Research Article
BibTex RIS Cite
Year 2023, , 237 - 250, 06.03.2023
https://doi.org/10.28979/jarnas.1117590

Abstract

References

  • Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and sustainable energy reviews, 82, 353-368. DOI: https://doi.org/10.1016/j.rser.2017.09.046
  • Ahmad, M. Z., Ahmad, S. H., Chen, R. S., Ismail, A. F., Hazan, R., & Baharuddin, N. A. (2021). Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. International Journal of Hydrogen Energy. DOI: https://doi.org/10.1016/j.ijhydene.2021.10.094
  • Burnwal, S. K., Bharadwaj, S., & Kistaiah, P. (2016). Review on MIEC cathode materials for solid oxide fuel cells. Journal of Molecular and Engineering Materials, 4(02), 1630001. DOI: https://doi.org/10.1142/S2251237316300011
  • Chiu, H.-C., Jang, J.-H., Yan, W.-M., Li, H.-Y., & Liao, C.-C. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied energy, 96, 359-370. DOI: https://doi.org/10.1016/j.apenergy.2012.02.060
  • DELİBAŞ, N., Gharamaleki, S. B., Mansouri, M., & NİAİE, A. Reduction of operation temperature in SOFCs utilizing perovskites. International Advanced Researches and Engineering Journal, 6(1), 56-67. DOI: https://doi.org/10.35860/iarej.972864
  • Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology-A review. International Journal of Hydrogen Energy, 46(35), 18489-18510. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.203
  • Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions, 4(2), 113-126. DOI: https://doi.org/10.1007/s41825-020-00029-8
  • Kakac, S., Pramuanjaroenkij, A., & Zhou, X. Y. (2007). A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 32(7), 761-786. DOI: https://doi.org/10.1016/j.ijhydene.2006.11.028
  • Kurahashi, N., Murase, K., & Santander, M. (2022). High-Energy Extragalactic Neutrino Astrophysics. arXiv preprint arXiv:2203.11936. DOI: https://doi.org/10.48550/arXiv.2203.11936
  • Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., & Assabumrungrat, S. (2009). Reviews on solid oxide fuel cell technology. Engineering Journal, 13(1), 65-84. DOI: https://doi.org/10.4186/ej.2009.13.1.65
  • Li, P.-W., & Suzuki, K. (2004). Numerical modeling and performance study of a tubular SOFC. Journal of the Electrochemical Society, 151(4), A548. DOI: https://doi.org/10.1149/1.1647569
  • Ranasinghe, S. N., & Middleton, P. H. (2017). Modelling of single cell solid oxide fuel cells using COMSOL multiphysics. Paper presented at the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). DOI: https://doi.org/ 10.1109/EEEIC.2017.7977790
  • Shaari, N., Kamarudin, S. K., Bahru, R., Osman, S. H., & Md Ishak, N. A. I. (2021). Progress and challenges: Review for direct liquid fuel cell. International Journal of Energy Research, 45(5), 6644-6688. DOI: https://doi.org/10.1002/er.6353
  • Shu, L., Sunarso, J., Hashim, S. S., Mao, J., Zhou, W., & Liang, F. (2019). Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 44(59), 31275-31304. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.220
  • Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674. DOI: https://doi.org/10.1016/j.ijhydene.2021.06.020
  • Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and sustainable energy reviews, 6(5), 433-455. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Xia, C., Rauch, W., Wellborn, W., & Liu, M. (2002). Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and solid-state letters, 5(10), A217. DOI: https://doi.org/10.1149/1.1503203 Ilbas, M., & Kumuk, B. (2019). Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model. Journal of the Energy Institute, 92(3), 682-692. DOI: https://doi.org/10.1016/j.joei.2018.03.004
  • Mohammad Ebrahimi, I. (2017). Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell. Iranian Journal of Hydrogen & Fuel Cell, 4(1), 37-52. DOI: http://doi.org/ 10.22104/IJHFC.2017.2342.1144
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Yaoxuan, Q., Cheng, F., & Kening, S. (2021). Multiphysics simulation of a solid oxide fuel cell based on COMSOL method. Paper presented at the E3S Web of Conferences. DOI: https://doi.org/10.1051/e3sconf/202124501005

Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach

Year 2023, , 237 - 250, 06.03.2023
https://doi.org/10.28979/jarnas.1117590

Abstract

The usage of environment-friendly energy converter devices is getting more and more attention as a result of environmental crises and regulations. SOFCs are among the highly efficient chemical to electrical energy converters. Thus, their effectiveness is a significant issue to improve. To increase the efficiency of SOFCs, their properties should be investigated. However, it is costly and time-consuming to test all the important characteristics of a solid oxide fuel cell by experimental methods. Computational methods can contribute to evaluate the influence of each parameter on the performance of the fuel cell. In this paper, a 3D mathematical model of a SOFC is presented. The model can describe the fuel cell’s temperature, the concentration of material, and current distribution inside the cell. Also, the influence of the flow pattern (co-current and counter-current) on the distribution plots and performance of the solid oxide fuel cell is investigated. The results demonstrate that the distribution of the current, concentration, and temperature is firmly related and wherever the concentration of reactants is higher, the temperature and current increase too. Also, the plots of power density and cell potential versus current were consistent with the results of the literature. Moreover, the comparison between two types of flow patterns shows that there is no significant variation when the type of current changes from counter to co-current. However, the performance of the SOFC is mildly better with a co-current flow pattern.

References

  • Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and sustainable energy reviews, 82, 353-368. DOI: https://doi.org/10.1016/j.rser.2017.09.046
  • Ahmad, M. Z., Ahmad, S. H., Chen, R. S., Ismail, A. F., Hazan, R., & Baharuddin, N. A. (2021). Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. International Journal of Hydrogen Energy. DOI: https://doi.org/10.1016/j.ijhydene.2021.10.094
  • Burnwal, S. K., Bharadwaj, S., & Kistaiah, P. (2016). Review on MIEC cathode materials for solid oxide fuel cells. Journal of Molecular and Engineering Materials, 4(02), 1630001. DOI: https://doi.org/10.1142/S2251237316300011
  • Chiu, H.-C., Jang, J.-H., Yan, W.-M., Li, H.-Y., & Liao, C.-C. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied energy, 96, 359-370. DOI: https://doi.org/10.1016/j.apenergy.2012.02.060
  • DELİBAŞ, N., Gharamaleki, S. B., Mansouri, M., & NİAİE, A. Reduction of operation temperature in SOFCs utilizing perovskites. International Advanced Researches and Engineering Journal, 6(1), 56-67. DOI: https://doi.org/10.35860/iarej.972864
  • Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology-A review. International Journal of Hydrogen Energy, 46(35), 18489-18510. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.203
  • Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions, 4(2), 113-126. DOI: https://doi.org/10.1007/s41825-020-00029-8
  • Kakac, S., Pramuanjaroenkij, A., & Zhou, X. Y. (2007). A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 32(7), 761-786. DOI: https://doi.org/10.1016/j.ijhydene.2006.11.028
  • Kurahashi, N., Murase, K., & Santander, M. (2022). High-Energy Extragalactic Neutrino Astrophysics. arXiv preprint arXiv:2203.11936. DOI: https://doi.org/10.48550/arXiv.2203.11936
  • Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., & Assabumrungrat, S. (2009). Reviews on solid oxide fuel cell technology. Engineering Journal, 13(1), 65-84. DOI: https://doi.org/10.4186/ej.2009.13.1.65
  • Li, P.-W., & Suzuki, K. (2004). Numerical modeling and performance study of a tubular SOFC. Journal of the Electrochemical Society, 151(4), A548. DOI: https://doi.org/10.1149/1.1647569
  • Ranasinghe, S. N., & Middleton, P. H. (2017). Modelling of single cell solid oxide fuel cells using COMSOL multiphysics. Paper presented at the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). DOI: https://doi.org/ 10.1109/EEEIC.2017.7977790
  • Shaari, N., Kamarudin, S. K., Bahru, R., Osman, S. H., & Md Ishak, N. A. I. (2021). Progress and challenges: Review for direct liquid fuel cell. International Journal of Energy Research, 45(5), 6644-6688. DOI: https://doi.org/10.1002/er.6353
  • Shu, L., Sunarso, J., Hashim, S. S., Mao, J., Zhou, W., & Liang, F. (2019). Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 44(59), 31275-31304. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.220
  • Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674. DOI: https://doi.org/10.1016/j.ijhydene.2021.06.020
  • Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and sustainable energy reviews, 6(5), 433-455. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Xia, C., Rauch, W., Wellborn, W., & Liu, M. (2002). Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and solid-state letters, 5(10), A217. DOI: https://doi.org/10.1149/1.1503203 Ilbas, M., & Kumuk, B. (2019). Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model. Journal of the Energy Institute, 92(3), 682-692. DOI: https://doi.org/10.1016/j.joei.2018.03.004
  • Mohammad Ebrahimi, I. (2017). Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell. Iranian Journal of Hydrogen & Fuel Cell, 4(1), 37-52. DOI: http://doi.org/ 10.22104/IJHFC.2017.2342.1144
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Yaoxuan, Q., Cheng, F., & Kening, S. (2021). Multiphysics simulation of a solid oxide fuel cell based on COMSOL method. Paper presented at the E3S Web of Conferences. DOI: https://doi.org/10.1051/e3sconf/202124501005
There are 21 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Classical Physics (Other), Energy Systems Engineering (Other)
Journal Section Research Article
Authors

S. Mehdi Rezvan 0000-0002-2751-9799

Mohammad Ahangari 0000-0002-3509-3652

Nagihan Delibaş 0000-0001-5752-062X

Soudabeh Bahrami Gharamaleki 0000-0002-2060-7032

Asghar Moradi 0000-0003-0932-8988

Aligholi Niaie 0000-0001-5580-4266

Publication Date March 6, 2023
Submission Date May 21, 2022
Published in Issue Year 2023

Cite

APA Rezvan, S. M., Ahangari, M., Delibaş, N., Bahrami Gharamaleki, S., et al. (2023). Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 237-250. https://doi.org/10.28979/jarnas.1117590
AMA Rezvan SM, Ahangari M, Delibaş N, Bahrami Gharamaleki S, Moradi A, Niaie A. Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. JARNAS. March 2023;9(1):237-250. doi:10.28979/jarnas.1117590
Chicago Rezvan, S. Mehdi, Mohammad Ahangari, Nagihan Delibaş, Soudabeh Bahrami Gharamaleki, Asghar Moradi, and Aligholi Niaie. “Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell With Mathematical Modelling Approach”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 237-50. https://doi.org/10.28979/jarnas.1117590.
EndNote Rezvan SM, Ahangari M, Delibaş N, Bahrami Gharamaleki S, Moradi A, Niaie A (March 1, 2023) Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of Advanced Research in Natural and Applied Sciences 9 1 237–250.
IEEE S. M. Rezvan, M. Ahangari, N. Delibaş, S. Bahrami Gharamaleki, A. Moradi, and A. Niaie, “Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach”, JARNAS, vol. 9, no. 1, pp. 237–250, 2023, doi: 10.28979/jarnas.1117590.
ISNAD Rezvan, S. Mehdi et al. “Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell With Mathematical Modelling Approach”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 237-250. https://doi.org/10.28979/jarnas.1117590.
JAMA Rezvan SM, Ahangari M, Delibaş N, Bahrami Gharamaleki S, Moradi A, Niaie A. Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. JARNAS. 2023;9:237–250.
MLA Rezvan, S. Mehdi et al. “Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell With Mathematical Modelling Approach”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 237-50, doi:10.28979/jarnas.1117590.
Vancouver Rezvan SM, Ahangari M, Delibaş N, Bahrami Gharamaleki S, Moradi A, Niaie A. Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. JARNAS. 2023;9(1):237-50.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).