Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 1, 1 - 14, 06.03.2023
https://doi.org/10.28979/jarnas.1097860

Abstract

References

  • Abbastabar, B., Azizi, M. H., Adnani, A., & Abbasi, S. (2015). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids, 43, 259–264. https://doi.org/10.1016/j.foodhyd.2014.05.026
  • Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT, 62(1), 225–232. https://doi.org/10.1016/j.lwt.2014.12.045
  • Ballesteros López, A. C., Guimarães Pereira, A. J., & Junqueira, R. G. (2004). Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Archives of Biology and Technology, 47(1), 63–70. https://doi.org/10.1590/S1516-89132004000100009
  • Bi, B., Yang, H., Fang, Y., Nishinari, K., & Phillips, G. O. (2017). Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction. Food Chemistry, 214, 614–621. https://doi.org/10.1016/j.foodchem.2016.07.112
  • Burešová, I., Masaříková, L., Hřivna, L., Kulhanová, S., & Bureš, D. (2016). The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread. LWT - Food Science and Technology, 68, 659–666. https://doi.org/10.1016/J.LWT.2016.01.010
  • Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13(5), 871–890. https://doi.org/10.1111/1541-4337.12091
  • Chakraborty, S. K., Kotwaliwale, N., & Navale, S. A. (2020). Selection and incorporation of hydrocolloid for gluten-free leavened millet breads and optimization of the baking process thereof. Lwt, 119(October 2019), 108878. https://doi.org/10.1016/j.lwt.2019.108878
  • Cureton, P., & Fasano, A. (2009). The Increasing Incidence of Celiac Disease and the Range of Gluten-Free Products in the Marketplace. Gluten-Free Food Science and Technology, 1–15. https://doi.org/10.1002/9781444316209.CH1
  • Demirkesen, I., Kelkar, S., Campanella, O. H., Sumnu, G., Sahin, S., & Okos, M. (2014). Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocolloids, 36, 37–44. https://doi.org/10.1016/j.foodhyd.2013.09.002
  • Demirkesen, I., Sumnu, G., & Sahin, S. (2013). Image Analysis of Gluten-free Breads Prepared with Chestnut and Rice Flour and Baked in Different Ovens. Food and Bioprocess Technology, 6(7), 1749–1758. https://doi.org/10.1007/S11947-012-0850-5
  • Dickinson, E. (2018). Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025 Farahmandfar, R., Asnaashari, M., Salahi, M. R., & Khosravi Rad, T. (2017). Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream. International Journal of Biological Macromolecules, 98, 820–828. https://doi.org/10.1016/j.ijbiomac.2017.02.046
  • Hager, A. S., & Arendt, E. K. (2013). Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 32(1), 195–203. https://doi.org/10.1016/j.foodhyd.2012.12.021
  • Houben, A., Höchstötter, A., & Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: An overview. European Food Research and Technology, 235(2), 195–208. https://doi.org/10.1007/S00217-012-1720-0
  • Kirtil, E., & Oztop, M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019
  • Kirtil, E., Svitova, T., Radke, C. J., Oztop, M. H., & Sahin, S. (2022). Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 123(September 2021), 107185. https://doi.org/10.1016/j.foodhyd.2021.107185
  • Kittisuban, P., Ritthiruangdej, P., & Suphantharika, M. (2014). Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT - Food Science and Technology, 57(2), 738–748. https://doi.org/10.1016/j.lwt.2014.02.045
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033–1047. https://doi.org/10.1016/j.jfoodeng.2006.03.032
  • Li, J. M., & Nie, S. P. (2016). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. https://doi.org/10.1016/j.foodhyd.2015.01.035
  • Mahmoud, R. M., Yousif, E. I., Gadallah, M. G. E., & Alawneh, A. R. (2013). Formulations and quality characterization of gluten-free Egyptian balady flat bread. Annals of Agricultural Sciences, 58(1), 19–25. https://doi.org/10.1016/j.aoas.2013.01.004
  • Mancebo, C. M., San Miguel, M. Á., Martínez, M. M., & Gómez, M. (2015). Optimisation of rheological properties of gluten-free doughs with HPMC, psyllium and different levels of water. Journal of Cereal Science, 61, 8–15. https://doi.org/10.1016/j.jcs.2014.10.005
  • Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393–400. https://doi.org/10.1016/j.foodhyd.2012.07.005
  • Matos, M. E., & Rosell, C. M. (2015). Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. Journal of the Science of Food and Agriculture, 95(4), 653–661. https://doi.org/10.1002/JSFA.6732
  • Milde, L. B., Ramallo, L. A., & Puppo, M. C. (2012). Gluten-free Bread Based on Tapioca Starch: Texture and Sensory Studies. Food and Bioprocess Technology, 5(3), 888–896. https://doi.org/10.1007/S11947-010-0381-X
  • Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P. D., Koukiotis, C., Filotheou, A., Lousinian, S., & Tzimpilis, E. (2014). Hydrocolloids from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloids, 42, 178–186. https://doi.org/10.1016/j.foodhyd.2014.03.031
  • Rojas, J. A., Rosell, C. M., & Benedito De Barber, C. (1999). Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocolloids, 13(1), 27–33. https://doi.org/10.1016/S0268-005X(98)00066-6
  • Ronda, F., Perez-Quirce, S., Lazaridou, A., & Biliaderis, C. G. (2015). Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocolloids, 48, 197–207. https://doi.org/10.1016/j.foodhyd.2015.02.031
  • Sangpring, Y., Fukuoka, M., & Ratanasumawong, S. (2015). The effect of sodium chloride on microstructure, water migration, and texture of rice noodle. LWT - Food Science and Technology, 64(2), 1107–1113. https://doi.org/10.1016/j.lwt.2015.07.035
  • Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S. H., & Arendt, E. K. (2005). Gluten-free bread from sorghum: Quality differences among hybrids. Cereal Chemistry, 82(4), 394–404. https://doi.org/10.1094/CC-82-0394
  • Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Effect of hydrocolloids on gluten-free batter properties and bread quality. International Journal of Food Science and Technology, 45(11), 2306–2312. https://doi.org/10.1111/J.1365-2621.2010.02407.X
  • Steglich, T., Bernin, D., Röding, M., Nydén, M., Moldin, A., Topgaard, D., & Langton, M. (2014). Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging. Food Research International, 62, 644–652. https://doi.org/10.1016/j.foodres.2014.04.004
  • Tananuwong, K., & Reid, D. S. (2004). DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydrate Polymers, 58(3), 345–358. https://doi.org/10.1016/j.carbpol.2004.08.003
  • Thybo, A. K., Szczypiński, P. M., Karlsson, A. H., Dønstrup, S., Stødkilde-Jørgensen, H. S., Andersen, H. J., Szczypi??ski, P. M., Karlsson, A. H., D??nstrup, S., St??dkilde-J??rgensen, H. S., & Andersen, H. J. (2004). Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. Journal of Food Engineering, 61(1 SPEC.), 91–100. https://doi.org/10.1016/S0260-8774(03)00190-0
  • Turabi, E., Sumnu, G., & Sahin, S. (2008a). Optimization of Baking of Rice Cakes in Infrared – Microwave Combination Oven by Response Surface Methodology. 64–73. https://doi.org/10.1007/s11947-007-0003-4
  • Turabi, E., Sumnu, G., & Sahin, S. (2008b). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22(2), 305–312. https://doi.org/10.1016/j.foodhyd.2006.11.016
  • Turabi, E., Sumnu, G., & Sahin, S. (2010). Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food Hydrocolloids, 24(8), 755–762. https://doi.org/10.1016/j.foodhyd.2010.04.001
  • Vernon-Carter, E. J., Pérez-Orozco, J. P., Jiménez-Alvarado, R., Román-Guerrero, A., Orozco-Villafuerte, J., & Cruz-Sosa, F. (2008). Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel-oil. Food Hydrocolloids, 23(3), 708–713. https://doi.org/10.1016/j.foodhyd.2008.06.005
  • Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science and Technology, 30(1), 6–15. https://doi.org/10.1016/j.tifs.2013.01.001

Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations

Year 2023, Volume: 9 Issue: 1, 1 - 14, 06.03.2023
https://doi.org/10.28979/jarnas.1097860

Abstract

Celiac disease is a serious and lifelong disorder that is associated with gluten consumption. Celiac patients should commit to a strict gluten free diet. Besides celiac patients, gluten can also cause allergenic reactions in a significant portion of population. Thus, there is a growing trend in replacing sources of gluten with alternatives. This work concentrated on improving the quality and consumer acceptance of gluten-free cakes made out of rice flour by using quince seed extract, which is a unique hydrocolloid product that exhibits emulsification properties. The cake batter and cooked cakes were characterized in terms of water activity, color, porosity, emulsion stability, textural properties, rheological behavior and sensorial attributes. Emulsion stability results indicated an excellent improvement of physical stability of batter emulsions by addition of quince seed extract (QSE) and lecithin, which was identified with no visible phase separation in samples Q0.1E and Q0.2E. All cake batters displayed a pseudoplastic flow behavior with apparent viscosities and shear thinning behavior increasing substantially with increasing QSE concentrations. Hardness values gathered from texture profile analysis, implied that best cake texture was obtained via QSE and lecithin incorporation. Sensory analysis results also supported the same result in that, samples with egg yolk and QSE both, yielded a more preferable appearance and texture. Therefore, with this study, it was possible to observe the promising effects of QSE incorporation on cake batter and baked cake properties.

References

  • Abbastabar, B., Azizi, M. H., Adnani, A., & Abbasi, S. (2015). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids, 43, 259–264. https://doi.org/10.1016/j.foodhyd.2014.05.026
  • Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT, 62(1), 225–232. https://doi.org/10.1016/j.lwt.2014.12.045
  • Ballesteros López, A. C., Guimarães Pereira, A. J., & Junqueira, R. G. (2004). Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Archives of Biology and Technology, 47(1), 63–70. https://doi.org/10.1590/S1516-89132004000100009
  • Bi, B., Yang, H., Fang, Y., Nishinari, K., & Phillips, G. O. (2017). Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction. Food Chemistry, 214, 614–621. https://doi.org/10.1016/j.foodchem.2016.07.112
  • Burešová, I., Masaříková, L., Hřivna, L., Kulhanová, S., & Bureš, D. (2016). The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread. LWT - Food Science and Technology, 68, 659–666. https://doi.org/10.1016/J.LWT.2016.01.010
  • Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13(5), 871–890. https://doi.org/10.1111/1541-4337.12091
  • Chakraborty, S. K., Kotwaliwale, N., & Navale, S. A. (2020). Selection and incorporation of hydrocolloid for gluten-free leavened millet breads and optimization of the baking process thereof. Lwt, 119(October 2019), 108878. https://doi.org/10.1016/j.lwt.2019.108878
  • Cureton, P., & Fasano, A. (2009). The Increasing Incidence of Celiac Disease and the Range of Gluten-Free Products in the Marketplace. Gluten-Free Food Science and Technology, 1–15. https://doi.org/10.1002/9781444316209.CH1
  • Demirkesen, I., Kelkar, S., Campanella, O. H., Sumnu, G., Sahin, S., & Okos, M. (2014). Characterization of structure of gluten-free breads by using X-ray microtomography. Food Hydrocolloids, 36, 37–44. https://doi.org/10.1016/j.foodhyd.2013.09.002
  • Demirkesen, I., Sumnu, G., & Sahin, S. (2013). Image Analysis of Gluten-free Breads Prepared with Chestnut and Rice Flour and Baked in Different Ovens. Food and Bioprocess Technology, 6(7), 1749–1758. https://doi.org/10.1007/S11947-012-0850-5
  • Dickinson, E. (2018). Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025 Farahmandfar, R., Asnaashari, M., Salahi, M. R., & Khosravi Rad, T. (2017). Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream. International Journal of Biological Macromolecules, 98, 820–828. https://doi.org/10.1016/j.ijbiomac.2017.02.046
  • Hager, A. S., & Arendt, E. K. (2013). Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 32(1), 195–203. https://doi.org/10.1016/j.foodhyd.2012.12.021
  • Houben, A., Höchstötter, A., & Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: An overview. European Food Research and Technology, 235(2), 195–208. https://doi.org/10.1007/S00217-012-1720-0
  • Kirtil, E., & Oztop, M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019
  • Kirtil, E., Svitova, T., Radke, C. J., Oztop, M. H., & Sahin, S. (2022). Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 123(September 2021), 107185. https://doi.org/10.1016/j.foodhyd.2021.107185
  • Kittisuban, P., Ritthiruangdej, P., & Suphantharika, M. (2014). Optimization of hydroxypropylmethylcellulose, yeast β-glucan, and whey protein levels based on physical properties of gluten-free rice bread using response surface methodology. LWT - Food Science and Technology, 57(2), 738–748. https://doi.org/10.1016/j.lwt.2014.02.045
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033–1047. https://doi.org/10.1016/j.jfoodeng.2006.03.032
  • Li, J. M., & Nie, S. P. (2016). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. https://doi.org/10.1016/j.foodhyd.2015.01.035
  • Mahmoud, R. M., Yousif, E. I., Gadallah, M. G. E., & Alawneh, A. R. (2013). Formulations and quality characterization of gluten-free Egyptian balady flat bread. Annals of Agricultural Sciences, 58(1), 19–25. https://doi.org/10.1016/j.aoas.2013.01.004
  • Mancebo, C. M., San Miguel, M. Á., Martínez, M. M., & Gómez, M. (2015). Optimisation of rheological properties of gluten-free doughs with HPMC, psyllium and different levels of water. Journal of Cereal Science, 61, 8–15. https://doi.org/10.1016/j.jcs.2014.10.005
  • Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393–400. https://doi.org/10.1016/j.foodhyd.2012.07.005
  • Matos, M. E., & Rosell, C. M. (2015). Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. Journal of the Science of Food and Agriculture, 95(4), 653–661. https://doi.org/10.1002/JSFA.6732
  • Milde, L. B., Ramallo, L. A., & Puppo, M. C. (2012). Gluten-free Bread Based on Tapioca Starch: Texture and Sensory Studies. Food and Bioprocess Technology, 5(3), 888–896. https://doi.org/10.1007/S11947-010-0381-X
  • Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P. D., Koukiotis, C., Filotheou, A., Lousinian, S., & Tzimpilis, E. (2014). Hydrocolloids from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloids, 42, 178–186. https://doi.org/10.1016/j.foodhyd.2014.03.031
  • Rojas, J. A., Rosell, C. M., & Benedito De Barber, C. (1999). Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocolloids, 13(1), 27–33. https://doi.org/10.1016/S0268-005X(98)00066-6
  • Ronda, F., Perez-Quirce, S., Lazaridou, A., & Biliaderis, C. G. (2015). Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocolloids, 48, 197–207. https://doi.org/10.1016/j.foodhyd.2015.02.031
  • Sangpring, Y., Fukuoka, M., & Ratanasumawong, S. (2015). The effect of sodium chloride on microstructure, water migration, and texture of rice noodle. LWT - Food Science and Technology, 64(2), 1107–1113. https://doi.org/10.1016/j.lwt.2015.07.035
  • Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S. H., & Arendt, E. K. (2005). Gluten-free bread from sorghum: Quality differences among hybrids. Cereal Chemistry, 82(4), 394–404. https://doi.org/10.1094/CC-82-0394
  • Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Effect of hydrocolloids on gluten-free batter properties and bread quality. International Journal of Food Science and Technology, 45(11), 2306–2312. https://doi.org/10.1111/J.1365-2621.2010.02407.X
  • Steglich, T., Bernin, D., Röding, M., Nydén, M., Moldin, A., Topgaard, D., & Langton, M. (2014). Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging. Food Research International, 62, 644–652. https://doi.org/10.1016/j.foodres.2014.04.004
  • Tananuwong, K., & Reid, D. S. (2004). DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydrate Polymers, 58(3), 345–358. https://doi.org/10.1016/j.carbpol.2004.08.003
  • Thybo, A. K., Szczypiński, P. M., Karlsson, A. H., Dønstrup, S., Stødkilde-Jørgensen, H. S., Andersen, H. J., Szczypi??ski, P. M., Karlsson, A. H., D??nstrup, S., St??dkilde-J??rgensen, H. S., & Andersen, H. J. (2004). Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. Journal of Food Engineering, 61(1 SPEC.), 91–100. https://doi.org/10.1016/S0260-8774(03)00190-0
  • Turabi, E., Sumnu, G., & Sahin, S. (2008a). Optimization of Baking of Rice Cakes in Infrared – Microwave Combination Oven by Response Surface Methodology. 64–73. https://doi.org/10.1007/s11947-007-0003-4
  • Turabi, E., Sumnu, G., & Sahin, S. (2008b). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22(2), 305–312. https://doi.org/10.1016/j.foodhyd.2006.11.016
  • Turabi, E., Sumnu, G., & Sahin, S. (2010). Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food Hydrocolloids, 24(8), 755–762. https://doi.org/10.1016/j.foodhyd.2010.04.001
  • Vernon-Carter, E. J., Pérez-Orozco, J. P., Jiménez-Alvarado, R., Román-Guerrero, A., Orozco-Villafuerte, J., & Cruz-Sosa, F. (2008). Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel-oil. Food Hydrocolloids, 23(3), 708–713. https://doi.org/10.1016/j.foodhyd.2008.06.005
  • Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science and Technology, 30(1), 6–15. https://doi.org/10.1016/j.tifs.2013.01.001
There are 38 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Ceren Cokeker 0000-0003-2162-902X

Sinem Argun 0000-0003-2570-2431

Emrah Kırtıl 0000-0002-9619-1678

Early Pub Date March 3, 2023
Publication Date March 6, 2023
Submission Date April 4, 2022
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Cokeker, C., Argun, S., & Kırtıl, E. (2023). Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations. Journal of Advanced Research in Natural and Applied Sciences, 9(1), 1-14. https://doi.org/10.28979/jarnas.1097860
AMA Cokeker C, Argun S, Kırtıl E. Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations. JARNAS. March 2023;9(1):1-14. doi:10.28979/jarnas.1097860
Chicago Cokeker, Ceren, Sinem Argun, and Emrah Kırtıl. “Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 1 (March 2023): 1-14. https://doi.org/10.28979/jarnas.1097860.
EndNote Cokeker C, Argun S, Kırtıl E (March 1, 2023) Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations. Journal of Advanced Research in Natural and Applied Sciences 9 1 1–14.
IEEE C. Cokeker, S. Argun, and E. Kırtıl, “Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations”, JARNAS, vol. 9, no. 1, pp. 1–14, 2023, doi: 10.28979/jarnas.1097860.
ISNAD Cokeker, Ceren et al. “Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations”. Journal of Advanced Research in Natural and Applied Sciences 9/1 (March 2023), 1-14. https://doi.org/10.28979/jarnas.1097860.
JAMA Cokeker C, Argun S, Kırtıl E. Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations. JARNAS. 2023;9:1–14.
MLA Cokeker, Ceren et al. “Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 1, 2023, pp. 1-14, doi:10.28979/jarnas.1097860.
Vancouver Cokeker C, Argun S, Kırtıl E. Evaluation of the Effect of Quince Seed Extract On Physical and Sensorial Properties of Gluten-Free Cake Batter Formulations. JARNAS. 2023;9(1):1-14.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).