Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of mass-movement susceptibility using GIS-AHP in the Kayaboğaz-Sağlarca segment of the Botan Valley (Siirt, Türkiye)

Yıl 2025, Cilt: 2 Sayı: 2, 132 - 152, 20.12.2025
https://doi.org/10.65652/jag.1809740

Öz

This study investigates the spatial pattern of mass-movement susceptibility in the Kayaboğaz-Sağlarca segment of the Botan Valley, where complex topography, diverse lithological units, active tectonic features and variable climatic conditions interact. The main objective is to identify how these environmental factors collectively influence areas that are more prone to slope instabilities. To achieve this, nine parameters-elevation, slope, aspect, lithology, soil characteristics, proximity to drainage networks, land-use types, annual rainfall and distance to fault zones-were processed within a Geographical Information Systems (GIS) framework. Each parameter was subsequently weighted using the Analytic Hierarchy Process (AHP), and a susceptibility map was generated based on the combined indices. The results indicate that steep slopes, weak volcanic-sedimentary units, limited vegetation cover and areas located near major fault lines exhibit notably higher susceptibility values. Increased susceptibility is also observed around stream corridors and in places where human activity has altered surface conditions. In contrast, zones dominated by competent bedrock or characterized by gentle terrain display relatively low susceptibility levels. Overall, the findings highlight that mass-movement susceptibility in the study area arises from the interplay of multiple geomorphic, geological and environmental variables, providing essential information for land-use planning and hazard-aware development strategies.

Kaynakça

  • Akgün, A., ve Türk, N. (2011). Mapping the landslide susceptibility for the Yığılca forest district (Western Black Sea Region, Turkey) by frequency ratio, logistic regression, and artificial neural networks. Environmental Earth Sciences, 66, 2063–2083. doi: 10.1007/s12665-011-1395-8
  • Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Bui, D. T. (2020). Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 12(3), 475. doi: 10.3390/rs12030475
  • Ayalew, L. & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Engineering Geology, 65(1-2), 15-31.
  • Balcı, M. C., & Alpaslan, N. (2016). Siirt-Pervari-Çobanören Köyü kuzeydoğusunda meydana gelen kaya düşmesinin mühendislik jeolojisi kapsamında değerlendirilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 6(1), 225-239.
  • Burrough, P. A. & McDonnell, R. A. (1998). Principles of geographical information systems. Oxford University Press.
  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451-472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
  • Cooke, R. U., ve Doornkamp, J. C. (1990). Geomorphology in Environmental Management. Oxford University Press.
  • Crosta, G. B., ve Frattini, P. (2008). Rainfall-induced landslides and debris flows. Hydrological Processes, 22(4), 473-477.
  • Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of Engineering Geology and the Environment, 43(1), 27-29.
  • Dai, F. C., Lee, C. F., Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. doi: 10.1016/S0013-7952(01)00093-X
  • Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., Dhital, M.R., Althuwaynee, O.F., (2013). Landslide susceptibility mapping using certainty factor, index of 591 entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat 592 road section in Nepal Himalaya. Natural Hazards, 65(1), 135-165.
  • Dikau, R., (2020). Causes and Triggers of Mass-Movements: Water, In book: Reference Module in Earth Systems and Environmental Sciences DOI: 10.1016/B978-0-12-818234-5.00020-1
  • Dölek, İ., Uzelli, T., Ege, İ., & Çelik, Ö. (2023). 6 Şubat Kahramanmaraş depremleri ile oluşan kütle hareketlerine bir örnek: Tepehan heyelanı. Türk Coğrafya Dergisi, 83, 73-86. https://doi.org/10.17211/tcd.1307166
  • Ercanoğlu, M., ve Gökçeoğlu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720–730.
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Fidan, S., & Görüm, T. (2020). Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi. Türk Coğrafya Dergisi, 74, 123-134. https://doi.org/10.17211/tcd.731596
  • Florinsky, I.V. (2012) Digital Terrain Analysis in Soil Science and Geology. Academic Press is an imprint of Elsevier. The Boulevard, Langford Lane, Kidlington, Oxford, UK.
  • Gariano, S. L., Guzzetti, F. (2016). Landslides in a changing climate, Earth-Science Reviews, 162, 227-252, doi: 10.1016/j.earscirev.2016.08.011
  • Goudie, A. S. Viles, H. A. (2018). Geomorphology in the Anthropocene. Cambridge University Press. doi: 10.1017/CBO9781316498910
  • Gokceoglu, C. & Karakaş, G., vd., (2024). Analysis of landslide susceptibility and potential impacts on infrastructures and settlement areas (a case from the southeastern region of Türkiye, Environmental Earth Sciences, 83:317 doi: 10.1007/s12665-024-11601-6
  • Görüm, T., & Nefeslioğlu, H. A. (2015). Çok zamanlı heyelan aktivitesinin belirlenmesinde jeomorfolojik bir yaklaşım. Türk Coğrafya Dergisi, 65(2), 47-58. https://doi.org/10.17211/tcd.19041
  • Green-way, D. R. (1987). Vegetation and slope stability. In M. G. Anderson & K. S. Richards (Eds.), Slope Stability (pp. 187–230). Wiley.
  • Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (2005). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181–216. doi: 10.1016/j.geomorph.2004.02.006
  • Highland, L. M., Bobrowsky, P. (2008). The landslide handbook-A guide to understanding landslides. U.S. Geological Survey Circular1325.https://pubs.usgs.gov/circ/1325/pdf/C1325_508.pdf
  • Horton, R. E., (1945). Erosional Development of Streams and Their Drainage Basins; Hydro Physical Approach to Quantitative Morphology, Geological Society of America Bulletin, 56(3), 275-370.
  • Howard, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. DOI: doi: 10.1029/94WR00757
  • Huggett, R. J., Shuttleworth, E. (2022). Fundamentals of Geomorphology. Routledge, London. Pages: 682, DOI: doi: 10.4324/9781003251156
  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910.
  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186-190.
  • Kawabata, D., Bandibas, J. (2009). Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN), Geomorphology In Press DOI: 10.1016/j.geomorph.2009.06.006
  • Keller, E. A., ve Pinter, N. (1996). Active tectonics: Earthquakes, uplift, and landscape. Prentice Hall.
  • Knight, J., & Harrison, S. (2012). The impacts of climate change on terrestrial Earth surface systems. Nature Climate Change, 3(1), 24-29. DOI: doi: 10.1038/nclimate1660
  • Koçyiğit, A., Yılmaz, A., Adamia, S., Chabukiani, A. (2001). Neotectonics of East Anatolian Plateau. Geodinamica Acta, 14(3), 147–158. doi: 10.1016/S0985-3111(01)01058-1
  • Langbein, W.B. (1947) Topographic Characteristics of Drainage Basins. US Geological Survey Water-Supply Paper, 968-C, 125-157.
  • Lee, S., Pradhan, B. (2007) Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslides, 4, 33-41. doi: 10.1007/s10346-006-0047-y
  • Liu, X., Shao, S., Shao, S. (2024). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Scientific Reports, 14, 2941.
  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726. doi: 10.1080/13658810600661508
  • McColl, S. T., Cook, S. J. (2023). A universal size classification system for landslides, Publisher Springer Science and Business Media LLC, DOI: 10.1007/s10346-023-02131-6
  • Mersha, T., Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, Northwestern Ethiopia, Geoenvironmental Disasters, 7,20, doi: 10.1186/s40677-020-00155-x
  • MGM (Meteoroloji İşleri Genel Müdürlüğü), (2024). Siirt Meteoroloji İstasyonu Rasat Verileri (1939-2023).
  • MTA (Maden ve Tetkik Arama Genel Müdürlüğü), (2024). 1:100.000’lik M47 ve M48 sayısal jeoloji paftaları.
  • Montgomery, D. R. (2001). Slope Distributions, Threshold Hillslopes, and Steady-state Topography. American Journal of Science, 301(4-5), 432-454. doi: 10.2475/ajs.301.4-5.432
  • Özdemir, H., & Elbaşı, E. (2015). Benchmarking land use change impacts on direct runoff in ungauged urban watersheds. Physics and Chemistry of the Earth, Parts A/B/C, 79-82, 100-107. https://doi.org/10.1016/j.pce.2014.08.001
  • Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. doi: 10.1016/S0378-3774(02)00075-6
  • Pettorelli, N., Vik, J. O., Mysterud, A., vd. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. doi: 10.1016/j.tree.2005.05.011
  • Pradhan, B. (2010). Application of an advanced fuzzy logic model for landslide susceptibility analysis. Computers, Environment and Urban Systems, 34(3), 216-235.
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6, 2351–2365. https://doi.org/10.1007/s12517-012-0532-7
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. doi: 10.1504/IJSSCI.2008.017590
  • Sandıkçıoğlu, M., Uzun, A., Sol, B., Sabancı, S. (2023). 6 Şubat 2023 Kahramanmaraş depremlerinin Gölbaşı Havzası’nda sebep olduğu yüzey deformasyonları ve yerleşmeler üzerindeki etkileri, Adıyaman/ Türkiye. Türk Coğrafya Dergisi (83), 87-99. https://doi.org/10.17211/tcd.1342050
  • Schumm, S. A. (1977). The Fluvial System, John Wiley and Sons, New York
  • Selby, M. J. (1993). Hillslope Materials and Processes (2nd ed.). Oxford University Press.
  • Shreve, R. L. (1967). Infinite topologically random channel networks. Journal of Geology, 75(2), 178-186. https://doi.org/10.1086/627245
  • Sidle, R. C., ve Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. American Geophysical Union. doi: 10.1029/WM018
  • Summerfield, M. A. (2013). Global Geomorphology (2nd ed.). Routledge. London. doi: 10.4324/9781315841182
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
  • Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır, A. D., & Kayan, İ. (2008). Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 90(1-2), 1-48. https://doi.org/10.1016/j.earscirev.2008.05.002
  • Şenel, M. (2007), “1/100000 Ölçekli Türkiye Jeoloji Paftaları”, Cizre M48 Paftası, No: 58 Raporu, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Şenel, M. (2008), “1/100000 Ölçekli Türkiye Jeoloji Paftaları”, Mardin M47 Paftası, No: 66 Raporu, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Tarım ve Orman Bakanlığı (2020). Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü- Ülkesel Toprak Bilgi Sistemi, http://85.25.185.76/tgskmae/starter.aspx Erişim Tarihi: 06.07.2025
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
  • Turoğlu, H., (2019). Ergene Nehri Havzası için Hidromorfometrik Analizlerle Taşkın Duyarlılık Değerlendirilmesi, Jeomorfolojik Araştırmalar Dergisi, 2, 1-15.
  • van Westen, C. J., Castellanos, E., Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112–131. doi: 10.1016/j.enggeo.2008.03.010
  • Whipple, K. X., ve Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674.
  • Weissel, J. K., Pratson, L. F., & Malinverno, A. (1994). The length-scaling properties of topography. Journal of Geophysical Research: Solid Earth, 99(B7), 13997-14012.
  • Wilson, J. P., ve Gallant, J. C. (2000). Terrain analysis: Principles and applications. John Wiley & Sons.
  • Wu, T. H., McKinnell, W. P., & Swanston, D. N. (1979). Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16(1), 19-33. https://doi.org/10.1139/t79-003
  • Wu. L. Z., Huang, R. Q., Xu, Q., Zhang, L. M., H., Li. H. L., (2015). Analysis of physical testing of rainfall-induced soil slope failures, Environ Earth Sci, Springer, DOI 10.1007/s12665-014-4009-8
  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey). Catena, 72(1), 1-12. doi: 10.1016/j.catena.2007.01.003
  • Yesilnacar, E. and Topal, T. (2005) Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Engineering Geology, 79, 251-266. http://dx.doi.org/10.1016/j.enggeo.2005.02.002
  • Youssef, A. M., Pourghasemi, H. R., (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia, Geoscience Frontiers, Geoscience Frontiers 12 (2021) 639-655, doi: 10.1016/j.gsf.2020.05.010
  • URL 1: https://earthexplorer.usgs.gov/ Erişim Tarihi: 12.12.2024
  • URL 2: Demirören Haber Ajansı (DHA). (2025). Heyelan nedeniyle oluşan dalgalar aracı baraj gölüne sürükledi. https://www.dha.com.tr/video/heyelan-nedeniyle-olusan-dalgalar-araci-baraj-golune-surukledi-video-2518860 Erişim Tarihi: 12.12.2024

Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi

Yıl 2025, Cilt: 2 Sayı: 2, 132 - 152, 20.12.2025
https://doi.org/10.65652/jag.1809740

Öz

Bu araştırma, Botan Vadisi’nin Kayaboğaz–Sağlarca kesiminde kütle hareketlerine yönelik duyarlılığın mekânsal dağılımını ortaya koymayı amaçlamaktadır. Çalışma alanı; farklı litolojik birimler, parçalı topografya, aktif tektonik yapı ve değişken iklim koşullarının bir arada bulunduğu dinamik bir çevresel özellik sergilemektedir. Bu nedenle duyarlılığın doğru biçimde belirlenebilmesi için topografik, jeolojik, hidrolojik ve iklimsel değişkenlerin birlikte değerlendirilmesi gerekmektedir. Bu kapsamda yükselti, eğim, bakı, litoloji, toprak özellikleri, akarsulara yakınlık, arazi türleri, yağış ve fay hatlarına uzaklık olmak üzere toplam dokuz parametre kullanılmıştır. Parametreler önce Coğrafi Bilgi Sistemleri (CBS) ortamında işlenmiş, ardından Analitik Hiyerarşi Süreci (AHS) ile ağırlıklandırılarak duyarlılık haritası üretilmiştir. Elde edilen bulgular, özellikle dik yamaçların bulunduğu, zayıf litolojik birimlerin yayılım gösterdiği, bitki örtüsünün seyrekleştiği ve fay zonlarına yakın alanların daha yüksek duyarlılık değerlerine sahip olduğunu göstermektedir. Akarsu çevresindeki gevşek birikintiler ve insan kullanımının yoğun olduğu alanlarda da duyarlılığın arttığı gözlenmiştir. Buna karşılık sağlam kayaçların egemen olduğu ve eğimin düşük seyrettiği bölgelerde duyarlılık sınırlı kalmıştır. Sonuçlar, çalışma alanındaki kütle hareketi duyarlılığının birden fazla parametrenin ortak etkisiyle şekillendiğini ortaya koymaktadır.

Kaynakça

  • Akgün, A., ve Türk, N. (2011). Mapping the landslide susceptibility for the Yığılca forest district (Western Black Sea Region, Turkey) by frequency ratio, logistic regression, and artificial neural networks. Environmental Earth Sciences, 66, 2063–2083. doi: 10.1007/s12665-011-1395-8
  • Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Bui, D. T. (2020). Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 12(3), 475. doi: 10.3390/rs12030475
  • Ayalew, L. & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Engineering Geology, 65(1-2), 15-31.
  • Balcı, M. C., & Alpaslan, N. (2016). Siirt-Pervari-Çobanören Köyü kuzeydoğusunda meydana gelen kaya düşmesinin mühendislik jeolojisi kapsamında değerlendirilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 6(1), 225-239.
  • Burrough, P. A. & McDonnell, R. A. (1998). Principles of geographical information systems. Oxford University Press.
  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451-472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
  • Cooke, R. U., ve Doornkamp, J. C. (1990). Geomorphology in Environmental Management. Oxford University Press.
  • Crosta, G. B., ve Frattini, P. (2008). Rainfall-induced landslides and debris flows. Hydrological Processes, 22(4), 473-477.
  • Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of Engineering Geology and the Environment, 43(1), 27-29.
  • Dai, F. C., Lee, C. F., Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. doi: 10.1016/S0013-7952(01)00093-X
  • Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., Dhital, M.R., Althuwaynee, O.F., (2013). Landslide susceptibility mapping using certainty factor, index of 591 entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat 592 road section in Nepal Himalaya. Natural Hazards, 65(1), 135-165.
  • Dikau, R., (2020). Causes and Triggers of Mass-Movements: Water, In book: Reference Module in Earth Systems and Environmental Sciences DOI: 10.1016/B978-0-12-818234-5.00020-1
  • Dölek, İ., Uzelli, T., Ege, İ., & Çelik, Ö. (2023). 6 Şubat Kahramanmaraş depremleri ile oluşan kütle hareketlerine bir örnek: Tepehan heyelanı. Türk Coğrafya Dergisi, 83, 73-86. https://doi.org/10.17211/tcd.1307166
  • Ercanoğlu, M., ve Gökçeoğlu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720–730.
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Fidan, S., & Görüm, T. (2020). Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi. Türk Coğrafya Dergisi, 74, 123-134. https://doi.org/10.17211/tcd.731596
  • Florinsky, I.V. (2012) Digital Terrain Analysis in Soil Science and Geology. Academic Press is an imprint of Elsevier. The Boulevard, Langford Lane, Kidlington, Oxford, UK.
  • Gariano, S. L., Guzzetti, F. (2016). Landslides in a changing climate, Earth-Science Reviews, 162, 227-252, doi: 10.1016/j.earscirev.2016.08.011
  • Goudie, A. S. Viles, H. A. (2018). Geomorphology in the Anthropocene. Cambridge University Press. doi: 10.1017/CBO9781316498910
  • Gokceoglu, C. & Karakaş, G., vd., (2024). Analysis of landslide susceptibility and potential impacts on infrastructures and settlement areas (a case from the southeastern region of Türkiye, Environmental Earth Sciences, 83:317 doi: 10.1007/s12665-024-11601-6
  • Görüm, T., & Nefeslioğlu, H. A. (2015). Çok zamanlı heyelan aktivitesinin belirlenmesinde jeomorfolojik bir yaklaşım. Türk Coğrafya Dergisi, 65(2), 47-58. https://doi.org/10.17211/tcd.19041
  • Green-way, D. R. (1987). Vegetation and slope stability. In M. G. Anderson & K. S. Richards (Eds.), Slope Stability (pp. 187–230). Wiley.
  • Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (2005). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181–216. doi: 10.1016/j.geomorph.2004.02.006
  • Highland, L. M., Bobrowsky, P. (2008). The landslide handbook-A guide to understanding landslides. U.S. Geological Survey Circular1325.https://pubs.usgs.gov/circ/1325/pdf/C1325_508.pdf
  • Horton, R. E., (1945). Erosional Development of Streams and Their Drainage Basins; Hydro Physical Approach to Quantitative Morphology, Geological Society of America Bulletin, 56(3), 275-370.
  • Howard, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. DOI: doi: 10.1029/94WR00757
  • Huggett, R. J., Shuttleworth, E. (2022). Fundamentals of Geomorphology. Routledge, London. Pages: 682, DOI: doi: 10.4324/9781003251156
  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910.
  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186-190.
  • Kawabata, D., Bandibas, J. (2009). Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN), Geomorphology In Press DOI: 10.1016/j.geomorph.2009.06.006
  • Keller, E. A., ve Pinter, N. (1996). Active tectonics: Earthquakes, uplift, and landscape. Prentice Hall.
  • Knight, J., & Harrison, S. (2012). The impacts of climate change on terrestrial Earth surface systems. Nature Climate Change, 3(1), 24-29. DOI: doi: 10.1038/nclimate1660
  • Koçyiğit, A., Yılmaz, A., Adamia, S., Chabukiani, A. (2001). Neotectonics of East Anatolian Plateau. Geodinamica Acta, 14(3), 147–158. doi: 10.1016/S0985-3111(01)01058-1
  • Langbein, W.B. (1947) Topographic Characteristics of Drainage Basins. US Geological Survey Water-Supply Paper, 968-C, 125-157.
  • Lee, S., Pradhan, B. (2007) Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslides, 4, 33-41. doi: 10.1007/s10346-006-0047-y
  • Liu, X., Shao, S., Shao, S. (2024). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Scientific Reports, 14, 2941.
  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726. doi: 10.1080/13658810600661508
  • McColl, S. T., Cook, S. J. (2023). A universal size classification system for landslides, Publisher Springer Science and Business Media LLC, DOI: 10.1007/s10346-023-02131-6
  • Mersha, T., Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, Northwestern Ethiopia, Geoenvironmental Disasters, 7,20, doi: 10.1186/s40677-020-00155-x
  • MGM (Meteoroloji İşleri Genel Müdürlüğü), (2024). Siirt Meteoroloji İstasyonu Rasat Verileri (1939-2023).
  • MTA (Maden ve Tetkik Arama Genel Müdürlüğü), (2024). 1:100.000’lik M47 ve M48 sayısal jeoloji paftaları.
  • Montgomery, D. R. (2001). Slope Distributions, Threshold Hillslopes, and Steady-state Topography. American Journal of Science, 301(4-5), 432-454. doi: 10.2475/ajs.301.4-5.432
  • Özdemir, H., & Elbaşı, E. (2015). Benchmarking land use change impacts on direct runoff in ungauged urban watersheds. Physics and Chemistry of the Earth, Parts A/B/C, 79-82, 100-107. https://doi.org/10.1016/j.pce.2014.08.001
  • Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206. doi: 10.1016/S0378-3774(02)00075-6
  • Pettorelli, N., Vik, J. O., Mysterud, A., vd. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. doi: 10.1016/j.tree.2005.05.011
  • Pradhan, B. (2010). Application of an advanced fuzzy logic model for landslide susceptibility analysis. Computers, Environment and Urban Systems, 34(3), 216-235.
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6, 2351–2365. https://doi.org/10.1007/s12517-012-0532-7
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. doi: 10.1504/IJSSCI.2008.017590
  • Sandıkçıoğlu, M., Uzun, A., Sol, B., Sabancı, S. (2023). 6 Şubat 2023 Kahramanmaraş depremlerinin Gölbaşı Havzası’nda sebep olduğu yüzey deformasyonları ve yerleşmeler üzerindeki etkileri, Adıyaman/ Türkiye. Türk Coğrafya Dergisi (83), 87-99. https://doi.org/10.17211/tcd.1342050
  • Schumm, S. A. (1977). The Fluvial System, John Wiley and Sons, New York
  • Selby, M. J. (1993). Hillslope Materials and Processes (2nd ed.). Oxford University Press.
  • Shreve, R. L. (1967). Infinite topologically random channel networks. Journal of Geology, 75(2), 178-186. https://doi.org/10.1086/627245
  • Sidle, R. C., ve Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. American Geophysical Union. doi: 10.1029/WM018
  • Summerfield, M. A. (2013). Global Geomorphology (2nd ed.). Routledge. London. doi: 10.4324/9781315841182
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
  • Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır, A. D., & Kayan, İ. (2008). Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 90(1-2), 1-48. https://doi.org/10.1016/j.earscirev.2008.05.002
  • Şenel, M. (2007), “1/100000 Ölçekli Türkiye Jeoloji Paftaları”, Cizre M48 Paftası, No: 58 Raporu, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Şenel, M. (2008), “1/100000 Ölçekli Türkiye Jeoloji Paftaları”, Mardin M47 Paftası, No: 66 Raporu, Jeoloji Etütleri Dairesi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Tarım ve Orman Bakanlığı (2020). Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü- Ülkesel Toprak Bilgi Sistemi, http://85.25.185.76/tgskmae/starter.aspx Erişim Tarihi: 06.07.2025
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
  • Turoğlu, H., (2019). Ergene Nehri Havzası için Hidromorfometrik Analizlerle Taşkın Duyarlılık Değerlendirilmesi, Jeomorfolojik Araştırmalar Dergisi, 2, 1-15.
  • van Westen, C. J., Castellanos, E., Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112–131. doi: 10.1016/j.enggeo.2008.03.010
  • Whipple, K. X., ve Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674.
  • Weissel, J. K., Pratson, L. F., & Malinverno, A. (1994). The length-scaling properties of topography. Journal of Geophysical Research: Solid Earth, 99(B7), 13997-14012.
  • Wilson, J. P., ve Gallant, J. C. (2000). Terrain analysis: Principles and applications. John Wiley & Sons.
  • Wu, T. H., McKinnell, W. P., & Swanston, D. N. (1979). Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16(1), 19-33. https://doi.org/10.1139/t79-003
  • Wu. L. Z., Huang, R. Q., Xu, Q., Zhang, L. M., H., Li. H. L., (2015). Analysis of physical testing of rainfall-induced soil slope failures, Environ Earth Sci, Springer, DOI 10.1007/s12665-014-4009-8
  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey). Catena, 72(1), 1-12. doi: 10.1016/j.catena.2007.01.003
  • Yesilnacar, E. and Topal, T. (2005) Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Engineering Geology, 79, 251-266. http://dx.doi.org/10.1016/j.enggeo.2005.02.002
  • Youssef, A. M., Pourghasemi, H. R., (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia, Geoscience Frontiers, Geoscience Frontiers 12 (2021) 639-655, doi: 10.1016/j.gsf.2020.05.010
  • URL 1: https://earthexplorer.usgs.gov/ Erişim Tarihi: 12.12.2024
  • URL 2: Demirören Haber Ajansı (DHA). (2025). Heyelan nedeniyle oluşan dalgalar aracı baraj gölüne sürükledi. https://www.dha.com.tr/video/heyelan-nedeniyle-olusan-dalgalar-araci-baraj-golune-surukledi-video-2518860 Erişim Tarihi: 12.12.2024
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri, Doğal Afetler, Jeoformoloji ve Yüzey Örtü Süreçleri, Fiziki Coğrafya, Fiziksel Coğrafya ve Çevre Jeolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hatice Kezer Üzüm 0009-0008-8080-0855

Serkan Sabancı 0009-0002-6008-5213

Gönderilme Tarihi 23 Ekim 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 20 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kezer Üzüm, H., & Sabancı, S. (2025). Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi. Journal of Anatolian Geography, 2(2), 132-152. https://doi.org/10.65652/jag.1809740
AMA Kezer Üzüm H, Sabancı S. Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi. JAG. Aralık 2025;2(2):132-152. doi:10.65652/jag.1809740
Chicago Kezer Üzüm, Hatice, ve Serkan Sabancı. “Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi”. Journal of Anatolian Geography 2, sy. 2 (Aralık 2025): 132-52. https://doi.org/10.65652/jag.1809740.
EndNote Kezer Üzüm H, Sabancı S (01 Aralık 2025) Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi. Journal of Anatolian Geography 2 2 132–152.
IEEE H. Kezer Üzüm ve S. Sabancı, “Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi”, JAG, c. 2, sy. 2, ss. 132–152, 2025, doi: 10.65652/jag.1809740.
ISNAD Kezer Üzüm, Hatice - Sabancı, Serkan. “Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi”. Journal of Anatolian Geography 2/2 (Aralık2025), 132-152. https://doi.org/10.65652/jag.1809740.
JAMA Kezer Üzüm H, Sabancı S. Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi. JAG. 2025;2:132–152.
MLA Kezer Üzüm, Hatice ve Serkan Sabancı. “Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi”. Journal of Anatolian Geography, c. 2, sy. 2, 2025, ss. 132-5, doi:10.65652/jag.1809740.
Vancouver Kezer Üzüm H, Sabancı S. Botan Vadisi (Siirt) Kayaboğaz-Sağlarca kesiminde kütle hareketi duyarlılığının CBS-AHS yöntemiyle değerlendirilmesi. JAG. 2025;2(2):132-5.

Bu derginin içeriği https://creativecommons.org/licenses/by-sa/4.0/deed.tr lisansı altındadır.

31700