environmental Systems Research Institute. https://www.esri.com
  • Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., & Taylor, K.E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. DOI: 10.5194/gmd-9-1937- 2016
  • FAO. (2019). FAO Yearbook of Fishery and Aquaculture Statistics. Erişim Tarihi: 26 Aralık 2024, https://www.fao.org/fishery/static/Yearbook/YB 2019_USBcard/navigation/index_intro_e.htm.
  • Fick, S.E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315. DOI: 10.1002/joc.5086
  • Giannetto, D., & Innal, D. (2021). Status of endemic freshwater fish fauna inhabiting major lakes of Turkey under the threats of climate change and anthropogenic disturbances: A review. Water, 13(11), 1534. DOI: 10.3390/w13111534
  • Gozlan, R.E. (2008). Introduction of non‐native freshwater fish: is it all bad?. Fish and fisheries, 9(1), 106-115. DOI: 10.1111/j.1467- 2979.2007.00267.x
  • Guisan, A., Graham, C.H., Elith, J., Huettmann, F., & NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332-340. DOI: 10.1111/j.1472-4642.2007.00342.x
  • Hamzaoui, M., Aoueileyine, M.O.E., Romdhani, L., & Bouallegue, R. (2023). Optimizing XGBoost performance for fish weight prediction through parameter pre-selection. Fishes, 8(10), 505. DOI: 10.3390/fishes8100505
  • Haubrock, P.J., Soto, I., Kourantidou, M., Ahmed, D.A., Serhan Tarkan, A., Balzani, Bego, P.K., Kouba, A., Aksu, S., Briski, E., Sylvester, F., De Santis, V., Archambaud-Suard, G., Bonada, N., Cañedo-Argüelles, M., Csabai, Z., Datry, T., Floury, M., Fruget, J.F., Jones, J.I., Lizee, M.H., Maire, A., Murphy, J.F., Ozolins, D. Rasmussen, J.J., Skuja, A., Várbíró, G., Verdonschot, P., Verdonschot, R.C.M., Wiberg-Larsen, P., & Cuthbert, R.N. (2024). Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions. Oikos, 2024(4), e10283. DOI: 10.1111/oik.10283
  • Ighwela, K.A., Ahmed, A.B. & Abol-Munafi, A.B. (2011). Condition factor as an indicator of growth and feeding intensity of Nile tilapia fingerlings (Oreochromis niloticus) feed on different levels of maltose. American-Eurasian Journal of Agricultural and Environmental Science, 11(4), 559-563.
  • Komba, E.A., Munubi, R.N. & Chenyambuga, S.W. (2020). Comparative evaluation of water quality parameters and growth performance of sex- reversed Nile tilapia (Oreochromis niloticus) raised in two different climatic conditions in Tanzania. International Journal of Fisheries and Aquatic Studies, 8(4), 18-23
  • Korkmaz, M., Mangıt, F., Dumlupınar, İ., Çolak, M.A., Akpınar, M.B., Koru, M., Pacheco, J.P., Ramírez-García., A., Yılmaz, G., Amorim, C.A., Özgencil, İ.K., İnnal, D., Yerli, S.V., Özkan, K., Akyürek, Z., Beklioğlu, M., & Jeppesen, E. (2023). Effects of climate change on the habitat suitability and distribution of endemic freshwater fish species in semi-arid central Anatolian ecoregion in Türkiye. Water, 15(8), 1619. DOI: 10.3390/w15081619
  • Lehner, B., Messager, M.L., Korver, M.C., & Linke, S. (2022). Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data, 9(1), 351. DOI: 10.1038/s41597-022- 01425-z
  • Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., & Thieme, M. (2019). Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data, 6(1), 283. DOI: 10.1038/s41597- 019-0300-6
  • Marchessaux, G., Lüskow, F., Sarà, G., & Pakhomov, E.A. (2021). Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Scientific Reports, 11(1), 23099.
  • Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K., & Toxopeus, A.G. (2014). Where is positional uncertainty a problem for species distribution modelling?. Ecography, 37(2), 191-203. DOI: 10.1111/j.1600-0587.2013.00205.x
  • Naimi, B., & Naimi, M.B. (2017). Package ‘usdm’. Uncertainty analysis for species distribution models. R-Cran, 18, 1-19.
  • Nivelle, R., Gennotte, V., Kalala, E.J.K., Ngoc, N.B., Muller, M., Melard, C., & Rougeot, C. (2019). Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal. PLoS One, 14(2), e0212504. DOI: 10.1371/journal.pone.0212504
  • Özşahin, E., & Kaymaz, Ç.K. (2013). Türkiye’nin Termal Su Kaynaklarının Coğrafi Açıdan Değerlendirilmesi. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 50, 25-37.
  • Phillips, J.S., Dudík, M., & Schapire, E.R. (2023). Maxent software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_so urce/maxent/. Erişim tarihi: 2024.30.12.
  • Rahel, F.J., & Olden, J.D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(3), 521-533. DOI: 10.1111/j.1523-1739.2008.00950.x
  • Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. DOI: 10.1016/j.gloenvcha.2016.05.009
  • Selek, B., Tuncok, I.K., & Selek, Z. (2018). Changes in climate zones across Turkey. Journal of Water and Climate Change, 9(1), 178-195. DOI: 10.2166/wcc.2017.121
  • Shuai, F. & Li, J. (2022). Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) Invasion Caused Disruption to the Trophic Structure of Fish Communities in the South China River-Pearl River. Biology, 11, 1665. DOI: 10.3390/biology11111665
  • Stauffer, J.R., Chirwa, E.R., Jere, W., Konings, A.F., Tweddle, D., & Weyl, O. (2022). Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae): a threat to native fishes of Lake Malawi?. Biological Invasions, 24(6), 1585-1597. DOI: 10.1007/s10530-022-02756-z
  • Şen, Z. (2022). İklim değişikliği ve Türkiye. Çevre Şehir ve İklim Dergisi, 1(1), 1-19.
  • Tarkan, A.S., Mol, O., Aksu, S., Köse, E., Kurtul, I., Başkurt, S., & Emiroğlu, Ö. (2023). Phenotypic responses to piscivory in invasive gibel carp populations. Aquatic Sciences, 85(3), 75. DOI: 10.1007/s00027-023-00974-8
  • The Council of the European Union, Council Regulation. (2024). 708/2007 Concerning use of alien and locally absent species in aquaculture. https://eur-lex.europa.eu/legal-content/EN/TXT/ PDF/?uri=CELEX:32007R0708&from=EN. Erişim tarihi 31.12.2024.
  • Vitule, J. R. S., Freire, C. A. & Simberloff, D. (2009). Introduction of non‐native freshwater fish can certainly be bad. Fish and Fisheries, 10(1), 98- 108. DOI: 10.1111/j.1467-2979.2008.00312.x
  • Vythalingam, L.M., Raghavan, R., Hossain, M., & Bhassu, S. (2022). Predicting aquatic invasions in a megadiverse region: Maximum‐entropy‐based modelling of six alien fish species in Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(1), 157-170. DOI: 10.1002/aqc.3729
  • Williams, M.J. (2004). World fish supplies, outlook and food security. Fish, Aquaculture and Food Security: Sustaining Fish as Food Supply, August 11. 2004, Australia, 1-12
  • Yılmaz, G., Çolak, M.A., Özgencil, İ.K., Metin, M., Korkmaz, M., Ertuğrul, S., & Jeppesen, E. (2021). Decadal changes in size, salinity, waterbirds, and fish in lakes of the Konya Closed Basin, Turkey, associated with climate change and increasing water abstraction for agriculture. Inland Waters, 11(4), 538-555. DOI: 10.1080/20442041.2021.1924034
  • Zengeya, T.A., Robertson, M.P., Booth, A.J., & Chimimba, C.T. (2013). Ecological niche modeling of the invasive potential of Nile tilapia Oreochromis niloticus in African river systems: concerns and implications for the conservation of indigenous congenerics. Biological Invasions, 15, 1507-1521. DOI: 10.1007/s10530-012-0386-7
  • Zurell, D., Fritz, S.A., Rönnfeldt, A., & Steinbauer, M.J. (2023). Predicting extinctions with species distribution models. Cambridge Prisms: Extinction, 1, e8. DOI: 10.1017/ext.2023.5

Oreochromis niloticus’un Türkiye’deki Potansiyel Dağılım Alanlarının Belirlenmesi: Ekolojik Niş Modellemesi Yaklaşımı

Yıl 2025, Cilt: 10 Sayı: 4, 485 - 492, 31.07.2025
https://doi.org/10.35229/jaes.1713798

Öz

Oreochromis niloticus (Nil Tilapyası), dünya genelinde yetiştiriciliği yaygın olarak yapılan bir türdür. Nil tilapyası akuakültür tesislerinden doğal ortamlara kaçış sonrası bu yeni alanlara kolay uyum sağlayabilmektedir. Tilapyanın uyum sağlayabileceği yeni alanların bilinmesi akuakültür yönetiminde önemlidir. Bu çalışmada, iklim değişikliğinin türün habitat değişimlerine olası tepkilerini belirlemek amacıyla hidroloji, fizyografi, antropojenik, toprak, hydroklimatik ve biyoklimatik veriler kullanılarak türün Türkiye’deki güncel ve gelecek uygun habitatları belirlenmiştir. Çalışma sonucunda, O. niloticus’un yıllık ortalama sıcaklık (BIO1) %31.7, gerçek buharlaşma (aet_mm) %20.5 ve en kurak çeyreğin ortalama sıcaklığı (BIO9)’un %15 türün dağılımında etkili çevresel ve biyoklimatik değişkenler olduğu görülmüştür. Geleceğe yönelik projeksiyonlar ise türün sıcaklık artışıyla birlikte daha geniş alanlara yayılabileceğini göstermektedir. Bu durum türün dağılım alanlarını genişleterek yeni istila alanları oluşturabileceği bu sebeple akuakültür yapılırken daha dikkatli üretim yapılması önem arz ettiğini göstermektedir.

Kaynakça

  • Akçakaya, A., Sümer, U.M., Demircan, M., Demir, Ö., Atay, H., Eskioğlu, O., Gürkan, H., Yazıcı, B., Kocatürk, A., Şensoy S., Bölük, E., Arabacı, H., Açar, Y., Ekici, M., Yağan, S., & Çukurçayır, F. (2015) Yeni Senaryolarla Türkiye İklim Projeksiyonları ve İklim Değişikliği-TR2015-CC. Meteoroloji Genel Müdürlüğü yayını, Ankara, 149s. https://www.mgm.gov.tr/FILES/iklim/ iklim-degisikligi-projeksiyon2015.pdf Erişim tarihi: 11.12.2024.
  • Aksu, S., Başkurt, S., Çiçek, A., & Emiroğlu, Ö. (2018). Seydisuyu Balık Faunasının Belirlenmesi. Biyoloji Bilimleri Araştırma Dergisi, 11(1), 42- 46.
  • Aksu, S. (2020). Possible effects of climate change on the habitats of the trout species: predicting the current and future distribution of anatolian sea trout (Salmo coruhensis Turan, Kottelat & Engin, 2010) under climate change, using the maxent model. Fresenius Environmental Bulletin, 29(10), 9031-9042.
  • Aksu, S. (2021). Current and future potential habitat suitability prediction of an endemic freshwater fish species Seminemacheilus lendlii (Hankó, 1925) using Maximum Entropy Modelling (MaxEnt) under climate change scenarios: implications for conservation. Journal of Limnology and Freshwater Fisheries Research, 7(1), 83-91. DOI: 10.17216/limnofish.758649
  • Aksu, S., Başkurt, S., Emiroğlu, Ö., & Tarkan, A. S. (2021). Establishment and range expansion of non-native fish species facilitated by hot springs: the case study from the Upper Sakarya Basin (NW, Turkey). Oceanological and Hydrobiological Studies, 50(3), 247-258. DOI: 10.2478/oandhs-2021-0021
  • Aksu, S., Mercan, D., Arslan, N., Emiroğlu, Ö., Haubrock, P. J., Soto, I., & Tarkan, A. S. (2024). Determining environmental drivers of global mud snail invasions using climate and hydroclimate models. Hydrobiologia, 851(16), 3991-4006. DOI: 10.1007/s10750-024-05554-x
  • Aktaş, Ö. (2014). Impacts of climate change on water resources in Turkey. Environmental Engineering & Management Journal (EEMJ), 13(4). DOI: 10.30638/eemj.2014.092
  • Alexandre da Silva, M.V., Nunes Souza, J.V., de Souza, J.R.B., & Vieira, L.M. (2019). Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail Potamopyrgus antipodarum (Gray, 1843). Freshwater Biology, 64(8), 1504-1518. DOI: 10.1111/fwb.13323
  • Alqadhi, S., Mallick, J., Talukdar, S., Ahmed, M., Khan, R.A., Sarkar, S.K., & Rahman, A. (2022). Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia. Natural Hazards, 113(1), 641-671. DOI: 10.1007/s11069-022-05318-7
  • Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11(9), 1504-1513. DOI: 10.1111/j.1365- 2486.2005.01000.x
  • Arslan, P., İnnal, D., & Özeren, S.C. (2021). Notes on the Distribution of the Genus Oreochromis in the East Mediterranean Region of Turkey. Commagene Journal of Biology, 5(1), 18-23. DOI: 10.31594/commagene.824644
  • Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species?. PloS one, 13(3), e0193085. DOI: 10.1371/journal.pone.0193085
  • Bezault, E., Balaresque, P., Toguyeni, A., Fermon, Y., Araki, H., Baroiller, J.F., & Rognon, X. (2011). Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC genetics, 12, 1-16. DOI: 10.1186/1471-2156-12- 102
  • Canonico, G.C., Arthington, A., McCrary, J.K., & Thieme, M.L. (2005). The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 15(5), 463-483. DOI: 10.1002/aqc.699
  • Copp, G.H., Bianco, P.G., Bogutskaya, N.G., Erős, T., Falka, I., Ferreira, M.T.M., Fox, G., Freyhof, J., Gozlan, R.E., Grabowska, J., Kováč, V., Moreno-Amich, R., Naseka, A.M., Peňáz, M., Povž, M., Przybylski, M., Robillard, M., Russell, I.C., Stakėnas, S., Šumer, S., Vila- Gispert, A., & Wiesner, C. (2005). To be, or not to be, a non‐native freshwater fish?. Journal of Applied Ichthyology, 21(4), 242-262. DOI: 10.1111/j.1439-0426.2005.00690.x
  • Çiçek, E. (2021). Türkiye’deki egzotik tilapya türlerinin mevcut durumu. Ege Journal of Fisheries and Aquatic Sciences, 38(1), 111-116. DOI: 10.12714/egejfas.38.1.14
  • Çiçek, E., Eagderi, S., & Sungur, S. (2022). A review of the alien fishes of Turkish inland waters. Turkish Journal of Zoology, 46(1), 1-13. DOI: 10.3906/zoo-2109-13
  • Demir, A. (2009). Küresel iklim değişikliğinin biyolojik çeşitlilik ve ekosistem kaynakları üzerine etkisi. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 37-54. DOI: 10.1501/Csaum_0000000013
  • Diken, G. (2020). Antropojenik iklim değişikliğinin balıkçılık ve su ürünleri üzerine etki ve yönetim stratejilerine genel bir bakış. Journal of Anatolian Environmental and Animal Sciences, 5(3), 295- 303. DOI: 10.35229/jaes.718925
  • Emiroğlu, Ö. (2011). Alien fish species in upper Sakarya River and their distribution. African Journal of Biotechnology, 10(73), 16674-16681. DOI: 10.5897/AJB11.2502
  • Emiroğlu, Ö., Başkurt, S., Aksu, S., Giannetto, D., & Tarkan, A.S. (2018). Standard weight equations of two sub-/tropic nonnative freshwater fish, Clarias gariepinus and Oreochromis niloticus, in the Sakarya River Basin (NW Turkey). Turkish Journal of Zoology, 42(6), 694-699. DOI: 10.3906/zoo-1802-36
  • Emiroğlu, Ö., Aksu, S., Başkurt, S., Britton, J.R., & Tarkan, A.S. (2023). Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 25(6), 1907-1920. DOI: 10.1007/s10530-023-03016-4
  • Esmaeili, H.R., & Eslami Barzoki, Z. (2023). Climate change may impact Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) distribution in the Southeastern Arabian Peninsula through range contraction under various climate scenarios. Fishes, 8(10), 481. DOI: 10.3390/fishes8100481
  • Esri. (2024). ArcGIS Pro (Version 3.4) [Computer software]. Environmental Systems Research Institute. https://www.esri.com
  • Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., & Taylor, K.E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. DOI: 10.5194/gmd-9-1937- 2016
  • FAO. (2019). FAO Yearbook of Fishery and Aquaculture Statistics. Erişim Tarihi: 26 Aralık 2024, https://www.fao.org/fishery/static/Yearbook/YB 2019_USBcard/navigation/index_intro_e.htm.
  • Fick, S.E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315. DOI: 10.1002/joc.5086
  • Giannetto, D., & Innal, D. (2021). Status of endemic freshwater fish fauna inhabiting major lakes of Turkey under the threats of climate change and anthropogenic disturbances: A review. Water, 13(11), 1534. DOI: 10.3390/w13111534
  • Gozlan, R.E. (2008). Introduction of non‐native freshwater fish: is it all bad?. Fish and fisheries, 9(1), 106-115. DOI: 10.1111/j.1467- 2979.2007.00267.x
  • Guisan, A., Graham, C.H., Elith, J., Huettmann, F., & NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332-340. DOI: 10.1111/j.1472-4642.2007.00342.x
  • Hamzaoui, M., Aoueileyine, M.O.E., Romdhani, L., & Bouallegue, R. (2023). Optimizing XGBoost performance for fish weight prediction through parameter pre-selection. Fishes, 8(10), 505. DOI: 10.3390/fishes8100505
  • Haubrock, P.J., Soto, I., Kourantidou, M., Ahmed, D.A., Serhan Tarkan, A., Balzani, Bego, P.K., Kouba, A., Aksu, S., Briski, E., Sylvester, F., De Santis, V., Archambaud-Suard, G., Bonada, N., Cañedo-Argüelles, M., Csabai, Z., Datry, T., Floury, M., Fruget, J.F., Jones, J.I., Lizee, M.H., Maire, A., Murphy, J.F., Ozolins, D. Rasmussen, J.J., Skuja, A., Várbíró, G., Verdonschot, P., Verdonschot, R.C.M., Wiberg-Larsen, P., & Cuthbert, R.N. (2024). Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions. Oikos, 2024(4), e10283. DOI: 10.1111/oik.10283
  • Ighwela, K.A., Ahmed, A.B. & Abol-Munafi, A.B. (2011). Condition factor as an indicator of growth and feeding intensity of Nile tilapia fingerlings (Oreochromis niloticus) feed on different levels of maltose. American-Eurasian Journal of Agricultural and Environmental Science, 11(4), 559-563.
  • Komba, E.A., Munubi, R.N. & Chenyambuga, S.W. (2020). Comparative evaluation of water quality parameters and growth performance of sex- reversed Nile tilapia (Oreochromis niloticus) raised in two different climatic conditions in Tanzania. International Journal of Fisheries and Aquatic Studies, 8(4), 18-23
  • Korkmaz, M., Mangıt, F., Dumlupınar, İ., Çolak, M.A., Akpınar, M.B., Koru, M., Pacheco, J.P., Ramírez-García., A., Yılmaz, G., Amorim, C.A., Özgencil, İ.K., İnnal, D., Yerli, S.V., Özkan, K., Akyürek, Z., Beklioğlu, M., & Jeppesen, E. (2023). Effects of climate change on the habitat suitability and distribution of endemic freshwater fish species in semi-arid central Anatolian ecoregion in Türkiye. Water, 15(8), 1619. DOI: 10.3390/w15081619
  • Lehner, B., Messager, M.L., Korver, M.C., & Linke, S. (2022). Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data, 9(1), 351. DOI: 10.1038/s41597-022- 01425-z
  • Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., & Thieme, M. (2019). Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data, 6(1), 283. DOI: 10.1038/s41597- 019-0300-6
  • Marchessaux, G., Lüskow, F., Sarà, G., & Pakhomov, E.A. (2021). Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Scientific Reports, 11(1), 23099.
  • Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K., & Toxopeus, A.G. (2014). Where is positional uncertainty a problem for species distribution modelling?. Ecography, 37(2), 191-203. DOI: 10.1111/j.1600-0587.2013.00205.x
  • Naimi, B., & Naimi, M.B. (2017). Package ‘usdm’. Uncertainty analysis for species distribution models. R-Cran, 18, 1-19.
  • Nivelle, R., Gennotte, V., Kalala, E.J.K., Ngoc, N.B., Muller, M., Melard, C., & Rougeot, C. (2019). Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal. PLoS One, 14(2), e0212504. DOI: 10.1371/journal.pone.0212504
  • Özşahin, E., & Kaymaz, Ç.K. (2013). Türkiye’nin Termal Su Kaynaklarının Coğrafi Açıdan Değerlendirilmesi. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 50, 25-37.
  • Phillips, J.S., Dudík, M., & Schapire, E.R. (2023). Maxent software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_so urce/maxent/. Erişim tarihi: 2024.30.12.
  • Rahel, F.J., & Olden, J.D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(3), 521-533. DOI: 10.1111/j.1523-1739.2008.00950.x
  • Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. DOI: 10.1016/j.gloenvcha.2016.05.009
  • Selek, B., Tuncok, I.K., & Selek, Z. (2018). Changes in climate zones across Turkey. Journal of Water and Climate Change, 9(1), 178-195. DOI: 10.2166/wcc.2017.121
  • Shuai, F. & Li, J. (2022). Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) Invasion Caused Disruption to the Trophic Structure of Fish Communities in the South China River-Pearl River. Biology, 11, 1665. DOI: 10.3390/biology11111665
  • Stauffer, J.R., Chirwa, E.R., Jere, W., Konings, A.F., Tweddle, D., & Weyl, O. (2022). Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae): a threat to native fishes of Lake Malawi?. Biological Invasions, 24(6), 1585-1597. DOI: 10.1007/s10530-022-02756-z
  • Şen, Z. (2022). İklim değişikliği ve Türkiye. Çevre Şehir ve İklim Dergisi, 1(1), 1-19.
  • Tarkan, A.S., Mol, O., Aksu, S., Köse, E., Kurtul, I., Başkurt, S., & Emiroğlu, Ö. (2023). Phenotypic responses to piscivory in invasive gibel carp populations. Aquatic Sciences, 85(3), 75. DOI: 10.1007/s00027-023-00974-8
  • The Council of the European Union, Council Regulation. (2024). 708/2007 Concerning use of alien and locally absent species in aquaculture. https://eur-lex.europa.eu/legal-content/EN/TXT/ PDF/?uri=CELEX:32007R0708&from=EN. Erişim tarihi 31.12.2024.
  • Vitule, J. R. S., Freire, C. A. & Simberloff, D. (2009). Introduction of non‐native freshwater fish can certainly be bad. Fish and Fisheries, 10(1), 98- 108. DOI: 10.1111/j.1467-2979.2008.00312.x
  • Vythalingam, L.M., Raghavan, R., Hossain, M., & Bhassu, S. (2022). Predicting aquatic invasions in a megadiverse region: Maximum‐entropy‐based modelling of six alien fish species in Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(1), 157-170. DOI: 10.1002/aqc.3729
  • Williams, M.J. (2004). World fish supplies, outlook and food security. Fish, Aquaculture and Food Security: Sustaining Fish as Food Supply, August 11. 2004, Australia, 1-12
  • Yılmaz, G., Çolak, M.A., Özgencil, İ.K., Metin, M., Korkmaz, M., Ertuğrul, S., & Jeppesen, E. (2021). Decadal changes in size, salinity, waterbirds, and fish in lakes of the Konya Closed Basin, Turkey, associated with climate change and increasing water abstraction for agriculture. Inland Waters, 11(4), 538-555. DOI: 10.1080/20442041.2021.1924034
  • Zengeya, T.A., Robertson, M.P., Booth, A.J., & Chimimba, C.T. (2013). Ecological niche modeling of the invasive potential of Nile tilapia Oreochromis niloticus in African river systems: concerns and implications for the conservation of indigenous congenerics. Biological Invasions, 15, 1507-1521. DOI: 10.1007/s10530-012-0386-7
  • Zurell, D., Fritz, S.A., Rönnfeldt, A., & Steinbauer, M.J. (2023). Predicting extinctions with species distribution models. Cambridge Prisms: Extinction, 1, e8. DOI: 10.1017/ext.2023.5
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekoloji (Diğer)
Bölüm Makaleler
Yazarlar

Oğuzcan Mol 0009-0004-9922-6145

Özgür Emiroğlu 0000-0002-4433-4286

Erken Görünüm Tarihi 31 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 4 Haziran 2025
Kabul Tarihi 10 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 4

Kaynak Göster

APA Mol, O., & Emiroğlu, Ö. (2025). Oreochromis niloticus’un Türkiye’deki Potansiyel Dağılım Alanlarının Belirlenmesi: Ekolojik Niş Modellemesi Yaklaşımı. Journal of Anatolian Environmental and Animal Sciences, 10(4), 485-492. https://doi.org/10.35229/jaes.1713798