İkinci Derece Yanıkların Tedavisinde Tıbbi Bitkiler İçeren Kremlerin Etkinliği: Biyokimyasal ve Histopatolojik Araştırma
Yıl 2025,
Cilt: 10 Sayı: 5, 693 - 702
Seda Aşkın
,
Esra Palabıyık
,
Handan Uğuz Bayrakçeken
,
Bahri Avcı
,
Ayşe Nurseli Sulumer
,
Harika Derya Tamer
,
Hakan Aşkın
Öz
Yanık yaralanmaları, artan oksidatif stres ve bozulmuş doku bütünlüğü ile karakterize edilen ciddi patofizyolojik durumları temsil eder ve etkili terapötik müdahaleleri gerektirir. Bu çalışma, Juglans regia yaprak özütü, Argania spinosa çekirdeği yağı, Prunus dulcis yağı ve Lavandula angustifolia yağı içeren yeni bir krem formülasyonunun ikinci derece yanık yaraları üzerindeki biyokimyasal ve histopatolojik etkilerini değerlendirir. Bir Wistar-albino sıçan modeli kullanılarak, formülasyonun terapötik potansiyelini belirlemek için süperoksit dismutaz (SOD) ve malondialdehit (MDA) dahil olmak üzere oksidatif stres belirteçleri histopatolojik değerlendirmelerle birlikte analiz edildi. Sonuçlar, tedavi grubunda SOD seviyelerinde önemli bir artış ve MDA seviyelerinde eş zamanlı bir azalma olduğunu göstererek, gelişmiş bir antioksidan tepkisi ve azalmış lipid peroksidasyonunu düşündürmektedir. Histopatolojik değerlendirmeler, yanık kontrol ve gümüş sülfadiazin gruplarına kıyasla hızlandırılmış epitelizasyon, artmış fibroblast aktivitesi ve iyileştirilmiş keratinizasyon ortaya koydu. Bu bulgular, test edilen formülasyonun doku rejenerasyonunu desteklerken oksidatif hasarı etkili bir şekilde azalttığını göstermektedir. Geleneksel yanık tedavilerine potansiyel bir alternatif olarak, bu bitki bazlı formülasyon ikinci derece yanıkları yönetmek için yenilikçi ve uygun maliyetli bir terapötik strateji sunabilir. Ancak, insan uygulamalarında etkinliğini doğrulamak için daha fazla klinik çalışmaya ihtiyaç vardır.
Etik Beyan
Bu çalışma Atatürk Üniversitesi Tıbbi Deneysel Uygulama ve Araştırma Merkezi (ATADEM) Etik Kurulunun 26.12.2024 tarihli, E-75296309-050.01.04-2400427040 sayılı kararına uygun olarak yürütülmüştür.
Teşekkür
Deneysel çalışmalarımızın gerçekleştirildiği, ATADEM'e, Fen Fakültesi Moleküler Biyoloji ve Genetik Laboratuvarına ve Tıp Fakültesi Tıbbi Patoloji Laboratuvarı yetkililerine teşekkür ederiz.
Kaynakça
-
Abdel-Mageed, H.M., AbuelEzz, N.Z., Ali, A.A., Abdelaziz,
A.E., Nada, D., Abdelraouf, S.M., ... & Radwan,
R.A. (2025). Newly designed curcumin-loaded hybrid
nanoparticles: a multifunctional strategy for combating
oxidative stress, inflammation, and infections to
accelerate wound healing and tissue regeneration. BMC
Biotechnology, 25(1), 49. DOI: 10.1186/s12896-025-
00989-z
-
Addis, R., Cruciani, S., Santaniello, S., Bellu, E., Sarais, G.,
Ventura, C., ..., & Pintore, G. (2020). Fibroblast
proliferation and migration in wound healing by
phytochemicals: evidence for a novel synergic
outcome. International Journal of Medical Sciences,
17(8), 1030. DOI: 10.7150/ijms.43986
-
Ahuja, S., Bansal, N., Mittal, M., Gulati, K., Mittal, A., &
Arora, S. (2024). Cell viability assessment and
physicomechanical characterization of Juglans regia
leaf fiber-reinforced poly (hydroxybutyrate) films for
biomedical uses. Iranian Polymer Journal, 1-15. DOI:
10.1007/s13726-024-01367-w
-
Alhilal, M., Erol, H.S., Yildirim, S., Cakir, A., Koc, M.,
Celebi, D., & Halici, M.B. (2023). Osajin from
Maclura pomifera alleviates sepsis-induced liver injury
in rats: biochemical, histopathological and
immunohistochemical estimation. Journal of Taibah
University for Science, 17(1), 2201250. DOI:
10.1080/16583655.2023.2201250
-
Altıntaş, Ö.E., & Çelik, P.A. (2023). Comparative Assessment
of Nutritional Composition, Polyphenol Content and
Antioxidative Properties of Edible and Medicinal
Mushroom: Coriolus versicolor. Journal of Anatolian
Environmental and Animal Sciences, 8(4), 626-634.
DOI: 10.35229/jaes.1339958
-
Basu, P., Kumar, U.N., & Manjubala, I. (2017). Wound healing
materials–a perspective for skin tissue engineering.
Current Science, 2392-2404.
-
Batiha, G.E.S., Teibo, J.O., Wasef, L., Shaheen, H.M.,
Akomolafe, A.P., Teibo, T.K. A., ..., & Papadakis,
M. (2023). A review of the bioactive components and
pharmacological properties of Lavandula species.
Naunyn-schmiedeberg's Archives of Pharmacology,
396(5), 877-900. DOI: 10.1007/s00210-023-02392-x
-
Bayir, Y., Un, H., Ugan, R. A., Akpinar, E., Cadirci, E., Calik,
I., & Halici, Z. (2019). The effects of Beeswax, Olive
oil and Butter impregnated bandage on burn wound
healing. Burns, 45(6), 1410-1417. DOI:
10.1016/j.burns.2018.03.004
-
Bold, B.E., Urnukhsaikhan, E., & Mishig-Ochir, T. (2022).
Biosynthesis of silver nanoparticles with antibacterial,
antioxidant, anti-inflammatory properties and their
burn wound healing efficacy. Frontiers in Chemistry,
10, 972534. DOI: 10.3389/fchem.2022.972534
Chidambaram, S.B., Anand, N., Varma, S.R., Ramamurthy,
S., Vichitra, C., Sharma, A., ..., & Essa, M.M. (2024).
Superoxide dismutase and neurological disorders.
IBRO Neuroscience Reports, 16, 373-394. DOI:
10.1016/j.ibneur.2023.11.007
-
Cinar, I., Sirin, B., Aydin, P., Toktay, E., Cadirci, E., Halici,
I., & Halici, Z. (2019). Ameliorative effect of gossypin
against acute lung injury in experimental sepsis model
of rats. Life sciences, 221, 327-334. DOI:
10.1016/j.lfs.2019.02.039
-
Cohen, J. (2013). Statistical power analysis for the behavioral
sciences. routledge. DOI: 10.4324/9780203771587
Comino-Sanz, I.M., López-Franco, M.D., Castro, B., &
Pancorbo-Hidalgo, P.L. (2021). The role of
antioxidants on wound healing: A review of the current
evidence. Journal of clinical medicine, 10(16), 3558.
DOI: 10.3390/jcm10163558
-
Deng, L., Du, C., Song, P., Chen, T., Rui, S., Armstrong, D.G.,
& Deng, W. (2021). The role of oxidative stress and
antioxidants in diabetic wound healing. Oxidative
Medicine and Cellular Longevity, 2021(1), 8852759.
DOI: 10.1155/2021/8852759
-
Elsamman, M., El-Borady, O.M., Nasr, M.M., Al-Amgad, Z.,
& Metwally, A.A. (2024). Development of propolis,
hyaluronic acid, and vitamin K nano-emulsion for the
treatment of second-degree burns in albino rats. BMC
Complementary Medicine and Therapies, 24(1), 92.
DOI: 10.1186/s12906-024-04377-6
-
Hadi, N., Drioiche, A., Bouchra, E.M., Baammi, S., Abdelaziz
Shahat, A., Tagnaout, I., ..., & Zair, T. (2024).
Phytochemical analysis and evaluation of antioxidant
and antimicrobial properties of essential oils and seed
extracts of Anethum graveolens from Southern
Morocco: In vitro and in silico approach for a natural
alternative to synthetic preservatives. Pharmaceuticals,
17(7), 862. DOI: 10.3390/ph17070862
-
Hamilton, T.J., Patterson, J., Williams, R.Y., Ingram, W.L.,
Hodge, J.S., & Abramowicz, S. (2018). Management
of head and neck burns—a 15-year review. Journal of
Oral and Maxillofacial Surgery, 76(2), 375-379. DOI:
10.1016/j.joms.2017.09.001
-
He, J. J., McCarthy, C., & Camci-Unal, G. (2021).
Development of hydrogel‐based sprayable wound
dressings for second‐and third‐degree burns. Advanced
Nanobiomed Research, 1(6), 2100004. DOI:
10.1002/anbr.202100004
-
Hu, X., Ma, W., Zhang, D., Tian, Z., Yang, Y., Huang, Y., &
Hong, Y. (2025). Application of Natural Antioxidants
as Feed Additives in Aquaculture: A Review. Biology,
14(1), 87. DOI: 10.3390/biology14010087
-
Ibrahim-Achi, Z., Jorge-Pérez, P., Abreu-González, P.,
López-Mejías, R., Martín-González, C., González-
Gay, M.Á., & Ferraz-Amaro, I. (2023).
Malondialdehyde Serum Levels in Patients with
Systemic Sclerosis Relate to Dyslipidemia and Low
Ventricular Ejection Fraction. Antioxidants, 12(9),
1668. DOI: 10.3390/antiox12091668
-
Jamali, T., & Kaboudanian Ardestani, S. (2024). Investigating
Anti-cancer, Anti-oxidant and Immunomodulatory
Effects of Essential Oils: Focusing on Oliveria
decumbens and Zataria multiflora Essential Oils.
Immunoregulation, 6(1), 13-28. DOI:
10.32598/İMMÜNOREGÜLASYON.6.1.6
Jenkins, M., & Johnson, C. (2024). Management of burns.
Surgery (Oxford), 42(7), 510-516. DOI:
10.1016/j.mpsur.2024.03.014
-
Jeschke, M.G., van Baar, M.E., Choudhry, M.A., Chung,
K.K., Gibran, N.S., & Logsetty, S. (2020). Burn
injury. Nature reviews Disease primers, 6(1), 11. DOI:
10.1038/s41572-020-0145-5
-
Makhmalzadeh, B.S., Dehkordi, S.K.H., Rezaie, A., &
Karami, M.A. (2024). Superoxide dismutase-
contained solid lipid nanoparticles: Formulation
development and In-vivo evaluation for second-degree
burn wound healing in rat. Burns. DOI:
10.1016/j.burns.2024.05.017
-
Mechqoq, H., El Yaagoubi, M., El Hamdaoui, A.,
Momchilova, S., da Silva Almeida, JRG, Msanda, F.,
& El Aouad, N. (2021). Ethnobotany, phytochemistry
and biological properties of Argan tree (Argania
spinosa (L.) Skeels) (Sapotaceae) - A review. Journal
of Ethnopharmacology, 281, 114528. DOI:
/10.1016/j.jep.2021.114528
-
Melguizo-Rodríguez, L., Illescas-Montes, R., Costela-Ruiz,
V.J., Ramos-Torrecillas, J., de Luna-Bertos, E.,
García-Martínez, O., & Ruiz, C. (2021).
Antimicrobial properties of olive oil phenolic
compounds and their regenerative capacity towards
fibroblast cells. Journal of Tissue Viability, 30(3), 372-
378. DOI: 10.1016/j.jtv.2021.03.003
-
Merecz-Sadowska, A., Sitarek, P., Kucharska, E., Kowalczyk,
T., Zajdel, K., Cegliński, T., & Zajdel, R. (2021).
Antioxidant properties of plant-derived phenolic
compounds and their effect on skin fibroblast cells.
Antioxidants, 10(5), 726. DOI:
10.3390/antiox10050726
-
Miranda, L.L., Sarandy, M.M., Altoé, L.S., Bastos, D.S.S.,
Melo, F.C.S.A., Novaes, R.D., ..., & Gonçalves, R.V.
(2024). Antioxidant and Anti-Inflammatory Potential
of Brassica oleracea Accelerates Third-Degree Burn
Healing in Rats. Cosmetics, 11(1), 27. DOI:
10.3390/cosmetics11010027
-
Mohanta, Y.K., Biswas, K., Jena, S.K., Hashem, A.,
Abd_Allah, E.F., & Mohanta, T.K. (2020). Anti-
biofilm and antibacterial activities of silver
nanoparticles synthesized by the reducing activity of
phytoconstituents present in the Indian medicinal
plants. Frontiers in Microbiology, 11, 1143. DOI:
10.3389/fmicb.2020.01143
-
Mulholland, E.J., Dunne, N., & McCarthy, H.O. (2017).
MicroRNA as therapeutic targets for chronic wound
healing. Molecular Therapy-Nucleic Acids, 8, 46-55.
DOI: 10.1016/j.omtn.2017.06.003
-
Novosad, Y.A., Shabunin, A.S., Enukashvily, N.I.,
Supilnikova, O.V., Konkina, A.I., Semenova, N.Y.,
... & Yurkevich, Y.V. (2024). The Wound-Healing
Effect of a Novel Fibroblasts-Impregnated
Hydroxyethylcellulose Gel in a Rat Full-Thickness
Burn Model: A Preclinical Study. Biomedicines,
12(10), 2215. DOI: 10.3390/biomedicines12102215
-
Olivero-Verbel, J., Quintero-Rincón, P., & Caballero-
Gallardo, K. (2024). Aromatic plants as
cosmeceuticals: benefits and applications for skin
health. Planta, 260(6), 132. DOI: 10.1007/s00425-024-
04550-8.
-
Oryan, A., Alemzadeh, E., & Moshiri, A. (2017). Burn wound
healing: present concepts, treatment strategies and
future directions. Journal of Wound Care, 26(1), 5-19.
DOI: 10.12968/jowc.2017.26.1.5
-
Özdenefe, M.S., Takcı, A.M., & Kayış, F.B. (2023).
Antibacterial, Antioxidant, Antidiabetic Potentials and
Chemical Composition of Nicotiana glauca Graham
Leaf Extract. Journal of Anatolian Environmental and
Animal Sciences, 8(4), 700-706. DOI:
10.35229/jaes.1325678
-
Palabıyık, E. (2022). Triton WR-1339 ile İndüklenen
Hiperlipidemik Sıçanlarda Ceviz Tohum Kabuğu
Ekstresinin Hipolipidemik, Antiinflamatuar ve
Antioksidan Özelliklerinin Değerlendirilmesi. Doktora
Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü.
Erzurum-Türkiye, 63s
-
Palabıyık, E., Sulumer, A. N., Uguz, H., Avcı, B., Askın, S.,
Askın, H., & Demir, Y. (2023). Assessment of
hypolipidemic and anti‐inflammatory properties of
walnut (Juglans regia) seed coat extract and modulates
some metabolic enzymes activity in triton WR‐1339‐
induced hyperlipidemia in rat kidney, liver, and heart.
Journal of Molecular Recognition, 36(3), e3004. DOI:
10.1002/jmr.3004
-
Palabiyik, E., Sulumer, A. N., Uguz, H., Avci, B., Askin, S., &
Askin, H. (2024). Walnut fruit diaphragm ethanol
extract ameliorates damage due to Triton WR‐1339‐
induced hyperlipidemia in rats. European Journal of
Lipid Science and Technology, 126(1), 2300105. DOI:
10.1002/ejlt.202300105
-
Prusinowska, R., & Śmigielski, K.B. (2014). Composition,
biological properties and therapeutic effects of lavender
L). A review. Herba Polonica, 60(2), 56-66. DOI:
10.2478/hepo-2014-0010
-
Qureshi, K.A., Mohammed, S.A., Khan, O., Ali, H.M., El-
Readi, M.Z., & Mohammed, H.A. (2022).
Cinnamaldehyde-based self-nanoemulsion (CA-
SNEDDS) accelerates wound healing and exerts
antimicrobial, antioxidant, and anti-inflammatory
effects in rats’ skin burn model. Molecules, 27(16),
5225. DOI: 10.3390/molecules27165225
-
Selvi, E.K. (2020). Antioxidant Activity and Total Phenolic and
Flavonoid Contents of Salvia verticillata L., Salvia
tomentosa Mill., and Phlomis lychnitis L. Journal of
Anatolian Environmental and Animal Sciences, 5(2),
125-130. DOI: 10.35229/jaes.664514
-
Selwyn, A., & Govindaraj, S. (2023). Study of plant-based
cosmeceuticals and skin care. South African Journal of
Botany, 158, 429-442. DOI:
10.1016/j.sajb.2023.05.039
-
Shpichka, A., Butnaru, D., Bezrukov, E.A., Sukhanov, R.B.,
Atala, A., Burdukovskii, V., ..., & Timashev, P.
(2019). Skin tissue regeneration for burn injury. Stem
Cell Research & Therapy, 10, 1-16. DOI:
10.1186/s13287-019-1203-3
-
Skowrońska, W., & Bazylko, A. (2023). The potential of
medicinal plants and natural products in the treatment
of burns and sunburn-a review. Pharmaceutics, 15(2),
633. DOI: 10.3390/pharmaceutics15020633
-
Stanojcic, M., Abdullahi, A., Rehou, S., Parousis, A., &
Jeschke, M.G. (2018). Pathophysiological response to
burn injury in adults. Annals of Surgery, 267(3), 576-
584. DOI: 10.1097/SLA.0000000000002097
-
Stone II, R., Natesan, S., Kowalczewski, C.J., Mangum, L.H.,
Clay, N.E., Clohessy, R.M., ... & Christy, R.J. (2018).
Advancements in regenerative strategies through the
continuum of burn care. Frontiers in pharmacology, 9,
672. DOI: 10.3389/fphar.2018.00672
-
Sulumer, A.N., Palabıyık, E., Avcı, B., Uğuz, H., & Aşkın, H.
(2024). Histopathological and Antioxidant Effects of
Bromelain on Kidney Tissue of Tyloxapol-Induced
Hyperlipidemic Rats. Yüzüncü Yıl Üniversitesi Fen
Bilimleri Enstitüsü Dergisi, 29(2), 413-422. DOI:
10.53433/yyufbed.1381717
-
Sumsuzzman, D.M., Choi, J., Khan, Z.A., & Hong, Y. (2020).
Protective effects of melatonin against severe burn-
induced distant organ injury: A systematic review and
meta-analysis of experimental studies. Antioxidants,
9(12), 1196. DOI: 10.3390/antiox9121196
-
Thiruvoth, F.M., Mohapatra, D.P., Kumar, D., Chittoria,
S.R.K., & Nandhagopal, V. (2015). Current concepts
in the physiology of adult wound healing. Plastic and
Aesthetic Research, 2, 250-256. DOI: 10.4103/2347-
9264.158851
-
Wang, G., Yang, F., Zhou, W., Xiao, N., Luo, M., & Tang, Z.
(2023). The initiation of oxidative stress and
therapeutic strategies in wound healing. Biomedicine &
Pharmacotherapy, 157, 114004. DOI:
10.1016/j.biopha.2022.114004
-
Wang, Y., Beekman, J., Hew, J., Jackson, S., Issler-Fisher, A.
C., Parungao, R., ... & Maitz, P. K. (2018). Burn
injury: challenges and advances in burn wound healing,
infection, pain and scarring. Advanced Drug Delivery
Reviews, 123, 3-17. DOI: 10.1016/j.addr.2017.09.018
-
Wells, R., Truong, F., Adal, A. M., Sarker, L. S., & Mahmoud,
S. S. (2018). Lavandula essential oils: A current review
of applications in medicinal, food, and cosmetic
industries of lavender. Natural Product
Communications, 13(10), 1934578X1801301038. DOI:
10.1177/1934578X1801301038
-
Yadav, D. P., Aljrees, T., Kumar, D., Kumar, A., Singh, K. U.,
& Singh, T. (2023). Spatial attention-based residual
network for human burn identification and
classification. Scientific Reports, 13(1), 12516. DOI:
10.1038/s41598-023-39618-0
-
Zengı̇n, R., Erdoğan, S., Özhan, O., Karaca, E. T., Özçinar,
S., Yilmaztekı̇n, Y., ..., & Uyumlu, A. B. (2025).
Effects of black mulberry, chokeberry, and elderberry
extracts on the healing of burn wounds. Burns, 51(2),
107391. DOI: 10.1016/j.burns.2025.107391
-
Żwierełło, W., Piorun, K., Skórka-Majewicz, M.,
Maruszewska, A., Antoniewski, J., & Gutowska, I.
(2023). Burns: Classification, pathophysiology, and
treatment: A review. International Journal of
Molecular Sciences, 24(4), 3749. DOI:
10.3390/ijms24043749
Effectiveness of Cream Containing Medicinal Plants in the Treatment of Second Degree Burns: Biochemical and Histopathological Investigation
Yıl 2025,
Cilt: 10 Sayı: 5, 693 - 702
Seda Aşkın
,
Esra Palabıyık
,
Handan Uğuz Bayrakçeken
,
Bahri Avcı
,
Ayşe Nurseli Sulumer
,
Harika Derya Tamer
,
Hakan Aşkın
Öz
Burn injuries represent severe pathophysiological conditions characterized by increased oxidative stress and impaired tissue integrity, necessitating effective therapeutic interventions. This study evaluates the biochemical and histopathological effects of a novel cream formulation containing Juglans regia leaf extract, Argania spinosa kernel oil, Prunus dulcis oil, and Lavandula angustifolia oil on second-degree burn wounds. Using a Wistar-albino rat model, oxidative stress markers, including superoxide dismutase (SOD) and malondialdehyde (MDA), were analyzed alongside histopathological assessments to determine the formulation’s therapeutic potential. The results demonstrated a significant increase in SOD levels and a concurrent reduction in MDA levels in the treatment group, suggesting an enhanced antioxidant response and reduced lipid peroxidation. Histopathological evaluations revealed accelerated epithelialization, increased fibroblast activity, and improved keratinization compared to the burn control and silver sulfadiazine groups. These findings indicate that the tested formulation effectively mitigates oxidative damage while promoting tissue regeneration. As a potential alternative to conventional burn treatments, this plant-based formulation may offer an innovative and cost-effective therapeutic strategy for managing second-degree burns. However, further clinical studies are required to confirm its efficacy in human applications.
Etik Beyan
This study was conducted in accordance with the decision of the Atatürk University Medical Experimental Application and Research Center (ATADEM) Ethics Committee, numbered E-75296309-050.01.04-2400427040 and dated 26.12.2024.
Teşekkür
We would like to thank ATADEM, the Faculty of Science Molecular Biology and Genetics Laboratory, and the Faculty of Medicine Medical Pathology Laboratory where our experimental studies were carried out.
Kaynakça
-
Abdel-Mageed, H.M., AbuelEzz, N.Z., Ali, A.A., Abdelaziz,
A.E., Nada, D., Abdelraouf, S.M., ... & Radwan,
R.A. (2025). Newly designed curcumin-loaded hybrid
nanoparticles: a multifunctional strategy for combating
oxidative stress, inflammation, and infections to
accelerate wound healing and tissue regeneration. BMC
Biotechnology, 25(1), 49. DOI: 10.1186/s12896-025-
00989-z
-
Addis, R., Cruciani, S., Santaniello, S., Bellu, E., Sarais, G.,
Ventura, C., ..., & Pintore, G. (2020). Fibroblast
proliferation and migration in wound healing by
phytochemicals: evidence for a novel synergic
outcome. International Journal of Medical Sciences,
17(8), 1030. DOI: 10.7150/ijms.43986
-
Ahuja, S., Bansal, N., Mittal, M., Gulati, K., Mittal, A., &
Arora, S. (2024). Cell viability assessment and
physicomechanical characterization of Juglans regia
leaf fiber-reinforced poly (hydroxybutyrate) films for
biomedical uses. Iranian Polymer Journal, 1-15. DOI:
10.1007/s13726-024-01367-w
-
Alhilal, M., Erol, H.S., Yildirim, S., Cakir, A., Koc, M.,
Celebi, D., & Halici, M.B. (2023). Osajin from
Maclura pomifera alleviates sepsis-induced liver injury
in rats: biochemical, histopathological and
immunohistochemical estimation. Journal of Taibah
University for Science, 17(1), 2201250. DOI:
10.1080/16583655.2023.2201250
-
Altıntaş, Ö.E., & Çelik, P.A. (2023). Comparative Assessment
of Nutritional Composition, Polyphenol Content and
Antioxidative Properties of Edible and Medicinal
Mushroom: Coriolus versicolor. Journal of Anatolian
Environmental and Animal Sciences, 8(4), 626-634.
DOI: 10.35229/jaes.1339958
-
Basu, P., Kumar, U.N., & Manjubala, I. (2017). Wound healing
materials–a perspective for skin tissue engineering.
Current Science, 2392-2404.
-
Batiha, G.E.S., Teibo, J.O., Wasef, L., Shaheen, H.M.,
Akomolafe, A.P., Teibo, T.K. A., ..., & Papadakis,
M. (2023). A review of the bioactive components and
pharmacological properties of Lavandula species.
Naunyn-schmiedeberg's Archives of Pharmacology,
396(5), 877-900. DOI: 10.1007/s00210-023-02392-x
-
Bayir, Y., Un, H., Ugan, R. A., Akpinar, E., Cadirci, E., Calik,
I., & Halici, Z. (2019). The effects of Beeswax, Olive
oil and Butter impregnated bandage on burn wound
healing. Burns, 45(6), 1410-1417. DOI:
10.1016/j.burns.2018.03.004
-
Bold, B.E., Urnukhsaikhan, E., & Mishig-Ochir, T. (2022).
Biosynthesis of silver nanoparticles with antibacterial,
antioxidant, anti-inflammatory properties and their
burn wound healing efficacy. Frontiers in Chemistry,
10, 972534. DOI: 10.3389/fchem.2022.972534
Chidambaram, S.B., Anand, N., Varma, S.R., Ramamurthy,
S., Vichitra, C., Sharma, A., ..., & Essa, M.M. (2024).
Superoxide dismutase and neurological disorders.
IBRO Neuroscience Reports, 16, 373-394. DOI:
10.1016/j.ibneur.2023.11.007
-
Cinar, I., Sirin, B., Aydin, P., Toktay, E., Cadirci, E., Halici,
I., & Halici, Z. (2019). Ameliorative effect of gossypin
against acute lung injury in experimental sepsis model
of rats. Life sciences, 221, 327-334. DOI:
10.1016/j.lfs.2019.02.039
-
Cohen, J. (2013). Statistical power analysis for the behavioral
sciences. routledge. DOI: 10.4324/9780203771587
Comino-Sanz, I.M., López-Franco, M.D., Castro, B., &
Pancorbo-Hidalgo, P.L. (2021). The role of
antioxidants on wound healing: A review of the current
evidence. Journal of clinical medicine, 10(16), 3558.
DOI: 10.3390/jcm10163558
-
Deng, L., Du, C., Song, P., Chen, T., Rui, S., Armstrong, D.G.,
& Deng, W. (2021). The role of oxidative stress and
antioxidants in diabetic wound healing. Oxidative
Medicine and Cellular Longevity, 2021(1), 8852759.
DOI: 10.1155/2021/8852759
-
Elsamman, M., El-Borady, O.M., Nasr, M.M., Al-Amgad, Z.,
& Metwally, A.A. (2024). Development of propolis,
hyaluronic acid, and vitamin K nano-emulsion for the
treatment of second-degree burns in albino rats. BMC
Complementary Medicine and Therapies, 24(1), 92.
DOI: 10.1186/s12906-024-04377-6
-
Hadi, N., Drioiche, A., Bouchra, E.M., Baammi, S., Abdelaziz
Shahat, A., Tagnaout, I., ..., & Zair, T. (2024).
Phytochemical analysis and evaluation of antioxidant
and antimicrobial properties of essential oils and seed
extracts of Anethum graveolens from Southern
Morocco: In vitro and in silico approach for a natural
alternative to synthetic preservatives. Pharmaceuticals,
17(7), 862. DOI: 10.3390/ph17070862
-
Hamilton, T.J., Patterson, J., Williams, R.Y., Ingram, W.L.,
Hodge, J.S., & Abramowicz, S. (2018). Management
of head and neck burns—a 15-year review. Journal of
Oral and Maxillofacial Surgery, 76(2), 375-379. DOI:
10.1016/j.joms.2017.09.001
-
He, J. J., McCarthy, C., & Camci-Unal, G. (2021).
Development of hydrogel‐based sprayable wound
dressings for second‐and third‐degree burns. Advanced
Nanobiomed Research, 1(6), 2100004. DOI:
10.1002/anbr.202100004
-
Hu, X., Ma, W., Zhang, D., Tian, Z., Yang, Y., Huang, Y., &
Hong, Y. (2025). Application of Natural Antioxidants
as Feed Additives in Aquaculture: A Review. Biology,
14(1), 87. DOI: 10.3390/biology14010087
-
Ibrahim-Achi, Z., Jorge-Pérez, P., Abreu-González, P.,
López-Mejías, R., Martín-González, C., González-
Gay, M.Á., & Ferraz-Amaro, I. (2023).
Malondialdehyde Serum Levels in Patients with
Systemic Sclerosis Relate to Dyslipidemia and Low
Ventricular Ejection Fraction. Antioxidants, 12(9),
1668. DOI: 10.3390/antiox12091668
-
Jamali, T., & Kaboudanian Ardestani, S. (2024). Investigating
Anti-cancer, Anti-oxidant and Immunomodulatory
Effects of Essential Oils: Focusing on Oliveria
decumbens and Zataria multiflora Essential Oils.
Immunoregulation, 6(1), 13-28. DOI:
10.32598/İMMÜNOREGÜLASYON.6.1.6
Jenkins, M., & Johnson, C. (2024). Management of burns.
Surgery (Oxford), 42(7), 510-516. DOI:
10.1016/j.mpsur.2024.03.014
-
Jeschke, M.G., van Baar, M.E., Choudhry, M.A., Chung,
K.K., Gibran, N.S., & Logsetty, S. (2020). Burn
injury. Nature reviews Disease primers, 6(1), 11. DOI:
10.1038/s41572-020-0145-5
-
Makhmalzadeh, B.S., Dehkordi, S.K.H., Rezaie, A., &
Karami, M.A. (2024). Superoxide dismutase-
contained solid lipid nanoparticles: Formulation
development and In-vivo evaluation for second-degree
burn wound healing in rat. Burns. DOI:
10.1016/j.burns.2024.05.017
-
Mechqoq, H., El Yaagoubi, M., El Hamdaoui, A.,
Momchilova, S., da Silva Almeida, JRG, Msanda, F.,
& El Aouad, N. (2021). Ethnobotany, phytochemistry
and biological properties of Argan tree (Argania
spinosa (L.) Skeels) (Sapotaceae) - A review. Journal
of Ethnopharmacology, 281, 114528. DOI:
/10.1016/j.jep.2021.114528
-
Melguizo-Rodríguez, L., Illescas-Montes, R., Costela-Ruiz,
V.J., Ramos-Torrecillas, J., de Luna-Bertos, E.,
García-Martínez, O., & Ruiz, C. (2021).
Antimicrobial properties of olive oil phenolic
compounds and their regenerative capacity towards
fibroblast cells. Journal of Tissue Viability, 30(3), 372-
378. DOI: 10.1016/j.jtv.2021.03.003
-
Merecz-Sadowska, A., Sitarek, P., Kucharska, E., Kowalczyk,
T., Zajdel, K., Cegliński, T., & Zajdel, R. (2021).
Antioxidant properties of plant-derived phenolic
compounds and their effect on skin fibroblast cells.
Antioxidants, 10(5), 726. DOI:
10.3390/antiox10050726
-
Miranda, L.L., Sarandy, M.M., Altoé, L.S., Bastos, D.S.S.,
Melo, F.C.S.A., Novaes, R.D., ..., & Gonçalves, R.V.
(2024). Antioxidant and Anti-Inflammatory Potential
of Brassica oleracea Accelerates Third-Degree Burn
Healing in Rats. Cosmetics, 11(1), 27. DOI:
10.3390/cosmetics11010027
-
Mohanta, Y.K., Biswas, K., Jena, S.K., Hashem, A.,
Abd_Allah, E.F., & Mohanta, T.K. (2020). Anti-
biofilm and antibacterial activities of silver
nanoparticles synthesized by the reducing activity of
phytoconstituents present in the Indian medicinal
plants. Frontiers in Microbiology, 11, 1143. DOI:
10.3389/fmicb.2020.01143
-
Mulholland, E.J., Dunne, N., & McCarthy, H.O. (2017).
MicroRNA as therapeutic targets for chronic wound
healing. Molecular Therapy-Nucleic Acids, 8, 46-55.
DOI: 10.1016/j.omtn.2017.06.003
-
Novosad, Y.A., Shabunin, A.S., Enukashvily, N.I.,
Supilnikova, O.V., Konkina, A.I., Semenova, N.Y.,
... & Yurkevich, Y.V. (2024). The Wound-Healing
Effect of a Novel Fibroblasts-Impregnated
Hydroxyethylcellulose Gel in a Rat Full-Thickness
Burn Model: A Preclinical Study. Biomedicines,
12(10), 2215. DOI: 10.3390/biomedicines12102215
-
Olivero-Verbel, J., Quintero-Rincón, P., & Caballero-
Gallardo, K. (2024). Aromatic plants as
cosmeceuticals: benefits and applications for skin
health. Planta, 260(6), 132. DOI: 10.1007/s00425-024-
04550-8.
-
Oryan, A., Alemzadeh, E., & Moshiri, A. (2017). Burn wound
healing: present concepts, treatment strategies and
future directions. Journal of Wound Care, 26(1), 5-19.
DOI: 10.12968/jowc.2017.26.1.5
-
Özdenefe, M.S., Takcı, A.M., & Kayış, F.B. (2023).
Antibacterial, Antioxidant, Antidiabetic Potentials and
Chemical Composition of Nicotiana glauca Graham
Leaf Extract. Journal of Anatolian Environmental and
Animal Sciences, 8(4), 700-706. DOI:
10.35229/jaes.1325678
-
Palabıyık, E. (2022). Triton WR-1339 ile İndüklenen
Hiperlipidemik Sıçanlarda Ceviz Tohum Kabuğu
Ekstresinin Hipolipidemik, Antiinflamatuar ve
Antioksidan Özelliklerinin Değerlendirilmesi. Doktora
Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü.
Erzurum-Türkiye, 63s
-
Palabıyık, E., Sulumer, A. N., Uguz, H., Avcı, B., Askın, S.,
Askın, H., & Demir, Y. (2023). Assessment of
hypolipidemic and anti‐inflammatory properties of
walnut (Juglans regia) seed coat extract and modulates
some metabolic enzymes activity in triton WR‐1339‐
induced hyperlipidemia in rat kidney, liver, and heart.
Journal of Molecular Recognition, 36(3), e3004. DOI:
10.1002/jmr.3004
-
Palabiyik, E., Sulumer, A. N., Uguz, H., Avci, B., Askin, S., &
Askin, H. (2024). Walnut fruit diaphragm ethanol
extract ameliorates damage due to Triton WR‐1339‐
induced hyperlipidemia in rats. European Journal of
Lipid Science and Technology, 126(1), 2300105. DOI:
10.1002/ejlt.202300105
-
Prusinowska, R., & Śmigielski, K.B. (2014). Composition,
biological properties and therapeutic effects of lavender
L). A review. Herba Polonica, 60(2), 56-66. DOI:
10.2478/hepo-2014-0010
-
Qureshi, K.A., Mohammed, S.A., Khan, O., Ali, H.M., El-
Readi, M.Z., & Mohammed, H.A. (2022).
Cinnamaldehyde-based self-nanoemulsion (CA-
SNEDDS) accelerates wound healing and exerts
antimicrobial, antioxidant, and anti-inflammatory
effects in rats’ skin burn model. Molecules, 27(16),
5225. DOI: 10.3390/molecules27165225
-
Selvi, E.K. (2020). Antioxidant Activity and Total Phenolic and
Flavonoid Contents of Salvia verticillata L., Salvia
tomentosa Mill., and Phlomis lychnitis L. Journal of
Anatolian Environmental and Animal Sciences, 5(2),
125-130. DOI: 10.35229/jaes.664514
-
Selwyn, A., & Govindaraj, S. (2023). Study of plant-based
cosmeceuticals and skin care. South African Journal of
Botany, 158, 429-442. DOI:
10.1016/j.sajb.2023.05.039
-
Shpichka, A., Butnaru, D., Bezrukov, E.A., Sukhanov, R.B.,
Atala, A., Burdukovskii, V., ..., & Timashev, P.
(2019). Skin tissue regeneration for burn injury. Stem
Cell Research & Therapy, 10, 1-16. DOI:
10.1186/s13287-019-1203-3
-
Skowrońska, W., & Bazylko, A. (2023). The potential of
medicinal plants and natural products in the treatment
of burns and sunburn-a review. Pharmaceutics, 15(2),
633. DOI: 10.3390/pharmaceutics15020633
-
Stanojcic, M., Abdullahi, A., Rehou, S., Parousis, A., &
Jeschke, M.G. (2018). Pathophysiological response to
burn injury in adults. Annals of Surgery, 267(3), 576-
584. DOI: 10.1097/SLA.0000000000002097
-
Stone II, R., Natesan, S., Kowalczewski, C.J., Mangum, L.H.,
Clay, N.E., Clohessy, R.M., ... & Christy, R.J. (2018).
Advancements in regenerative strategies through the
continuum of burn care. Frontiers in pharmacology, 9,
672. DOI: 10.3389/fphar.2018.00672
-
Sulumer, A.N., Palabıyık, E., Avcı, B., Uğuz, H., & Aşkın, H.
(2024). Histopathological and Antioxidant Effects of
Bromelain on Kidney Tissue of Tyloxapol-Induced
Hyperlipidemic Rats. Yüzüncü Yıl Üniversitesi Fen
Bilimleri Enstitüsü Dergisi, 29(2), 413-422. DOI:
10.53433/yyufbed.1381717
-
Sumsuzzman, D.M., Choi, J., Khan, Z.A., & Hong, Y. (2020).
Protective effects of melatonin against severe burn-
induced distant organ injury: A systematic review and
meta-analysis of experimental studies. Antioxidants,
9(12), 1196. DOI: 10.3390/antiox9121196
-
Thiruvoth, F.M., Mohapatra, D.P., Kumar, D., Chittoria,
S.R.K., & Nandhagopal, V. (2015). Current concepts
in the physiology of adult wound healing. Plastic and
Aesthetic Research, 2, 250-256. DOI: 10.4103/2347-
9264.158851
-
Wang, G., Yang, F., Zhou, W., Xiao, N., Luo, M., & Tang, Z.
(2023). The initiation of oxidative stress and
therapeutic strategies in wound healing. Biomedicine &
Pharmacotherapy, 157, 114004. DOI:
10.1016/j.biopha.2022.114004
-
Wang, Y., Beekman, J., Hew, J., Jackson, S., Issler-Fisher, A.
C., Parungao, R., ... & Maitz, P. K. (2018). Burn
injury: challenges and advances in burn wound healing,
infection, pain and scarring. Advanced Drug Delivery
Reviews, 123, 3-17. DOI: 10.1016/j.addr.2017.09.018
-
Wells, R., Truong, F., Adal, A. M., Sarker, L. S., & Mahmoud,
S. S. (2018). Lavandula essential oils: A current review
of applications in medicinal, food, and cosmetic
industries of lavender. Natural Product
Communications, 13(10), 1934578X1801301038. DOI:
10.1177/1934578X1801301038
-
Yadav, D. P., Aljrees, T., Kumar, D., Kumar, A., Singh, K. U.,
& Singh, T. (2023). Spatial attention-based residual
network for human burn identification and
classification. Scientific Reports, 13(1), 12516. DOI:
10.1038/s41598-023-39618-0
-
Zengı̇n, R., Erdoğan, S., Özhan, O., Karaca, E. T., Özçinar,
S., Yilmaztekı̇n, Y., ..., & Uyumlu, A. B. (2025).
Effects of black mulberry, chokeberry, and elderberry
extracts on the healing of burn wounds. Burns, 51(2),
107391. DOI: 10.1016/j.burns.2025.107391
-
Żwierełło, W., Piorun, K., Skórka-Majewicz, M.,
Maruszewska, A., Antoniewski, J., & Gutowska, I.
(2023). Burns: Classification, pathophysiology, and
treatment: A review. International Journal of
Molecular Sciences, 24(4), 3749. DOI:
10.3390/ijms24043749