Araştırma Makalesi
BibTex RIS Kaynak Göster

Eklemeli Olarak Üretilen Uçar Parçalar Üzerine Kapsamlı Bir Literatür Araştırması

Yıl 2022, Cilt: 4 Sayı: 1, 1 - 24, 28.02.2022
https://doi.org/10.51785/jar.988296

Öz

Eklemeli Üretim (EÜ) teknolojisi, uzay, havacılık ve tıp gibi niş endüstriyel sektörlerde hem metal hem de plastik parçaların üretimi için oyunun kurallarını değiştiren bir teknoloji olarak ünlenmektedir. Geleneksel olarak üretilen, Inconel tipi malzemeler olarak adlandırılan Ni esaslı alaşımlar, çok uzun zamandır yukarıda bahsedilen endüstrilerde yaygın olarak kullanılmaktadır. Ancak artık teknik olarak EÜ uygulamaları için bu alaşımlar kullanılabilmektedir. Bu durum, EÜ’nün daha sık kullanılacağı anlamına gelmektedir. Bununla birlikte, malzeme görüntüsünün, eklemeli olarak üretilen parçalarda mikroyapısal anizotropiyi nasıl etkilediği henüz açıklık kazanmamıştır. Örneğin, belirli bir tribolojik durumda, hareketli temas zayıflığına maruz kaldığında, anizotropi mekanik özellikleri ve termal özellikleri etkileyebilmektedir. Yaygın olarak kullanılan bir EÜ teknolojisi olan toz yatağı bazlı üretim süreci, diğer EÜ tekniklerine kıyasla daha pürüzlü bir yüzey sağlamaktadır. Havacılık endüstrisinde EÜ tekniklerinin kombinasyonel olarak kullanımı, artan yüzey kalitesi ve mekanik özelliklere sahip olmanın önündeki engelleri şekilde aşabilecektir. Bu kapsamda; bu makale, havacılık endüstrisindeki en yeni EÜ araştırmalarını incelerken, diğer taraftan kısıtlamaların da altını çizmektedir.

Kaynakça

  • [1] Barclift, M., Armstrong, A., Simpson, T. W., and Joshi, S. B. (2017). Cad-integrated cost estimation and build orientation optimization to support design for metal additive manufacturing. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 6-9 August 2017, Cleveland, 1-11, doi:10.1115/DETC2017-68376
  • [2] Kannan, G. B., and Rajendran, D. K. (2017). A review on status of research in metal additive manufacturing. In Advances in 3D printing and additive manufacturing technologies, 95-100, ISBN: 978-981-10-0811-5, doi:10.1007/978-981-10-0812-2, Springer, Singapore
  • [3] Yakout, M., Elbestawi, M. A., and Veldhuis, S. C. (2018). A review of metal additive manufacturing technologies. In Solid State Phenomena. 278, 1-14. Trans Tech Publications Ltd., doi: 10.4028/www.scientific.net/SSP.278.1
  • [4] Leal, R., Barreiros, F. M., Alves, L., Romeiro, F., Vasco, J. C., Santos, M., and Marto, C. (2017). Additive manufacturing tooling for the automotive industry. The International Journal of Advanced Manufacturing Technology, 92(5-8), 1671-1676, doi: 10.1007/s00170-017-0239-8
  • [5] Opgenoord, M. M., and Willcox, K. E. (2019). Design for additive manufacturing: cellular structures in early-stage aerospace design. Structural and Multidisciplinary Optimization, 60(2), 411-428, doi: 10.1007/s00158-019-02305-8
  • [6] Allevi, G., Cibeca, M., Fioretti, R., Marsili, R., Montanini, R., and Rossi, G. (2018). Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results. Measurement, 126, 252-258, doi: 10.1016/j.measurement.2018.05.068
  • [7] Klahn, C., Omidvarkarjan, D., and Meboldt, M. (2017). Evolution of design guidelines for additive manufacturing-highlighting achievements and open issues by revisiting an early SLM aircraft bracket. In International Conference on Additive Manufacturing in Products and Applications. 1-3 September 2020. Zurich, 3-13, ISBN: 978-3-319-66865-9, doi: 10.1007/978-3-319-66866-6_1
  • [8] Durakovic, B. (2018). Design for additive manufacturing: benefits, trends and challenges. Periodicals of Engineering and Natural Sciences, 6(2), 179-191, doi: 10.21533/pen.v6i2.224
  • [9] Rawal, S., Brantley, J., and Karabudak, N. (2013). Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In 2013 6th international conference on recent advances in space technologies (RAST), 5-11, doi: 10.1109/RAST.2013.6581260
  • [10] Lakshmi, K. S., Arumaikkannu, G. (2017). Influence of process parameters on tensile strength of additive manufactured polymer parts using Taguchi method. In Advances in 3D printing and additive manufacturing technologies, 1-7, ISBN: 978-981-10-0811-5, doi:10.1007/978-981-10-0812-2, Springer, Singapore
  • [11] Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., Santos, R.,and Mortágua, J. P. (2016). Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Structural Integrity, 1, 289-296, doi: 10.1016/j.prostr.2016.02.039
  • [12] Gebisa, A. W., Lemu, H. G. (2017). A case study on topology optimized design for additive manufacturing. In IOP Conference Series: Materials Science and Engineering, 276 (1), 012026 doi: 10.1088/1757-899X/276/1/012026
  • [13] Liu, R., Wang, Z., Sparks, T., Liou, F., and Newkirk, J. (2017). Aerospace applications of laser additive manufacturing. In Laser Additive Manufacturing. 351-371. Woodhead Publishing, Cambridge, ISBN: 9780081004333, doi: 10.1016/B978-0-08-100433-3.00013-0
  • [14] Levatti, H. U., Innocente, M. S., Morgan, H. D., Cherry, J., Lavery, N. P., Mehmood, S., Cameron, I., and Sienz, J. (2014). Computational methodology for optimal design of additive layer manufactured turbine bracket. Sustainable Design and Manufacturing, 28-30.
  • [15] Brusa, E., Sesana, R., and Ossola, E. (2017). Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications. Procedia Structural Integrity, 5, 753-760 doi: 10.1016/j.prostr.2017.07.166
  • [16] Brandt, M., Sun, S. J., Leary, M., Feih, S., Elambasseril, J., and Liu, Q. C. (2013). High-value SLM aerospace components: from design to manufacture. In Advanced Materials Research. 633, 135-147. Trans Tech Publications Ltd, doi: 10.4028/www.scientific.net/AMR.633.135
  • [17] Tomlin, M., and Meyer, J. (2011). Topology optimization of an additive layer manufactured (ALM) aerospace part. In Proceeding of the 7th Altair CAE technology Conference, 24-30 May 2011, 1-9.
  • [18] Orme, M. E., Gschweitl, M., Ferrari, M., Vernon, R., Madera, I. J., Yancey, R., and Mouriaux, F. (2017). Additive manufacturing of lightweight, optimized, metallic components suitable for space flight. Journal of Spacecraft and Rockets, 54(5), 1050-1059, doi: 10.2514/1.A33749
  • [19] Verhoef, L. A., Budde, B. W., Chockalingam, C., García Nodar, B., & van Wijk, A. J. M. (2018). The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy, 112, 349–360. doi:10.1016/j.enpol.2017.10.034
  • [20] Cozzani, M., Azizi, A., Eslami, S., Darnahal, A., Pirhadirad, A., and Jamilian, A. (2019). 3-dimensional finite element analysis of the outcomes of Alexander, Gianelly, Roth and MBT bracket prescription. International orthodontics, 17(1), 45-52, doi: 10.1016/j.ortho.2019.01.010
  • [21] Kamal, M., and Rizza, G. (2019). Design for metal additive manufacturing for aerospace applications. In Additive manufacturing for the aerospace industry. 67-86, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [22] Froes, F., Boyer, R., and Dutta, B. (2019). Introduction to aerospace materials requirements and the role of additive manufacturing. In Additive manufacturing for the aerospace industry. 1-6, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [23] Minet, K., Saharan, A., Loesser, A., and Raitanen, N. (2019). Superalloys, powders, process monitoring in additive manufacturing. In Additive Manufacturing for the Aerospace Industry.163-185. p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [24] Withers, J. C. (2019). Fusion and/or solid state additive manufacturing for aerospace applications. In Additive Manufacturing for the Aerospace Industry. 187-211. p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [25] Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., and Wiener, S. (2017). Additive manufacturing of metals: the technology, materials, design and production. 65-70, p.168, Springer, Cham, Switzerland, ISBN 978-3-319-55127-2, doi: 10.1007/978-3-319-55128-9
  • [26] Atzeni, E., and Salmi, A. (2012). Economics of additive manufacturing for end-usable metal parts. The International Journal of Advanced Manufacturing Technology, 62(9-12), 1147-1155, doi: 10.1007/s00170-011-3878-1
  • [27] Mellor, S., Hao, L., and Zhang, D. (2014). Additive manufacturing: a framework for implementation. International journal of production economics, 149, 194-201, doi: 10.1016/j.ijpe.2013.07.008
  • [28] Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., and Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570, doi: 10.1016/j.jclepro.2015.04.109
  • [29] Uriondo, A., Esperon-Miguez, M., and Perinpanayagam, S. (2015). The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132-2147, doi: 10.1177/0954410014568797
  • [30] Uhlmann, E., Kersting, R., Klein, T. B., Cruz, M. F., and Borille, A. V. (2015). Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp, 35, 55-60, doi: doi.org/10.1016/j.procir.2015.08.061
  • [31] Ghadge, A., Karantoni, G., Chaudhuri, A., and Srinivasan, A. (2018). Impact of additive manufacturing on aircraft supply chain performance. Journal of Manufacturing Technology Management. 29 (5), 846-865, doi: 10.1108/JMTM-07-2017-0143
  • [32] Gisario, A., Kazarian, M., Martina, F., and Mehrpouya, M. (2019). Metal additive manufacturing in the commercial aviation industry: A review. Journal of Manufacturing Systems, 53, 124-149, doi: 10.1016/j.jmsy.2019.08.005
  • [33] Barroqueiro, B., Andrade-Campos, A., Valente, R. A. F., and Neto, V. (2019). Metal additive manufacturing cycle in aerospace industry: a comprehensive review. Journal of Manufacturing and Materials Processing, 3(3), 52, doi: 10.3390/jmmp3030052
  • [34] Joshi, S. C., and Sheikh, A. A. (2015). 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10(4), 175-185, doi: 10.1080/17452759.2015.1111519
  • [35] Yusuf M., Cutler, S., Gao, N. (2019). The impact of metal additive manufacturing on the aerospace ındustry. Metals, 9(12), 1286, doi: 10.3390/met9121286
  • [36] Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard,A., Schulz, J., Graf, P., Ahuja B., and Martina, F. (2016). Design for Additive manufacturing: trends, opportunities, considerations, and constraints. CIRP annals, 65(2), 737-760, doi: 10.1016/j.cirp.2016.05.004
  • [37] Plocher, J., and Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Materials and Design, 183, 108164, doi: 0.1016/j.matdes.2019.108164
  • [38] Harikrishnan, P., Magesh, V., Ajayan, A. M., and JebaSingh, D. K. (2020). Finite element analysis of torque induced orthodontic bracket slot deformation in various bracket-archwire contact assembly. Computer Methods and Programs in Biomedicine, 197, 105748, doi: 10.1016/j.cmpb.2020.105748
  • [39] Vijayan, R., Geetha, T. T., Nishanth, B., Tamilarasan, M., and Kumar, V. V. (2019). Value engineering and value analysis of rear air spring bracket. Materials Today: Proceedings, 16, 1075-1082, doi: /10.1016/j.matpr.2019.05.198
  • [40] Liao, Y., and Liao, B. (2020). Finite element analysis and lightweight design of hydro generator lower bracket. Manufacturing Technology, 20(1), 66-71, doi: 10.21062/mft.2020.017
  • [41] Govdeli, Y., Wong, Z. W., Kayacan, E. (2016). Additive manufacturing of unmanned aerial vehicles: current status, recent advances, and future perspectives. 39-48, ISSN: 2424-8967
  • [42] Emmelmann, C., Herzog, D., and Kranz, J. (2017). Design for laser additive manufacturing. In Laser Additive Manufacturing. 259-279, Woodhead Publishing, Cambridge, ISBN: 9780081004333, doi: 10.1016/B978-0-08-100433-3.00013-0
  • [43] Oyesola, M. O., Mpofu, K., Mathe, N. R., and Daniyan, I. A. (2020). Hybrid-additive manufacturing cost model: A sustainable through-life engineering support for maintenance repair overhaul in the aerospace. Procedia Manufacturing. 49, 199-205, doi: 10.1016/j.promfg.2020.07.019
  • [44] Nazir, A., Abate, K. M., Kumar, A., and Jeng, J. Y. (2019). A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3489-3510, doi: 10.1007/s00170-019-04085-3
  • [45] Ahn, D. G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381-395, doi: 10.1007/s40684-016-0048-9
  • [46] Poyraz, Ö., Kuşhan, M.C. (2019). Design for additive manufacturing with case studies on aircrafts and propulsion systems. Scientific Research and Education in the Air Force-AFASES.
  • [47] Senck, S., Happl, M., Reiter, M., Scheerer, M., Kendel, M., Glinz, J., and Kastner, J. (2020). Additive manufacturing and non-destructive testing of topology-optimised aluminium components. Nondestructive Testing and Evaluation, 1-13, doi: 10.1080/10589759.2020.1774582
  • [48] Schwarz, K. A. (2015). The design for manufacturing and assembly analysis and redesign of an aircraft refueling door hinge utilizing additive manufacturing. Embry-Riddle University, 60, Ph.D. Thesis
  • [49] Saracyakupoglu, T. (2019). The qualification of the additively manufactured parts in the aviation industry, American Journal of Aerospace Engineering, 6(1), 1-10, doi: 0.11648/j.ajae.20190601.11
  • [50] Diaz, A. (2019). Surface texture characterization and optimization of metal additive manufacturing-produced components for aerospace applications. In Additive Manufacturing for the Aerospace Industry. 341-374, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [51] Koester, L. W., Bond, L. J., Taheri, H., and Collins, P. C. (2019). Nondestructive evaluation of additively manufactured metallic parts: In situ and post deposition. In Additive Manufacturing for the Aerospace Industry.401-417, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [52] Hassila, C. J., Harlin, P., and Wiklund, U. (2019). Rolling contact fatigue crack propagation relative to anisotropies in additive manufactured Inconel 625. Inconel 625. Wear, 426, 1837-1845, doi: 10.1016/j.wear.2019.01.085
  • [53] Singh, S., Ramakrishna, S., and Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185-200, doi: 10.1016/j.jmapro.2016.11.006
  • [54] Zaman, U. K., Rivette, M., Siadat, A., and Mousavi, S. M. (2018). Integrated product-process design: Material and manufacturing process selection for additive manufacturing using multi-criteria decision making. Robotics and Computer-Integrated Manufacturing, 51, 169-180, doi: 10.1016/j.rcim.2017.12.005
  • [55] Williams, H., and Butler-Jones, E. (2019). Additive manufacturing standards for space resource utilization. Additive Manufacturing, 28, 676-681, doi: 10.1016/j.addma.2019.06.007
  • [56] Schiller, G. J. (2015). Additive manufacturing for Aerospace. In 2015 IEEE Aerospace Conference 7-14 March 2015. 1-8, doi: 10.1109/AERO.2015.7118958
  • [57] Shapiro, A. A., Borgonia, J. P., Chen, Q. N., Dillon, R. P., McEnerney, B., Polit-Casillas, R., and Soloway, L. (2016). Additive manufacturing for aerospace flight applications. Journal of Spacecraft and Rockets, 952-959, doi: 10.2514/1.A33544
  • [58] Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., and Thomas, W. (2019). Additive manufacturing for the aircraft industry: a review. J Aeronaut Aerospace Eng, 8(214), 2, doi: 10.4172/2329-6542.1000214
  • [59] Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., and Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials and Design, 139, 565-586, doi: 10.1016/j.matdes.2017.11.021
  • [60] Laureijs, R. E., Roca, J. B., Narra, S. P., Montgomery, C., Beuth, J. L., and Fuchs, E. R. (2017). Metal additive manufacturing: cost competitive beyond low volumes. Journal of Manufacturing Science and Engineering, 139(8): 081010, doi: 10.1115/1.4035420
  • [61] Herzog, D., Seyda, V., Wycisk, E., and Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371-392, doi: 10.1016/j.actamat.2016.07.019
  • [62] Werken, N. W., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams, A., and Tehrani, M. (2020). Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Additive Manufacturing, 31, 100962, doi:10.1016/j.addma.2019.100962
  • [63] Ceruti, A., Marzocca, P., Liverani, A., and Bil, C. (2019). Maintenance in aeronautics in an industry 4.0 context: the role of augmented reality and additive manufacturing. Journal of Computational Design and Engineering, 6(4), 516-526, doi: 10.1016/J.JCDE.2019.02.001
  • [64] Saracyakupoglu, T. (2012). Analysis of material, pressure, cutting velocity and water jet diameter's effect on the surface quality for the water jet cutting, Ph.D. Dissertation, Eskişehir Osmangazi University, Eskişehir, Turkey.
  • [65] Martin, B. W., Ales, T. K., Rolchigo, M. R., and Collins, P. C. (2019). Developing and applying ICME+ modeling tools to predict performance of additively manufactured aerospace parts. In Additive Manufacturing for the Aerospace Industry.375-400, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8

A Comprehensive Literature Research of the Additively Manufactured Airborne Parts

Yıl 2022, Cilt: 4 Sayı: 1, 1 - 24, 28.02.2022
https://doi.org/10.51785/jar.988296

Öz

Additive Manufacturing (AM) technology has been gaining a reputation as a game-changer for the production of both metal and plastic parts in the niche industrial sectors such as aerospace, aviation, and medical. Conventionally manufactured, Ni-based alloys called Inconel type materials have been widely used in the mentioned industries for a very long time. But they are now technically available for AM applications. It means that AM will be more frequently used. However, it is not clear yet how the material display influences microstructural anisotropy in the additively manufactured parts. For example, in a certain tribological situation, when exposed to moveable contact weakness, anisotropy might influence mechanical characteristics and thermal features. The powder-bed-based manufacturing process that is a widely used AM technology provides a slightly rough surface compared to other AM techniques. The combination of AM techniques in the aviation industry could gracefully overcome the barriers to having increased surface quality and mechanical features. In this manner; this paper explores the cutting-edge AM studies in the aviation industry while underlining their constraints

Kaynakça

  • [1] Barclift, M., Armstrong, A., Simpson, T. W., and Joshi, S. B. (2017). Cad-integrated cost estimation and build orientation optimization to support design for metal additive manufacturing. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 6-9 August 2017, Cleveland, 1-11, doi:10.1115/DETC2017-68376
  • [2] Kannan, G. B., and Rajendran, D. K. (2017). A review on status of research in metal additive manufacturing. In Advances in 3D printing and additive manufacturing technologies, 95-100, ISBN: 978-981-10-0811-5, doi:10.1007/978-981-10-0812-2, Springer, Singapore
  • [3] Yakout, M., Elbestawi, M. A., and Veldhuis, S. C. (2018). A review of metal additive manufacturing technologies. In Solid State Phenomena. 278, 1-14. Trans Tech Publications Ltd., doi: 10.4028/www.scientific.net/SSP.278.1
  • [4] Leal, R., Barreiros, F. M., Alves, L., Romeiro, F., Vasco, J. C., Santos, M., and Marto, C. (2017). Additive manufacturing tooling for the automotive industry. The International Journal of Advanced Manufacturing Technology, 92(5-8), 1671-1676, doi: 10.1007/s00170-017-0239-8
  • [5] Opgenoord, M. M., and Willcox, K. E. (2019). Design for additive manufacturing: cellular structures in early-stage aerospace design. Structural and Multidisciplinary Optimization, 60(2), 411-428, doi: 10.1007/s00158-019-02305-8
  • [6] Allevi, G., Cibeca, M., Fioretti, R., Marsili, R., Montanini, R., and Rossi, G. (2018). Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results. Measurement, 126, 252-258, doi: 10.1016/j.measurement.2018.05.068
  • [7] Klahn, C., Omidvarkarjan, D., and Meboldt, M. (2017). Evolution of design guidelines for additive manufacturing-highlighting achievements and open issues by revisiting an early SLM aircraft bracket. In International Conference on Additive Manufacturing in Products and Applications. 1-3 September 2020. Zurich, 3-13, ISBN: 978-3-319-66865-9, doi: 10.1007/978-3-319-66866-6_1
  • [8] Durakovic, B. (2018). Design for additive manufacturing: benefits, trends and challenges. Periodicals of Engineering and Natural Sciences, 6(2), 179-191, doi: 10.21533/pen.v6i2.224
  • [9] Rawal, S., Brantley, J., and Karabudak, N. (2013). Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In 2013 6th international conference on recent advances in space technologies (RAST), 5-11, doi: 10.1109/RAST.2013.6581260
  • [10] Lakshmi, K. S., Arumaikkannu, G. (2017). Influence of process parameters on tensile strength of additive manufactured polymer parts using Taguchi method. In Advances in 3D printing and additive manufacturing technologies, 1-7, ISBN: 978-981-10-0811-5, doi:10.1007/978-981-10-0812-2, Springer, Singapore
  • [11] Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., Santos, R.,and Mortágua, J. P. (2016). Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Structural Integrity, 1, 289-296, doi: 10.1016/j.prostr.2016.02.039
  • [12] Gebisa, A. W., Lemu, H. G. (2017). A case study on topology optimized design for additive manufacturing. In IOP Conference Series: Materials Science and Engineering, 276 (1), 012026 doi: 10.1088/1757-899X/276/1/012026
  • [13] Liu, R., Wang, Z., Sparks, T., Liou, F., and Newkirk, J. (2017). Aerospace applications of laser additive manufacturing. In Laser Additive Manufacturing. 351-371. Woodhead Publishing, Cambridge, ISBN: 9780081004333, doi: 10.1016/B978-0-08-100433-3.00013-0
  • [14] Levatti, H. U., Innocente, M. S., Morgan, H. D., Cherry, J., Lavery, N. P., Mehmood, S., Cameron, I., and Sienz, J. (2014). Computational methodology for optimal design of additive layer manufactured turbine bracket. Sustainable Design and Manufacturing, 28-30.
  • [15] Brusa, E., Sesana, R., and Ossola, E. (2017). Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications. Procedia Structural Integrity, 5, 753-760 doi: 10.1016/j.prostr.2017.07.166
  • [16] Brandt, M., Sun, S. J., Leary, M., Feih, S., Elambasseril, J., and Liu, Q. C. (2013). High-value SLM aerospace components: from design to manufacture. In Advanced Materials Research. 633, 135-147. Trans Tech Publications Ltd, doi: 10.4028/www.scientific.net/AMR.633.135
  • [17] Tomlin, M., and Meyer, J. (2011). Topology optimization of an additive layer manufactured (ALM) aerospace part. In Proceeding of the 7th Altair CAE technology Conference, 24-30 May 2011, 1-9.
  • [18] Orme, M. E., Gschweitl, M., Ferrari, M., Vernon, R., Madera, I. J., Yancey, R., and Mouriaux, F. (2017). Additive manufacturing of lightweight, optimized, metallic components suitable for space flight. Journal of Spacecraft and Rockets, 54(5), 1050-1059, doi: 10.2514/1.A33749
  • [19] Verhoef, L. A., Budde, B. W., Chockalingam, C., García Nodar, B., & van Wijk, A. J. M. (2018). The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy, 112, 349–360. doi:10.1016/j.enpol.2017.10.034
  • [20] Cozzani, M., Azizi, A., Eslami, S., Darnahal, A., Pirhadirad, A., and Jamilian, A. (2019). 3-dimensional finite element analysis of the outcomes of Alexander, Gianelly, Roth and MBT bracket prescription. International orthodontics, 17(1), 45-52, doi: 10.1016/j.ortho.2019.01.010
  • [21] Kamal, M., and Rizza, G. (2019). Design for metal additive manufacturing for aerospace applications. In Additive manufacturing for the aerospace industry. 67-86, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [22] Froes, F., Boyer, R., and Dutta, B. (2019). Introduction to aerospace materials requirements and the role of additive manufacturing. In Additive manufacturing for the aerospace industry. 1-6, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [23] Minet, K., Saharan, A., Loesser, A., and Raitanen, N. (2019). Superalloys, powders, process monitoring in additive manufacturing. In Additive Manufacturing for the Aerospace Industry.163-185. p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [24] Withers, J. C. (2019). Fusion and/or solid state additive manufacturing for aerospace applications. In Additive Manufacturing for the Aerospace Industry. 187-211. p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [25] Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., and Wiener, S. (2017). Additive manufacturing of metals: the technology, materials, design and production. 65-70, p.168, Springer, Cham, Switzerland, ISBN 978-3-319-55127-2, doi: 10.1007/978-3-319-55128-9
  • [26] Atzeni, E., and Salmi, A. (2012). Economics of additive manufacturing for end-usable metal parts. The International Journal of Advanced Manufacturing Technology, 62(9-12), 1147-1155, doi: 10.1007/s00170-011-3878-1
  • [27] Mellor, S., Hao, L., and Zhang, D. (2014). Additive manufacturing: a framework for implementation. International journal of production economics, 149, 194-201, doi: 10.1016/j.ijpe.2013.07.008
  • [28] Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., and Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570, doi: 10.1016/j.jclepro.2015.04.109
  • [29] Uriondo, A., Esperon-Miguez, M., and Perinpanayagam, S. (2015). The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132-2147, doi: 10.1177/0954410014568797
  • [30] Uhlmann, E., Kersting, R., Klein, T. B., Cruz, M. F., and Borille, A. V. (2015). Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp, 35, 55-60, doi: doi.org/10.1016/j.procir.2015.08.061
  • [31] Ghadge, A., Karantoni, G., Chaudhuri, A., and Srinivasan, A. (2018). Impact of additive manufacturing on aircraft supply chain performance. Journal of Manufacturing Technology Management. 29 (5), 846-865, doi: 10.1108/JMTM-07-2017-0143
  • [32] Gisario, A., Kazarian, M., Martina, F., and Mehrpouya, M. (2019). Metal additive manufacturing in the commercial aviation industry: A review. Journal of Manufacturing Systems, 53, 124-149, doi: 10.1016/j.jmsy.2019.08.005
  • [33] Barroqueiro, B., Andrade-Campos, A., Valente, R. A. F., and Neto, V. (2019). Metal additive manufacturing cycle in aerospace industry: a comprehensive review. Journal of Manufacturing and Materials Processing, 3(3), 52, doi: 10.3390/jmmp3030052
  • [34] Joshi, S. C., and Sheikh, A. A. (2015). 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10(4), 175-185, doi: 10.1080/17452759.2015.1111519
  • [35] Yusuf M., Cutler, S., Gao, N. (2019). The impact of metal additive manufacturing on the aerospace ındustry. Metals, 9(12), 1286, doi: 10.3390/met9121286
  • [36] Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard,A., Schulz, J., Graf, P., Ahuja B., and Martina, F. (2016). Design for Additive manufacturing: trends, opportunities, considerations, and constraints. CIRP annals, 65(2), 737-760, doi: 10.1016/j.cirp.2016.05.004
  • [37] Plocher, J., and Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Materials and Design, 183, 108164, doi: 0.1016/j.matdes.2019.108164
  • [38] Harikrishnan, P., Magesh, V., Ajayan, A. M., and JebaSingh, D. K. (2020). Finite element analysis of torque induced orthodontic bracket slot deformation in various bracket-archwire contact assembly. Computer Methods and Programs in Biomedicine, 197, 105748, doi: 10.1016/j.cmpb.2020.105748
  • [39] Vijayan, R., Geetha, T. T., Nishanth, B., Tamilarasan, M., and Kumar, V. V. (2019). Value engineering and value analysis of rear air spring bracket. Materials Today: Proceedings, 16, 1075-1082, doi: /10.1016/j.matpr.2019.05.198
  • [40] Liao, Y., and Liao, B. (2020). Finite element analysis and lightweight design of hydro generator lower bracket. Manufacturing Technology, 20(1), 66-71, doi: 10.21062/mft.2020.017
  • [41] Govdeli, Y., Wong, Z. W., Kayacan, E. (2016). Additive manufacturing of unmanned aerial vehicles: current status, recent advances, and future perspectives. 39-48, ISSN: 2424-8967
  • [42] Emmelmann, C., Herzog, D., and Kranz, J. (2017). Design for laser additive manufacturing. In Laser Additive Manufacturing. 259-279, Woodhead Publishing, Cambridge, ISBN: 9780081004333, doi: 10.1016/B978-0-08-100433-3.00013-0
  • [43] Oyesola, M. O., Mpofu, K., Mathe, N. R., and Daniyan, I. A. (2020). Hybrid-additive manufacturing cost model: A sustainable through-life engineering support for maintenance repair overhaul in the aerospace. Procedia Manufacturing. 49, 199-205, doi: 10.1016/j.promfg.2020.07.019
  • [44] Nazir, A., Abate, K. M., Kumar, A., and Jeng, J. Y. (2019). A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3489-3510, doi: 10.1007/s00170-019-04085-3
  • [45] Ahn, D. G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381-395, doi: 10.1007/s40684-016-0048-9
  • [46] Poyraz, Ö., Kuşhan, M.C. (2019). Design for additive manufacturing with case studies on aircrafts and propulsion systems. Scientific Research and Education in the Air Force-AFASES.
  • [47] Senck, S., Happl, M., Reiter, M., Scheerer, M., Kendel, M., Glinz, J., and Kastner, J. (2020). Additive manufacturing and non-destructive testing of topology-optimised aluminium components. Nondestructive Testing and Evaluation, 1-13, doi: 10.1080/10589759.2020.1774582
  • [48] Schwarz, K. A. (2015). The design for manufacturing and assembly analysis and redesign of an aircraft refueling door hinge utilizing additive manufacturing. Embry-Riddle University, 60, Ph.D. Thesis
  • [49] Saracyakupoglu, T. (2019). The qualification of the additively manufactured parts in the aviation industry, American Journal of Aerospace Engineering, 6(1), 1-10, doi: 0.11648/j.ajae.20190601.11
  • [50] Diaz, A. (2019). Surface texture characterization and optimization of metal additive manufacturing-produced components for aerospace applications. In Additive Manufacturing for the Aerospace Industry. 341-374, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [51] Koester, L. W., Bond, L. J., Taheri, H., and Collins, P. C. (2019). Nondestructive evaluation of additively manufactured metallic parts: In situ and post deposition. In Additive Manufacturing for the Aerospace Industry.401-417, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
  • [52] Hassila, C. J., Harlin, P., and Wiklund, U. (2019). Rolling contact fatigue crack propagation relative to anisotropies in additive manufactured Inconel 625. Inconel 625. Wear, 426, 1837-1845, doi: 10.1016/j.wear.2019.01.085
  • [53] Singh, S., Ramakrishna, S., and Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185-200, doi: 10.1016/j.jmapro.2016.11.006
  • [54] Zaman, U. K., Rivette, M., Siadat, A., and Mousavi, S. M. (2018). Integrated product-process design: Material and manufacturing process selection for additive manufacturing using multi-criteria decision making. Robotics and Computer-Integrated Manufacturing, 51, 169-180, doi: 10.1016/j.rcim.2017.12.005
  • [55] Williams, H., and Butler-Jones, E. (2019). Additive manufacturing standards for space resource utilization. Additive Manufacturing, 28, 676-681, doi: 10.1016/j.addma.2019.06.007
  • [56] Schiller, G. J. (2015). Additive manufacturing for Aerospace. In 2015 IEEE Aerospace Conference 7-14 March 2015. 1-8, doi: 10.1109/AERO.2015.7118958
  • [57] Shapiro, A. A., Borgonia, J. P., Chen, Q. N., Dillon, R. P., McEnerney, B., Polit-Casillas, R., and Soloway, L. (2016). Additive manufacturing for aerospace flight applications. Journal of Spacecraft and Rockets, 952-959, doi: 10.2514/1.A33544
  • [58] Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., and Thomas, W. (2019). Additive manufacturing for the aircraft industry: a review. J Aeronaut Aerospace Eng, 8(214), 2, doi: 10.4172/2329-6542.1000214
  • [59] Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., and Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials and Design, 139, 565-586, doi: 10.1016/j.matdes.2017.11.021
  • [60] Laureijs, R. E., Roca, J. B., Narra, S. P., Montgomery, C., Beuth, J. L., and Fuchs, E. R. (2017). Metal additive manufacturing: cost competitive beyond low volumes. Journal of Manufacturing Science and Engineering, 139(8): 081010, doi: 10.1115/1.4035420
  • [61] Herzog, D., Seyda, V., Wycisk, E., and Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371-392, doi: 10.1016/j.actamat.2016.07.019
  • [62] Werken, N. W., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams, A., and Tehrani, M. (2020). Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Additive Manufacturing, 31, 100962, doi:10.1016/j.addma.2019.100962
  • [63] Ceruti, A., Marzocca, P., Liverani, A., and Bil, C. (2019). Maintenance in aeronautics in an industry 4.0 context: the role of augmented reality and additive manufacturing. Journal of Computational Design and Engineering, 6(4), 516-526, doi: 10.1016/J.JCDE.2019.02.001
  • [64] Saracyakupoglu, T. (2012). Analysis of material, pressure, cutting velocity and water jet diameter's effect on the surface quality for the water jet cutting, Ph.D. Dissertation, Eskişehir Osmangazi University, Eskişehir, Turkey.
  • [65] Martin, B. W., Ales, T. K., Rolchigo, M. R., and Collins, P. C. (2019). Developing and applying ICME+ modeling tools to predict performance of additively manufactured aerospace parts. In Additive Manufacturing for the Aerospace Industry.375-400, p.482, Elsevier, Amsterdam, ISBN: 978-0-12-814062-8
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Tamer Saraçyakupoğlu 0000-0001-5338-726X

Yayımlanma Tarihi 28 Şubat 2022
Kabul Tarihi 28 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 1

Kaynak Göster

APA Saraçyakupoğlu, T. (2022). A Comprehensive Literature Research of the Additively Manufactured Airborne Parts. Journal of Aviation Research, 4(1), 1-24. https://doi.org/10.51785/jar.988296

15550155491554815547155461554415543

15854  17159  17426   17988logo.png








17297
Bu dergi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.