Derleme
BibTex RIS Kaynak Göster

Unmanned Air Vehicles and Autopilots

Yıl 2021, , 128 - 149, 29.08.2021
https://doi.org/10.51785/jar.894721

Öz

Unmanned Aerial Vehicles (UAVs) are airplanes that can be remotely controlled or that can automatically perform their duties, without pilots or passengers. Besides the use of UAVs in the military field, they are also widely used in civilian and scientific fields. The UAV autopilot system in unmanned aerial vehicles continuously guides the UAVs to follow a reference route or navigate some crossing points. A powerful UAV autopilot can guide the UAV in all stages including take-off, ascent, descent, tracking, and landing. Studies on autopilots, one of the main control components of strategically important UAVs in every country, are of great importance. Therefore, it is aimed to review the papers in the literature about autopilot systems in UAV. For this purpose, over fifty studies published between 2001-2020 were examined and analyzed. The presented study will shed light on the researches in the field of autopilot systems in UAVs.

Kaynakça

  • Ahsun, U., Badar, T., Tahir, S., & Aldosari, S. (2014). Autopilot fusion with external pilot inputs for enhancing flight safety of UAVs. 53rd IEEE Conference on Decision and Control, (s. 236-241).
  • ALTIN, C., & ER, O. (2018). İnsansız Hava Araçlarının (İHA) Sanal Gerçeklik Yazılımı ile Modellenmesi ve Farklı Kullanıcılar için Performans Analizleri. SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES , 1-13.
  • Ambroziak, L., & Gosiewski, Z. (2013). Preliminary UAV Autopilot Integration and In-Flight Testing. Solid State Phenomena 198 , 232-237.
  • Anderson, N., Hagenauer, B., Erickson, R., & Bhandari, S. (2008). Flight-Testing of a UAV Aircraft for Autonomous Operation using Piccolo II Autopilot. AIAA Atmospheric Flight Mechanics Conference and Exhibit, (Paper: 2008-6568).
  • Andrievsky, B., & Fradkov, A. (2002). Combined adaptive autopilot for an UAV flight control. Proceedings of the International Conference on Control Applications, (s. 290-291).
  • Babaei, A. R., Mortazavi, M., & Moradi, M. H. (2012). Fuzzy-Genetic Autopilot Design for Nonminimum Phase and Nonlinear Unmanned Aerial Vehicles. Journal of Aerospace Engineering, 25(1) , 1-9.
  • Baomar, H., & Bentley, P. J. (2016). An Intelligent Autopilot System that Learns Piloting Skills from Human Pilots by Imıtations. Unmanned Aircraft Systems(ICUAS), (s. 1023-1031).
  • Bhar, A., Sayadi, M., & Fnaiech, F. (2017). Improved modular UAV autopilot simulator for Pinguin BE aircraft. 2017 International Conference on Control, Automation and Diagnosis (ICCAD), (s. 125-129).
  • Bodson, M. (2003). Reconfigurable Nonlinear Autopilot. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 26(5) , 719-727.
  • Borys, D. N., & Colgren, R. (2005). Advances in Intelligent Autopilot Systems for Unmanned Aerial Vehicles. AIAA Guidance, Navigation, and Control Conference and Exhibit, (Paper: 2005-6482).
  • Capello, E., Guglieri, G., & Ristorto, G. (2017). Guidance and control algorithms for mini UAV autopilots. Aircraft Engineering and Aerospace Technology Vol. 89 No. 1 , 133-144.
  • Chao, H., Cao, Y., & Chen, Y. (2007). Autopilots for Small Fixed-Wing Unmanned Air Vehicles: A Survey. International Conference on Mechatronics and Automation, (s. 3144-3149).
  • Chen, H., Wang, X.-m., & Li, Y. (2009). A Survey of Autonomous Control for UAV. 2009 International Conference on Artificial Intelligence and Computational Intelligence, (s. 267-271).
  • Cohen, K., & Bossert, D. E. (2003). Fuzzy Logic Non-Minimum Phase Autopilot Design. AIAA Guidance, Navigation, and Control Conference and Exhibit, (Paper: 2003-5550).
  • Czerniejewski, A., Cosgrove, S., Yan, Y., Dantu, K., Ko, S. Y., & Ziarek, L. (2016). jUAV: A Java Based System for Unmanned Aerial Vehicles. Proceedings of the 14th International Workshop on Java Technologies for Real-Time and Embedded Systems, (s. 1-10).
  • Czerniejewski, A., Dantu, K., & Ziarek, L. (2018). jUAV: A Real-Time Java UAV Autopilot. 2018 Second IEEE International Conference on Robotic Computing (IRC), (s. 258-261).
  • Çavuş, V., & Tuncer, A. (2017). İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması Kullanarak Rota Planlama. Karaelmas Fen ve Mühendislik Dergisi 7(1) , 259-265.
  • David, V.-R., Octavio, G.-R., David, B.-M., & Victor, E.-C. (2015). Analysis, Design, and Implementation of an Autopilot for Unmanned Aircraft - UAV's Based on Fuzzy Logic. 2015 Asia-Pacific Conference on Computer Aided System Engineering, (s. 196-201).
  • De Bonfim Gripp, J. A., & Sampaio, U. P. (2014). Automatic landing of a UAV using Model Predictive Control for the surveillance of internal autopilot's controls. 2014 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 1219-1224).
  • Dubey, P., Singh, V., & Mangal, M. (2012). Design and Comparison of Control Schemes for UAV Autopilot. IFAC Proceedings Volumes, 45(1) , 103-108.
  • Dziuk, M. A., & Jamshidi, M. (2011). Fuzzy logic controlled UAV autopilot using C-Mean clustering. 2011 6th International Conference on System of Systems Engineering, (s. 305-310).
  • Elbatal, A., Elkhatib, M. M., & Youssef, A. M. (2020). Intelligent Autopilot Design Based on Adaptive Neuro -Fuzzy Technique and Genetic Algorithm. 2020 12th International Conference on Electrical Engineering (ICEENG), (s. 377-382).
  • Erdos, D., & Watkins, S. E. (2008). UAV Autopilot Integration and Testing. 2008 IEEE Region 5 Conference, (s. 1-6).
  • Farras, A. W., Trilaksono, R. B., & Putra, F. R. (2015). Implementation of image-based autopilot controller using command filtered backstepping for fixed wing unmanned aerial vehicle. 2015 International Conference on Electrical Engineering and Informatics (ICEEI), (s. 235-240).
  • Guanglin, H., Rujun, G., & Shi, Y. (2007). Application of FPGA in Small UAV Autopilot Based on Embedded Linux System. IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, (s. 731-734).
  • GUNES, U., SEL, A., & KASNAKOGLU, C. (2018). Stabilizer Autopilot Design For Fixed Wing UAV Using ODSMC. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), (s. 740-746).
  • Hirokawa, R., & Sato, K. (2004). LATERAL AUTOPILOT DESIGN FOR A UAV USING COEFFICIENT DIAGRAM METHOD. 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES, (s. 1-6).
  • Hoffer, N. V., Coopmans, C., Jensen, A. M., & Chen, Y. (2013). Small low-cost unmanned aerial vehicle system identification: A survey and categorization. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 897-904).
  • Jeevan, H. L., Narahari, H. K., & Sriram, A. T. (2018). Development of pitch control subsystem of autopilot for a fixed wing unmanned aerial vehicle. 2018 2nd International Conference on Inventive Systems and Control (ICISC), (s. 1233-1238).
  • KAHVECİ, M., & CAN, N. (2017). İNSANSIZ HAVA ARAÇLARI: TARİHÇESİ, TANIMI, DÜNYADA VE TÜRKİYE'DEKİ YASAL DURUMU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5(4) , 511 - 535.
  • Kitsios, I., Dimopoulos, T., Panagiotou, P., & Yakinthos, K. (2020). Longitudinal Dynamics Analysis and Autopilot Design for a fixed-wing, tactical Blended-Wing-Body UAV. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 149-157).
  • Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement Learning for UAV Attitude Control. ACM Transactions on Cyber-Physical Systems 3(2) Article:22 .
  • Kortunov, V. I., Mazurenko, O. V., Gorbenko, A. V., Mohammed, W., & Hussein, A. (2015). Review and comparative analysis of mini- and micro-UAV autopilots. 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), (s. 284-289).
  • Li, B., Liao, X. H., Sun, Z., Li, Y. H., & Song, Y. D. (2006). Robust autopilot for close formation flight of multi-UAVs. 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory, (s. 294-298).
  • Liu, M., Egan, G. K., & Santoso, F. (2015). Modeling, Autopilot Design, and Field Tuning of a UAV With Minimum Control Surfaces. IEEE Transactions on Control Systems Technology 23(6) , 2353-2360.
  • Lu, H., Zhen, Y., & Hao, M. (2020). Nonlinear Autopilot Design for Fixed-Wing UAV Using Disturbance Observer Based Backstepping. 2020 Chinese Automation Congress (CAC), (s. 4423-4428).
  • Lu, P., & Geng, Q. (2011). Real-time Simulation System for UAV Based on Matlab/Simulink. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, (s. 399-404).
  • Maleki, K. N., Ashenayi, K., Hook, L. R., Fuller, J. G., & Hutchins, N. (2016). A reliable system design for nondeterministic adaptive controllers in small UAV autopilots. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), (s. 1-5).
  • Oktay, T., Konar, M., Onay, M., Aydin, M., & Mohamed, M. A. (2016). Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology Vol. 88 No. 6 , 818-834.
  • Rao, S., & Ghose, D. (2014). Sliding Mode Control-Based Autopilots for Leaderless Consensus of Unmanned Aerial Vehicles. IEEE Transactions on Control Systems Technology 22(5) , 1964-1972.
  • Rasitha, R., Balasubramanian, S., & Priya, N. (2015). Lateral-directional autopilot design of Unmanned Aerial Vehicles using quaternion feedback sliding mode approach. 2015 International Conference on Control Communication & Computing India (ICCC), (s. 125-130).
  • Sagahyroon, A., Jarah, M. A., & Hadi, A. -A. (2004). Design and implementation of a low cost UAV controller. 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04, (s. 1394-1397).
  • Schwarzbach, M., Putze, U., Kirchgaessner, U., & Schoenermark, M. v. (2009). Acquisition of High Quality Remote Sensing Data Using a UAV Controlled by an Open Source Autopilot. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (s. 595-601).
  • Sharma, R. (2014). Fuzzy Q learning based UAV autopilot. 014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), (s. 29-33).
  • Shengyi, Y., Kunqin, L., & Jiao, S. (2009). Design and Simulation of the Longitudinal Autopilot of UAV Based on Self-Adaptive Fuzzy PID Control. 2009 International Conference on Computational Intelligence and Security, (s. 634-638).
  • Shim, D. H., Kim, J. H., Chung, H., & Sastry, S. (2001). Multi-functional autopilot design and experiments for rotorcraft-based unmanned aerial vehicles. 20th DASC. 20th Digital Avionics Systems Conference, (s. 3C4/1-3C4/8).
  • Stilwell, D. J. (2001). State-Space Interpolation for a Gain-Scheduled Autopilot. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 24(3) , 460-465.
  • Stojcsics, D., & Molnar, A. (2011). Fixed-wing small-size UAV navigation methods with HIL simulation for AERObot autopilot. 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics, (s. 241-245).
  • Theile, M., Dantsker, O., Nai, R., Caccamo, M., & Yu, S. (2020). uavAP: A Modular Autopilot Framework for UAVs. AIAA AVIATION 2020 FORUM, (Paper: 2020-3268).
  • Tu, H., & Du, X. (2010). The Design of Small UAV Autopilot Hardware System Based on DSP. 2010 International Conference on Intelligent Computation Technology and Automation, (s. 780-783).
  • Xie, P., Flores-Abad, A., Martinez, G., & Ma, O. (2011). Development of a Small UAV with Autopilot Capability. AIAA Atmospheric Flight Mechanics Conference, (Paper: 2011-6449).
  • Yadav, A. K., & Gaur, P. (2014). AI-based adaptive control and design of autopilot system for nonlinear UAV. Sadhana 39 , 765-783.
  • Yamasaki, T., Balakrishnan, S. N., & Takano, H. (2012). Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes. Journal of the Franklin Institute 349 , 531-558.
  • Yang, Z., Lin, F., & Chen, B. M. (2016). Survey of autopilot for multi-rotor unmanned aerial vehicles. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, (s. 6122-6127).
  • YARDIMCI, G. (2019). İnsansız Hava Araçlarına Türk Mevzuatından Bir Bakış. Journal of Aviation 3(1) , 61-80.
  • Yu, J., Xu, Q., & Zhi, Y. (2011). A TSM control scheme of integrated guidance/autopilot design for UAV. 2011 3rd International Conference on Computer Research and Development, (s. 431-435).
  • Zareb, M., Nouibat, W., Bestaoui, Y., Ayad, R., & Bouzid, Y. (2020). Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 44 , 347-375.

İnsansız Hava Araçları ve Otopilotlar

Yıl 2021, , 128 - 149, 29.08.2021
https://doi.org/10.51785/jar.894721

Öz

İİnsansız Hava Araçları (İHA) uzaktan kumanda edilebilen veya otomatik olarak görevini yerine getirebilen, içerisinde pilot ya da yolcu barındırmayan uçaklardır. İHA’ların askeri alanda kullanımının yanısıra sivil ve bilimsel alanlarda da yaygın bir kullanımı mevcuttur. İnsansız hava araçlarında yer alan İHA otopilot sistemi, İHA'lara bir referans yolunu izlemeleri veya bazı geçiş noktalarında gezinmeleri için sürekli rehberlik etmektedir. Güçlü bir İHA otopilot; kalkış, yükseliş, alçalış, yörünge takibi ve karaya inme dahil tüm aşamalarda İHA'ya rehberlik edebilir. Her ülke bünyesinde stratejik öneme sahip olan İHA’ların ana kontrol bileşenlerinden olan otopilotlar ile ilgili yapılmış çalışmalar büyük bir öneme sahiptir. Bu çalışmada, literatürde yer alan otopilot sistemlerini içeren yayınların derlemesinin yapılması amaçlanmıştır. Bu amaçla, 2001-2020 yılları arasında yayınlanmış elliden fazla çalışma incelenmiş ve analiz edilmiştir. Sunulan çalışmanın İHA’larda yer alan otopilot sistemleri alanında yapılacak araştırmalara ışık tutacağı düşünülmektedir.

Kaynakça

  • Ahsun, U., Badar, T., Tahir, S., & Aldosari, S. (2014). Autopilot fusion with external pilot inputs for enhancing flight safety of UAVs. 53rd IEEE Conference on Decision and Control, (s. 236-241).
  • ALTIN, C., & ER, O. (2018). İnsansız Hava Araçlarının (İHA) Sanal Gerçeklik Yazılımı ile Modellenmesi ve Farklı Kullanıcılar için Performans Analizleri. SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES , 1-13.
  • Ambroziak, L., & Gosiewski, Z. (2013). Preliminary UAV Autopilot Integration and In-Flight Testing. Solid State Phenomena 198 , 232-237.
  • Anderson, N., Hagenauer, B., Erickson, R., & Bhandari, S. (2008). Flight-Testing of a UAV Aircraft for Autonomous Operation using Piccolo II Autopilot. AIAA Atmospheric Flight Mechanics Conference and Exhibit, (Paper: 2008-6568).
  • Andrievsky, B., & Fradkov, A. (2002). Combined adaptive autopilot for an UAV flight control. Proceedings of the International Conference on Control Applications, (s. 290-291).
  • Babaei, A. R., Mortazavi, M., & Moradi, M. H. (2012). Fuzzy-Genetic Autopilot Design for Nonminimum Phase and Nonlinear Unmanned Aerial Vehicles. Journal of Aerospace Engineering, 25(1) , 1-9.
  • Baomar, H., & Bentley, P. J. (2016). An Intelligent Autopilot System that Learns Piloting Skills from Human Pilots by Imıtations. Unmanned Aircraft Systems(ICUAS), (s. 1023-1031).
  • Bhar, A., Sayadi, M., & Fnaiech, F. (2017). Improved modular UAV autopilot simulator for Pinguin BE aircraft. 2017 International Conference on Control, Automation and Diagnosis (ICCAD), (s. 125-129).
  • Bodson, M. (2003). Reconfigurable Nonlinear Autopilot. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 26(5) , 719-727.
  • Borys, D. N., & Colgren, R. (2005). Advances in Intelligent Autopilot Systems for Unmanned Aerial Vehicles. AIAA Guidance, Navigation, and Control Conference and Exhibit, (Paper: 2005-6482).
  • Capello, E., Guglieri, G., & Ristorto, G. (2017). Guidance and control algorithms for mini UAV autopilots. Aircraft Engineering and Aerospace Technology Vol. 89 No. 1 , 133-144.
  • Chao, H., Cao, Y., & Chen, Y. (2007). Autopilots for Small Fixed-Wing Unmanned Air Vehicles: A Survey. International Conference on Mechatronics and Automation, (s. 3144-3149).
  • Chen, H., Wang, X.-m., & Li, Y. (2009). A Survey of Autonomous Control for UAV. 2009 International Conference on Artificial Intelligence and Computational Intelligence, (s. 267-271).
  • Cohen, K., & Bossert, D. E. (2003). Fuzzy Logic Non-Minimum Phase Autopilot Design. AIAA Guidance, Navigation, and Control Conference and Exhibit, (Paper: 2003-5550).
  • Czerniejewski, A., Cosgrove, S., Yan, Y., Dantu, K., Ko, S. Y., & Ziarek, L. (2016). jUAV: A Java Based System for Unmanned Aerial Vehicles. Proceedings of the 14th International Workshop on Java Technologies for Real-Time and Embedded Systems, (s. 1-10).
  • Czerniejewski, A., Dantu, K., & Ziarek, L. (2018). jUAV: A Real-Time Java UAV Autopilot. 2018 Second IEEE International Conference on Robotic Computing (IRC), (s. 258-261).
  • Çavuş, V., & Tuncer, A. (2017). İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması Kullanarak Rota Planlama. Karaelmas Fen ve Mühendislik Dergisi 7(1) , 259-265.
  • David, V.-R., Octavio, G.-R., David, B.-M., & Victor, E.-C. (2015). Analysis, Design, and Implementation of an Autopilot for Unmanned Aircraft - UAV's Based on Fuzzy Logic. 2015 Asia-Pacific Conference on Computer Aided System Engineering, (s. 196-201).
  • De Bonfim Gripp, J. A., & Sampaio, U. P. (2014). Automatic landing of a UAV using Model Predictive Control for the surveillance of internal autopilot's controls. 2014 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 1219-1224).
  • Dubey, P., Singh, V., & Mangal, M. (2012). Design and Comparison of Control Schemes for UAV Autopilot. IFAC Proceedings Volumes, 45(1) , 103-108.
  • Dziuk, M. A., & Jamshidi, M. (2011). Fuzzy logic controlled UAV autopilot using C-Mean clustering. 2011 6th International Conference on System of Systems Engineering, (s. 305-310).
  • Elbatal, A., Elkhatib, M. M., & Youssef, A. M. (2020). Intelligent Autopilot Design Based on Adaptive Neuro -Fuzzy Technique and Genetic Algorithm. 2020 12th International Conference on Electrical Engineering (ICEENG), (s. 377-382).
  • Erdos, D., & Watkins, S. E. (2008). UAV Autopilot Integration and Testing. 2008 IEEE Region 5 Conference, (s. 1-6).
  • Farras, A. W., Trilaksono, R. B., & Putra, F. R. (2015). Implementation of image-based autopilot controller using command filtered backstepping for fixed wing unmanned aerial vehicle. 2015 International Conference on Electrical Engineering and Informatics (ICEEI), (s. 235-240).
  • Guanglin, H., Rujun, G., & Shi, Y. (2007). Application of FPGA in Small UAV Autopilot Based on Embedded Linux System. IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, (s. 731-734).
  • GUNES, U., SEL, A., & KASNAKOGLU, C. (2018). Stabilizer Autopilot Design For Fixed Wing UAV Using ODSMC. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), (s. 740-746).
  • Hirokawa, R., & Sato, K. (2004). LATERAL AUTOPILOT DESIGN FOR A UAV USING COEFFICIENT DIAGRAM METHOD. 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES, (s. 1-6).
  • Hoffer, N. V., Coopmans, C., Jensen, A. M., & Chen, Y. (2013). Small low-cost unmanned aerial vehicle system identification: A survey and categorization. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 897-904).
  • Jeevan, H. L., Narahari, H. K., & Sriram, A. T. (2018). Development of pitch control subsystem of autopilot for a fixed wing unmanned aerial vehicle. 2018 2nd International Conference on Inventive Systems and Control (ICISC), (s. 1233-1238).
  • KAHVECİ, M., & CAN, N. (2017). İNSANSIZ HAVA ARAÇLARI: TARİHÇESİ, TANIMI, DÜNYADA VE TÜRKİYE'DEKİ YASAL DURUMU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5(4) , 511 - 535.
  • Kitsios, I., Dimopoulos, T., Panagiotou, P., & Yakinthos, K. (2020). Longitudinal Dynamics Analysis and Autopilot Design for a fixed-wing, tactical Blended-Wing-Body UAV. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), (s. 149-157).
  • Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement Learning for UAV Attitude Control. ACM Transactions on Cyber-Physical Systems 3(2) Article:22 .
  • Kortunov, V. I., Mazurenko, O. V., Gorbenko, A. V., Mohammed, W., & Hussein, A. (2015). Review and comparative analysis of mini- and micro-UAV autopilots. 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), (s. 284-289).
  • Li, B., Liao, X. H., Sun, Z., Li, Y. H., & Song, Y. D. (2006). Robust autopilot for close formation flight of multi-UAVs. 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory, (s. 294-298).
  • Liu, M., Egan, G. K., & Santoso, F. (2015). Modeling, Autopilot Design, and Field Tuning of a UAV With Minimum Control Surfaces. IEEE Transactions on Control Systems Technology 23(6) , 2353-2360.
  • Lu, H., Zhen, Y., & Hao, M. (2020). Nonlinear Autopilot Design for Fixed-Wing UAV Using Disturbance Observer Based Backstepping. 2020 Chinese Automation Congress (CAC), (s. 4423-4428).
  • Lu, P., & Geng, Q. (2011). Real-time Simulation System for UAV Based on Matlab/Simulink. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, (s. 399-404).
  • Maleki, K. N., Ashenayi, K., Hook, L. R., Fuller, J. G., & Hutchins, N. (2016). A reliable system design for nondeterministic adaptive controllers in small UAV autopilots. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), (s. 1-5).
  • Oktay, T., Konar, M., Onay, M., Aydin, M., & Mohamed, M. A. (2016). Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology Vol. 88 No. 6 , 818-834.
  • Rao, S., & Ghose, D. (2014). Sliding Mode Control-Based Autopilots for Leaderless Consensus of Unmanned Aerial Vehicles. IEEE Transactions on Control Systems Technology 22(5) , 1964-1972.
  • Rasitha, R., Balasubramanian, S., & Priya, N. (2015). Lateral-directional autopilot design of Unmanned Aerial Vehicles using quaternion feedback sliding mode approach. 2015 International Conference on Control Communication & Computing India (ICCC), (s. 125-130).
  • Sagahyroon, A., Jarah, M. A., & Hadi, A. -A. (2004). Design and implementation of a low cost UAV controller. 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04, (s. 1394-1397).
  • Schwarzbach, M., Putze, U., Kirchgaessner, U., & Schoenermark, M. v. (2009). Acquisition of High Quality Remote Sensing Data Using a UAV Controlled by an Open Source Autopilot. ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (s. 595-601).
  • Sharma, R. (2014). Fuzzy Q learning based UAV autopilot. 014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), (s. 29-33).
  • Shengyi, Y., Kunqin, L., & Jiao, S. (2009). Design and Simulation of the Longitudinal Autopilot of UAV Based on Self-Adaptive Fuzzy PID Control. 2009 International Conference on Computational Intelligence and Security, (s. 634-638).
  • Shim, D. H., Kim, J. H., Chung, H., & Sastry, S. (2001). Multi-functional autopilot design and experiments for rotorcraft-based unmanned aerial vehicles. 20th DASC. 20th Digital Avionics Systems Conference, (s. 3C4/1-3C4/8).
  • Stilwell, D. J. (2001). State-Space Interpolation for a Gain-Scheduled Autopilot. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 24(3) , 460-465.
  • Stojcsics, D., & Molnar, A. (2011). Fixed-wing small-size UAV navigation methods with HIL simulation for AERObot autopilot. 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics, (s. 241-245).
  • Theile, M., Dantsker, O., Nai, R., Caccamo, M., & Yu, S. (2020). uavAP: A Modular Autopilot Framework for UAVs. AIAA AVIATION 2020 FORUM, (Paper: 2020-3268).
  • Tu, H., & Du, X. (2010). The Design of Small UAV Autopilot Hardware System Based on DSP. 2010 International Conference on Intelligent Computation Technology and Automation, (s. 780-783).
  • Xie, P., Flores-Abad, A., Martinez, G., & Ma, O. (2011). Development of a Small UAV with Autopilot Capability. AIAA Atmospheric Flight Mechanics Conference, (Paper: 2011-6449).
  • Yadav, A. K., & Gaur, P. (2014). AI-based adaptive control and design of autopilot system for nonlinear UAV. Sadhana 39 , 765-783.
  • Yamasaki, T., Balakrishnan, S. N., & Takano, H. (2012). Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes. Journal of the Franklin Institute 349 , 531-558.
  • Yang, Z., Lin, F., & Chen, B. M. (2016). Survey of autopilot for multi-rotor unmanned aerial vehicles. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, (s. 6122-6127).
  • YARDIMCI, G. (2019). İnsansız Hava Araçlarına Türk Mevzuatından Bir Bakış. Journal of Aviation 3(1) , 61-80.
  • Yu, J., Xu, Q., & Zhi, Y. (2011). A TSM control scheme of integrated guidance/autopilot design for UAV. 2011 3rd International Conference on Computer Research and Development, (s. 431-435).
  • Zareb, M., Nouibat, W., Bestaoui, Y., Ayad, R., & Bouzid, Y. (2020). Evolutionary Autopilot Design Approach for UAV Quadrotor by Using GA. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 44 , 347-375.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ali Akay 0000-0003-4309-8127

Umur Kuriş 0000-0002-2470-4374

Sibel Senan 0000-0001-6773-0428

Yayımlanma Tarihi 29 Ağustos 2021
Kabul Tarihi 12 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akay, A., Kuriş, U., & Senan, S. (2021). İnsansız Hava Araçları ve Otopilotlar. Journal of Aviation Research, 3(2), 128-149. https://doi.org/10.51785/jar.894721

15550155491554815547155461554415543

15854  17159  17426   17988logo.png








17297
Bu dergi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.