Araştırma Makalesi
BibTex RIS Kaynak Göster

Perfüzyon MR ve MR Spektroskopi Sekanslarının Glial Tümörlerin Evrelendirilmesinde Konvansiyonel Sekanslara Katkısı

Yıl 2020, Cilt: 5 Sayı: 3, 25 - 34, 01.12.2020

Öz

Amaç: Serebral glial tümör olgularında konvansiyonel MRI sekanslarına MRP ve MRS eklenerek evrelemeye katkılarını göstermek.
Gereç ve Yöntem: MRG'de primer gliyal tümörlü 26 hasta (K / A: 12/14, ort. Yaş 45.6 ± 17.3) prospektif olarak çalışmaya alındı. Çalışmaya dahil edilen lezyonlar tek lezyonlar, supratentoryal ve intra-aksiyel lokalizasyon idi. Tüm lezyonlara histopatolojik olarak tanı konuldu. Tüm hastalara tek bir seansta konvansiyonel MRI, MRP ve MRS görüntüleri alındı. Bu görüntülerden elde edilen parametreler istatistiksel olarak analiz edildi.
Bulgular: Düşük / yüksek evre tümör evrelemesi için konvansiyonel MRG evrelemesinin duyarlılığı % 100 özgüllük ile % 100 idi. Konvansiyonel MRI, MRP ve MRS için duyarlılık ve özgüllük oranlarının ayrı ayrı değerlendirilmesi, konvansiyonel MRI + MRP (rCBV), konvansiyonel MRI + MRS (LL pik) ve konvansiyonel MRI + MRP (rCBV) + MRS (LL pik) geleneksel MRG'nin özgüllük oranlarını arttırdığı gözlendi. rCBV değeri ve LL pikinin düşük evre / yüksek evre beyin tümörlerinin farklılaşması için anlamlı olduğu bulunmuştur.
Sonuç: Konvansiyonel MRG'nin preoperatif glioma evrelemesi için yüksek duyarlılığı ve düşük özgüllüğü vardır. MRP ve MRS eklendiğinde konvansiyonel MRG bulgularının özgüllüğü artar.

Destekleyen Kurum

Yok

Proje Numarası

2010/79

Teşekkür

Yazarlar Dr. Halil Dönmez ve Dr İ. Suat Öktem'e teşekkür ederler

Kaynakça

  • 1. Trojanowski T, Peszynski J, Turowski K, et al. Quality of survival of patients with brain gliomas treated with postoperative CCNU and radiation therapy. J Neurosurg. 1989; 70:18-23.
  • 2. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist. 2004; 9:528-537.
  • 3. Metaweh NAK, Azab AO, El Basmy AAH, Mashhour KN, El Mahdy WM. Contrast-Enhanced Perfusion MR Imaging to differentiate between recur-rent/residual brain neoplasms and radiation necrosis. Asian Pac J Cancer Prev. 2018;19(4):941-48.
  • 4. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR. 2003; 24:1989-1998.
  • 5. Aksoy FG, Lev MH. Dynamic contrast-enhanced brain perfusion imaging: Technique and clinical applications. Semin Ultrasound CT MRI. 2000; 21:462-477.
  • 6. Lev M, Rosen B. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin North Am. 1999; 9:309-331.
  • 7. Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology. 2002; 44:656-666.
  • 8. Aksoy FG, Yerli H. Dinamik kontrastlı beyin perfüzyon görüntüleme: teknik prensipler, tuzak ve sorunlar. Tanısal ve Girişimsel Radyoloji. 2003; 9:309-314.
  • 9. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006; 58:394-403.
  • 10. Chiang IC, Kuo YT, Lu CY, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology. 2004; 46:619-627.
  • 11. Rollin N, Guyatat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology. 2006; 48:150-159.
  • 12. Warren KE. NMR spectroscopy and pediatric brain tumors. Oncologist. 2004; 9:312-318.
  • 13. Zonari P, Baraldi P, Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology. 2007; 49:795-803.
  • 14. Wilms G, Demaerel P, Sunaert S. Intra-axial brain tumours. Eur Radiol. 2005; 15:468-484.
  • 15. Batra A, Tripathi RP, Singh AK. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol. 2004; 48:324-332.
  • 16. Lee SJ, Kim JH, Kim YM, Wog K. Perfusion MR imaging in gliomas: comparison with histologic tumour grade. Korean J Radiol. 2001; 2:1-7.
  • 17. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol. 2006; 58:394-403.
  • 18. Knopp E, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999; 211:791-798.
  • 19. Pronin IN, Holodny Al, Petraikin AV. MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology. 1997; 39:348-350.
  • 20. Holt RM, Maravilla KR. Supratentorial gliomas: Imaging. In: Wilkins RH, Rengachary SS. (eds) Neurosurgery. McGraw-Hill, New York, 1996; 753–788.
  • 21. Kelly WM, Brant-Zawadzki B. Magnetic resonance imaging and computed tomography of supratentorial tumors. Radiology. 1990; 3:1-22.
  • 22. Soonmee C, Edmond A.K, Johnson G, et al. Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology. 2002; 223:11-29.
  • 23. Yerli H, Agildere AM, Ozen O, et al. Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagn Interv Radiol. 2007; 13:3-9.
  • 24. Kinoshita Y, Kajiwara H, Yokota A, Koga Y. Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery. 1994; 35:606-613.
  • 25. Segebarth CM, Baleriaux DF, Luyten PR, Den Hollander JA. Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med. 1990; 13:62-76.
  • 26. Warren KE, Frank JA, Black JL, et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol. 2000; 18:1020-1026.
  • 27. Usenius JP, Kauppinen RA, Vainio PA, et al. Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr. 1994; 18:705-713.
  • 28. Usenius JP, Vainio P, Hernesniemi J, Kauppinen RA. Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem. 1994; 63:1538-1543.
  • 29. Fayed N, Modrego PJ. The contribution of magnetic resonance spectroscopy and echoplanar perfusion-weighted MRI in the initial assessment of brain tumors. J Neurooncol. 2005; 72:261-265.
  • 30. Spampinato MW, Smith JK, Kwock L, et al. Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol. 2007; 188:204-212.
  • 31. Di Costanzo A, Scrabino T, Trojsi F, et al. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology. 2006; 48:622-631.
  • 32. Chawla S, Wang S, Wolf RL, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007; 28:1683-1689.

The Contribution of Perfusion MR and MR Spectroscopy Sequences to Conventional Sequences in the Staging Of Glial Tumors

Yıl 2020, Cilt: 5 Sayı: 3, 25 - 34, 01.12.2020

Öz

Aim: To demonstrate their contribution to staging by adding MRP and MRS to conventional MRI sequences in cerebral glial tumor cases.
Material and Method: Twenty-six patients (F/M:12/14, mean age 45.6±17.3) with primary glial tumors on MRI were included in the study prospectively. The lesions included in the study were single lesions, supratentorial and inter-axial localization. All lesions were diagnosed histopathologically. Conventional MRI, MRP and MRS images were taken sequentially in a single session to all patients. The parameters obtained from these images were analyzed statistically.
Results: For low/high stage tumor differentiation, the sensitivity of conventional MRI staging was 100% with a specificity of 57%. Separately assessing the sensitivity and specificity rates for conventional MRI, MRP and MRS, the combined use of conventional MRI+MRP (rCBV), conventional MRI+MRS (LL peak) and conventional MRI+MRP (rCBV)+MRS (LL peak) were observed to increase the specificity rates of conventional MRI. rCBV value and LL peak were found to be significant for the differentiation of low-stage/high-stage brain tumors.
Conclusion: The conventional MRI has high sensitivity and low specificity for preoperative glioma staging. The specificity of conventional MRI findings increases when MRP and MRS are added to it.

Proje Numarası

2010/79

Kaynakça

  • 1. Trojanowski T, Peszynski J, Turowski K, et al. Quality of survival of patients with brain gliomas treated with postoperative CCNU and radiation therapy. J Neurosurg. 1989; 70:18-23.
  • 2. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist. 2004; 9:528-537.
  • 3. Metaweh NAK, Azab AO, El Basmy AAH, Mashhour KN, El Mahdy WM. Contrast-Enhanced Perfusion MR Imaging to differentiate between recur-rent/residual brain neoplasms and radiation necrosis. Asian Pac J Cancer Prev. 2018;19(4):941-48.
  • 4. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR. 2003; 24:1989-1998.
  • 5. Aksoy FG, Lev MH. Dynamic contrast-enhanced brain perfusion imaging: Technique and clinical applications. Semin Ultrasound CT MRI. 2000; 21:462-477.
  • 6. Lev M, Rosen B. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin North Am. 1999; 9:309-331.
  • 7. Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology. 2002; 44:656-666.
  • 8. Aksoy FG, Yerli H. Dinamik kontrastlı beyin perfüzyon görüntüleme: teknik prensipler, tuzak ve sorunlar. Tanısal ve Girişimsel Radyoloji. 2003; 9:309-314.
  • 9. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006; 58:394-403.
  • 10. Chiang IC, Kuo YT, Lu CY, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology. 2004; 46:619-627.
  • 11. Rollin N, Guyatat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology. 2006; 48:150-159.
  • 12. Warren KE. NMR spectroscopy and pediatric brain tumors. Oncologist. 2004; 9:312-318.
  • 13. Zonari P, Baraldi P, Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology. 2007; 49:795-803.
  • 14. Wilms G, Demaerel P, Sunaert S. Intra-axial brain tumours. Eur Radiol. 2005; 15:468-484.
  • 15. Batra A, Tripathi RP, Singh AK. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol. 2004; 48:324-332.
  • 16. Lee SJ, Kim JH, Kim YM, Wog K. Perfusion MR imaging in gliomas: comparison with histologic tumour grade. Korean J Radiol. 2001; 2:1-7.
  • 17. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol. 2006; 58:394-403.
  • 18. Knopp E, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999; 211:791-798.
  • 19. Pronin IN, Holodny Al, Petraikin AV. MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology. 1997; 39:348-350.
  • 20. Holt RM, Maravilla KR. Supratentorial gliomas: Imaging. In: Wilkins RH, Rengachary SS. (eds) Neurosurgery. McGraw-Hill, New York, 1996; 753–788.
  • 21. Kelly WM, Brant-Zawadzki B. Magnetic resonance imaging and computed tomography of supratentorial tumors. Radiology. 1990; 3:1-22.
  • 22. Soonmee C, Edmond A.K, Johnson G, et al. Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology. 2002; 223:11-29.
  • 23. Yerli H, Agildere AM, Ozen O, et al. Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagn Interv Radiol. 2007; 13:3-9.
  • 24. Kinoshita Y, Kajiwara H, Yokota A, Koga Y. Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery. 1994; 35:606-613.
  • 25. Segebarth CM, Baleriaux DF, Luyten PR, Den Hollander JA. Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med. 1990; 13:62-76.
  • 26. Warren KE, Frank JA, Black JL, et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol. 2000; 18:1020-1026.
  • 27. Usenius JP, Kauppinen RA, Vainio PA, et al. Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr. 1994; 18:705-713.
  • 28. Usenius JP, Vainio P, Hernesniemi J, Kauppinen RA. Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem. 1994; 63:1538-1543.
  • 29. Fayed N, Modrego PJ. The contribution of magnetic resonance spectroscopy and echoplanar perfusion-weighted MRI in the initial assessment of brain tumors. J Neurooncol. 2005; 72:261-265.
  • 30. Spampinato MW, Smith JK, Kwock L, et al. Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol. 2007; 188:204-212.
  • 31. Di Costanzo A, Scrabino T, Trojsi F, et al. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology. 2006; 48:622-631.
  • 32. Chawla S, Wang S, Wolf RL, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007; 28:1683-1689.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Makale
Yazarlar

Suat Kubat 0000-0002-0445-2931

Türkan İkizceli 0000-0002-5683-0391

Proje Numarası 2010/79
Yayımlanma Tarihi 1 Aralık 2020
Kabul Tarihi 23 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

Vancouver Kubat S, İkizceli T. The Contribution of Perfusion MR and MR Spectroscopy Sequences to Conventional Sequences in the Staging Of Glial Tumors. JAMER. 2020;5(3):25-34.