Araştırma Makalesi
BibTex RIS Kaynak Göster

Nijerya’nın Sudan Savanasında Kömür Tabanlı Gübrelerin Soya Fasulyesinin Besin Alımı ve Verimi Üzerindeki Etkiler

Yıl 2025, Cilt: 3 Sayı: 2, 104 - 118, 25.12.2025

Öz

Özet
Bu çalışma, Nijerya’nın Sudan Savanası’nda kömür tabanlı gübrenin soya fasulyesi (Glycine max) besin alımı ve tarımsal performansı üzerindeki etkilerini değerlendirmiştir. Arazi denemesi, 2024 yağmur sezonunda tesadüf blokları deneme desenine göre yedi uygulama ile yürütülmüştür: kontrol, %100 kömür tabanlı gübre (CF), %100 NPK, çiftlik gübresi ve farklı oranlarda CF ile NPK kombinasyonları. Bitki boyu, yaprak sayısı, dal sayısı, kapsül sayısı, 100 tohum ağırlığı ve tane verimi gibi büyüme ve verim parametreleri kaydedilmiş; yaprak dokusu ise azot (N), fosfor (P) ve potasyum (K) alımı için analiz edilmiştir. Sonuçlar, %50 CF + %50 NPK uygulamasının, tek başına CF, NPK veya çiftlik gübresine kıyasla soya fasulyesi büyümesini, besin alımını ve verimini önemli ölçüde artırdığını göstermiştir. Azot ve potasyum alımı hem lokasyon hem de gübre uygulamalarından önemli derecede etkilenmiş, fosfor alımı ise etkilenmemiştir. Dambatta, Bayero Üniversitesi Kano’ya kıyasla sürekli olarak daha yüksek besin alımı ve verim kaydetmiş, bu da bölgeye özgü çevresel etkileri ortaya koymuştur. Bulgular, CF’nin NPK ile birlikte uygulanmasının Sudan Savanası’nın besin açısından fakir topraklarında soya fasulyesi verimliliğini artırdığını ve yalnızca mineral gübre kullanımına göre daha düşük maliyetli, sürdürülebilir bir alternatif sunduğunu göstermektedir.

Kaynakça

  • Ahmad, M., Ali, S., Khan, R., & Iqbal, M. (2015). Use of coal derived humic acid as soil conditioner to improve soil physical properties and wheat yield. International Journal of Plant & Soil Science, 5(3), 211–219. https://journalijpss.com/index.php/IJPSS/article/view/632
  • Agarwal, T., Ahmed, R., & Popat, R. (2022). Low temperature pyrolyzed carbon rich soil amendments: Chemical properties, functional groups, and implications for soil fertility. Soil Use and Management, 38(4), 1300–1312. https://doi.org/10.1111/sum.12763
  • Ahmad, I., Ali, S., Khan, K. S., ul Hassan, F., & Bashir, K. (2015). Use of coal-derived humic acid as soil conditioner to improve soil physical properties and wheat yield. International Journal of Plant & Soil Science, 5(5), 268–275. https://journalijpss.com/index.php/IJPSS/article/view/632
  • Akimbekov, N. S., Digel, I., Tastambek, K. T., Sherelkhan, D. K., Jussupova, D. B., & Altynbay, N. P. (2021). Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture, 11(12), Article 1261. https://doi.org/10.3390/agriculture11121261
  • Alsudays, I. M., Alshammary, F. H., Alabdallah, N. M., et al. (2024). Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biology, 24, 191. https://doi.org/10.1186/s12870-024-04863-6
  • Buresh, R. J., Sanchez, P. A., & Calhoun, F. (Eds.). (1997). Replenishing soil fertility in Africa. Soil Science Society of America; American Society of Agronomy.
  • Chivenge, P., Vanlauwe, B., & Six, J. (2011). Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 342(1), 1–30. https://doi.org/10.1007/s11104-010-0626-5
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444. https://doi.org/10.1071/SR08036
  • Dobermann, A. (2007). Nutrient use efficiency: Measurement and management. In A. Kraus, K. Isherwood, & P. Heffer (Eds.), Fertilizers best management practices: General principles, strategies, and tactics for improving nutrient use efficiency (pp. 1–22). International Fertilizer Industry Association.
  • FAO. (2020). Status of food security and nutrition in Nigeria: FAO country report. Food and Agriculture Organization. https://openknowledge.fao.org/3/ca9692en/ca9692en.pdf
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal — a review. Biology and Fertility of Soils, 35, 219–230. https://doi.org/10.1007/s00374-002-0466-4
  • Habib, D. W., Idris, F. B., Mustapha, A. A., & Abdurrahman, B. L. (2024). Comparison of wet chemistry and dry combustion methods for organic carbon and sulfur determination in soils of Nigeria’s savanna. Acta Chemica Malaysia, 8(2), 114-119.
  • Huang, X.-F., Fallgren, P. H., Jin, S., & Reardon, K. F. (2025). A low-rank coal-derived soil amendment promotes plant growth and shapes rhizosphere microbial communities of lettuce (Lactuca sativa). Agriculture, 15(21), Article 2310. https://doi.org/10.3390/agriculture15212310
  • Huculak Mączka, M., Hoffmann, J., & Hoffmann, K. (2018). Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. Journal of Soils and Sediments, 18(4), 2868–2880. https://doi.org/10.1007/s11368-017-1907-x
  • International Institute of Tropical Agriculture (IITA). (2018). Soybean production guide for Nigeria. Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
  • Lehmann, J., & Rondon, M. (2006). Biochar soil management on highly weathered soils in the humid tropics. In N. Uphoff (Ed.), Biological approaches to sustainable soil systems (pp. 517–530). CRC Press.
  • McClelland, S. C., Cotrufo, M. F., Haddix, M. L., Paustian, K., & Schipanski, M. E. (2022). Infrequent compost applications increased plant productivity and soil organic carbon in irrigated pasture but not degraded rangeland. Agriculture, Ecosystems & Environment, 333, 107969. https://doi.org/10.1016/j.agee.2022.107969
  • Meng, H., Wang, S., Zhang, J., Wang, X., Qiu, C., & Hong, J. (2023). Effects of coal derived compound fertilizers on soil bacterial community structure in coal mining subsidence areas. Frontiers in Microbiology, 14, Article 1187572. https://doi.org/10.3389/fmicb.2023.1187572
  • Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuce (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12(3), 369–376.
  • Partoyo, P., Nursanto, E., Ilcham, A., & Supriyanta, B. (2025). Coal-based humic acid fertilizer effects on soil properties and mustard growth. RSF Conference Series: Engineering and Technology, 4(1), 135–143. https://doi.org/10.31098/cset.v4i1.1000
  • Shittu, E. A., Adnan, A. A., Abdulraham, B. L., & Bindawa, U. B. (2025). Integrating coal based organic and inorganic fertilizers to enhance cowpea (Vigna unguiculata) productivity and soil health across Nigerian agroecological zones. African Journal of Agricultural Science and Food Research, 20(1), 254–277. https://doi.org/10.62154/ajasfr.2025.020.01025
  • Solek Podwika, K., Ciarkowska, K., & Filipek-Mazur, B. (2023). Soil amendment with a lignite derived humic substance affects soil properties and biomass maize yield. Sustainability, 15(3), Article 2304. https://doi.org/10.3390/su15032304
  • Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2007). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236–1242. https://doi.org/10.2134/jeq2009.0337
  • Tittonell, P., Vanlauwe, B., Corbeels, M., & Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 313, 19–37. https://doi.org/10.1007/s11104-008-9676-3
  • Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
  • Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998
  • Yuan, Y., Gai, S., Tang, C., Jin, Y., Cheng, K., Antonietti, M., & Yang, F. (2022). Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology, 179, 104587. https://doi.org/10.1016/j.apsoil.2022.104587
  • Zhao, L., & Naeth, M. A. (2024). Synergistic effects of coal waste-derived humic substances and inorganic fertilizer as soil amendments for barley in sandy soil. Heliyon, 10(8), Article e29620. https://pubmed.ncbi.nlm.nih.gov/38699743

Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria

Yıl 2025, Cilt: 3 Sayı: 2, 104 - 118, 25.12.2025

Öz

Abstract
This study evaluated the effects of coal-based fertilizer on soybean (Glycine max) nutrient uptake and agronomic performance in the Sudan Savanna of Nigeria. A field experiment was conducted during the 2024 rainy season using a randomized complete block design with seven treatments: control, 100% coal-based fertilizer (CF), 100% NPK, cow dung, and combinations of CF and NPK at different ratios. Growth and yield parameters including plant height, leaf number, branches, pods, 100-seed weight, and grain yield were recorded, while leaf tissue was analyzed for nitrogen (N), phosphorus (P), and potassium (K) uptake. Results showed that the combined application of 50% CF + 50% NPK significantly enhanced soybean growth, nutrient uptake, and yield compared with sole CF, NPK, or cow dung. Nitrogen and potassium uptake were significantly influenced by both location and fertilizer treatment, while phosphorus uptake was not. Dambatta consistently recorded higher nutrient uptake and yield than Bayero University Kano, indicating site-specific environmental effects. The findings suggest that integrating CF with NPK improves soybean productivity in nutrient-deficient soils of the Sudan Savanna and represents a cost-effective, sustainable alternative to sole mineral fertilizer use.

Kaynakça

  • Ahmad, M., Ali, S., Khan, R., & Iqbal, M. (2015). Use of coal derived humic acid as soil conditioner to improve soil physical properties and wheat yield. International Journal of Plant & Soil Science, 5(3), 211–219. https://journalijpss.com/index.php/IJPSS/article/view/632
  • Agarwal, T., Ahmed, R., & Popat, R. (2022). Low temperature pyrolyzed carbon rich soil amendments: Chemical properties, functional groups, and implications for soil fertility. Soil Use and Management, 38(4), 1300–1312. https://doi.org/10.1111/sum.12763
  • Ahmad, I., Ali, S., Khan, K. S., ul Hassan, F., & Bashir, K. (2015). Use of coal-derived humic acid as soil conditioner to improve soil physical properties and wheat yield. International Journal of Plant & Soil Science, 5(5), 268–275. https://journalijpss.com/index.php/IJPSS/article/view/632
  • Akimbekov, N. S., Digel, I., Tastambek, K. T., Sherelkhan, D. K., Jussupova, D. B., & Altynbay, N. P. (2021). Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture, 11(12), Article 1261. https://doi.org/10.3390/agriculture11121261
  • Alsudays, I. M., Alshammary, F. H., Alabdallah, N. M., et al. (2024). Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biology, 24, 191. https://doi.org/10.1186/s12870-024-04863-6
  • Buresh, R. J., Sanchez, P. A., & Calhoun, F. (Eds.). (1997). Replenishing soil fertility in Africa. Soil Science Society of America; American Society of Agronomy.
  • Chivenge, P., Vanlauwe, B., & Six, J. (2011). Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 342(1), 1–30. https://doi.org/10.1007/s11104-010-0626-5
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444. https://doi.org/10.1071/SR08036
  • Dobermann, A. (2007). Nutrient use efficiency: Measurement and management. In A. Kraus, K. Isherwood, & P. Heffer (Eds.), Fertilizers best management practices: General principles, strategies, and tactics for improving nutrient use efficiency (pp. 1–22). International Fertilizer Industry Association.
  • FAO. (2020). Status of food security and nutrition in Nigeria: FAO country report. Food and Agriculture Organization. https://openknowledge.fao.org/3/ca9692en/ca9692en.pdf
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal — a review. Biology and Fertility of Soils, 35, 219–230. https://doi.org/10.1007/s00374-002-0466-4
  • Habib, D. W., Idris, F. B., Mustapha, A. A., & Abdurrahman, B. L. (2024). Comparison of wet chemistry and dry combustion methods for organic carbon and sulfur determination in soils of Nigeria’s savanna. Acta Chemica Malaysia, 8(2), 114-119.
  • Huang, X.-F., Fallgren, P. H., Jin, S., & Reardon, K. F. (2025). A low-rank coal-derived soil amendment promotes plant growth and shapes rhizosphere microbial communities of lettuce (Lactuca sativa). Agriculture, 15(21), Article 2310. https://doi.org/10.3390/agriculture15212310
  • Huculak Mączka, M., Hoffmann, J., & Hoffmann, K. (2018). Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. Journal of Soils and Sediments, 18(4), 2868–2880. https://doi.org/10.1007/s11368-017-1907-x
  • International Institute of Tropical Agriculture (IITA). (2018). Soybean production guide for Nigeria. Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
  • Lehmann, J., & Rondon, M. (2006). Biochar soil management on highly weathered soils in the humid tropics. In N. Uphoff (Ed.), Biological approaches to sustainable soil systems (pp. 517–530). CRC Press.
  • McClelland, S. C., Cotrufo, M. F., Haddix, M. L., Paustian, K., & Schipanski, M. E. (2022). Infrequent compost applications increased plant productivity and soil organic carbon in irrigated pasture but not degraded rangeland. Agriculture, Ecosystems & Environment, 333, 107969. https://doi.org/10.1016/j.agee.2022.107969
  • Meng, H., Wang, S., Zhang, J., Wang, X., Qiu, C., & Hong, J. (2023). Effects of coal derived compound fertilizers on soil bacterial community structure in coal mining subsidence areas. Frontiers in Microbiology, 14, Article 1187572. https://doi.org/10.3389/fmicb.2023.1187572
  • Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuce (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12(3), 369–376.
  • Partoyo, P., Nursanto, E., Ilcham, A., & Supriyanta, B. (2025). Coal-based humic acid fertilizer effects on soil properties and mustard growth. RSF Conference Series: Engineering and Technology, 4(1), 135–143. https://doi.org/10.31098/cset.v4i1.1000
  • Shittu, E. A., Adnan, A. A., Abdulraham, B. L., & Bindawa, U. B. (2025). Integrating coal based organic and inorganic fertilizers to enhance cowpea (Vigna unguiculata) productivity and soil health across Nigerian agroecological zones. African Journal of Agricultural Science and Food Research, 20(1), 254–277. https://doi.org/10.62154/ajasfr.2025.020.01025
  • Solek Podwika, K., Ciarkowska, K., & Filipek-Mazur, B. (2023). Soil amendment with a lignite derived humic substance affects soil properties and biomass maize yield. Sustainability, 15(3), Article 2304. https://doi.org/10.3390/su15032304
  • Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2007). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236–1242. https://doi.org/10.2134/jeq2009.0337
  • Tittonell, P., Vanlauwe, B., Corbeels, M., & Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 313, 19–37. https://doi.org/10.1007/s11104-008-9676-3
  • Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x
  • Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998
  • Yuan, Y., Gai, S., Tang, C., Jin, Y., Cheng, K., Antonietti, M., & Yang, F. (2022). Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology, 179, 104587. https://doi.org/10.1016/j.apsoil.2022.104587
  • Zhao, L., & Naeth, M. A. (2024). Synergistic effects of coal waste-derived humic substances and inorganic fertilizer as soil amendments for barley in sandy soil. Heliyon, 10(8), Article e29620. https://pubmed.ncbi.nlm.nih.gov/38699743
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gübreler ve Uygulaması
Bölüm Araştırma Makalesi
Yazarlar

Olorunshola Olusegun 0009-0009-1831-7372

Abbati Muhammad Umar 0009-0005-4997-0600

Dahiru Wakili Habib 0009-0000-3990-3774

Gönderilme Tarihi 17 Eylül 2025
Kabul Tarihi 14 Aralık 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Olusegun, O., Umar, A. M., & Habib, D. W. (2025). Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria. Düzce Üniversitesi Ziraat Fakültesi Dergisi, 3(2), 104-118.
AMA Olusegun O, Umar AM, Habib DW. Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria. Düzce Üniversitesi Ziraat Fakültesi Dergisi. Aralık 2025;3(2):104-118.
Chicago Olusegun, Olorunshola, Abbati Muhammad Umar, ve Dahiru Wakili Habib. “Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria”. Düzce Üniversitesi Ziraat Fakültesi Dergisi 3, sy. 2 (Aralık 2025): 104-18.
EndNote Olusegun O, Umar AM, Habib DW (01 Aralık 2025) Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria. Düzce Üniversitesi Ziraat Fakültesi Dergisi 3 2 104–118.
IEEE O. Olusegun, A. M. Umar, ve D. W. Habib, “Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria”, Düzce Üniversitesi Ziraat Fakültesi Dergisi, c. 3, sy. 2, ss. 104–118, 2025.
ISNAD Olusegun, Olorunshola vd. “Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria”. Düzce Üniversitesi Ziraat Fakültesi Dergisi 3/2 (Aralık2025), 104-118.
JAMA Olusegun O, Umar AM, Habib DW. Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria. Düzce Üniversitesi Ziraat Fakültesi Dergisi. 2025;3:104–118.
MLA Olusegun, Olorunshola vd. “Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria”. Düzce Üniversitesi Ziraat Fakültesi Dergisi, c. 3, sy. 2, 2025, ss. 104-18.
Vancouver Olusegun O, Umar AM, Habib DW. Effects of Coal-Based Fertilizer on Soybean Nutrient Uptake and Performance in the Sudan Savanna of Nigeria. Düzce Üniversitesi Ziraat Fakültesi Dergisi. 2025;3(2):104-18.