Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling an Aileron using Four-Bar Linkage Method in Excel

Yıl 2025, Cilt: 3 Sayı: 2, 95 - 117, 30.12.2025

Öz

This study presents an interactive model and simulation of an aileron mechanism based on Excel VBA. The primary objective of the study is to analyze the relationships between aileron dynamics, hinge moment, and actuator forces in a practical and efficient manner, as well as to visualize the system's state. The model's foundation is based on a four-bar mechanism derived from a five-bar mechanism, where the kinematic equations are expressed using trigonometric relationships. Basic geometric data such as the lengths of the rods forming the mechanism, the coordinates of the connection points, and the input angle are defined as input parameters. The example configuration selected for the application belongs to a Medium Altitude Long Endurance (MALE) class unmanned aerial vehicle (UAV), ensuring that the model is adapted to a realistic scenario. The user-friendly interface developed using VBA allows for interactive examination of the system. The left panel of the interface displays real-time numerical data for the aileron angle, hinge moment, actuator force, and angles between elements that determine the kinematic state of the system. On the right panel, the kinematic state of the system at the current aileron position is displayed graphically. The user can instantly adjust the aileron deflection angle within an approximate ±15° range using the control buttons on the interface. Any angular changes made are automatically reflected in the relevant aerodynamic moment and force calculations. As a result, this modeling tool effectively visualizes the interaction between aerodynamic and mechanical parameters, accelerates design verification processes, and provides a highly accessible, dynamic platform for educational analysis. This enables rapid and interactive evaluation of aircraft control surface designs during the design phase, thereby making a significant contribution to engineering processes.

Destekleyen Kurum

Necmettin Erbakan Universty

Teşekkür

Access to the software and scientific resources used in this study was made possible by the Microsoft Excel license provided by Necmettin Erbakan University and access to academic databases. We would like to thank Necmettin Erbakan University for providing the infrastructure and resource support.

Kaynakça

  • 1. Uicker, J. J., Uicker Jr, J. J., Pennock, G. R., & Shigley, J. E. (2023). Theory of machines and mechanisms. Cambridge University Press.
  • 2. Mishra, R. (2021). Mechanisms of flexible four-bar linkages: A brief review. Materials Today: Proceedings, 47, 5570-5574.
  • 3. Kim, J. W., Seo, T., & Kim, J. (2016). A new design methodology for four-bar linkage mechanisms based on derivations of coupler curve. Mechanism and Machine Theory, 100, 138-154.
  • 4. Alfaro, M. E., Bolnick, D. I., & Wainwright, P. C. (2004). Evolutionary dynamics of complex biomechanical systems: an example using the four‐bar mechanism. Evolution, 58(3), 495-503.
  • 5. Acharyya, S. K., & Mandal, M. (2009). Performance of EAs for four-bar linkage synthesis. Mechanism and Machine Theory, 44(9), 1784-1794.
  • 6. Parlaktaş, V., Tanık, E., & Tanık, Ç. M. (2019). On the design of a novel fully compliant spherical four-bar mechanism. Advances in Mechanical Engineering, 11(9), 1687814019879548.
  • 7. Şenol, M. G. (2016). Design and testing of a four-bar flapping wing mechanism (Master's thesis, Middle East Technical University (Turkey)).
  • 8. Şahin, H. L., & Yaman, Y. (2018). Design and analysis of a novel mechanism for the morphing of trailing edge of an aircraft wing.
  • 9. Tuna, T., Ovur, S. E., Gokbel, E., & Kumbasar, T. (2020). Design and development of FOLLY: A self-foldable and self-deployable quadcopter. Aerospace Science and Technology, 100, 105807.
  • 10. Panagiotou, P., Kaparos, P., Salpingidou, C., & Yakinthos, K. (2016). Aerodynamic design of a MALE UAV. Aerospace Science and Technology, 50, 127-138.
  • 11. Antonio-Cruz, M., Silva-Ortigoza, R., Sandoval-Gutiérrez, J., Merlo-Zapata, C. A., Taud, H., Márquez-Sánchez, C., & Hernández-Guzmán, V. M. (2015, February). Modeling, simulation, and construction of a furuta pendulum test-bed. In 2015 International Conference on Electronics, Communications and Computers (CONIELECOMP) (pp. 72-79). IEEE.
  • 12. Söylemez, E. (2023). Kinematic Synthesis of Mechanisms: Using Excel® and Geogebra (Vol. 131). Springer Nature.
  • 13. Akay, O. E. (2021). Obtaining the parametric position equations of a four-bar mechanism using the parametric position equations of the planar manipulator with 3 revolute joints (3rm). Konya Journal of Engineering Sciences, 9(1), 8-16.
  • 14. Soriano-Heras, E., Pérez-Carrera, C., & Rubio, H. (2024). Mathematical Dimensional Synthesis of Four-Bar Linkages Based on Cognate Mechanisms. Mathematics, 13(1), 11.
  • 15. Lachaume, C. (2021). Primary flight control design for a 4-seat electric aircraft.
  • 16. Herdiana, D., Pinindriya, S., & Triwulandari, R. (2014). Investigation of Aileron Hinge Moment of National Transport Aircraft Basic to Numeric Method. In Proceedings International Seminar of Aerospace Science and Technology, 2015 (pp. 45-51). LAPAN.
  • 17. Simpson, C. D. (2016). Control surface hinge moment prediction using computational fluid dynamics. The University of Alabama.
  • 18. Battelle Memorial Institute. (2019). Metallic Materials Properties Development and Standardization (MMPDS-14), Chapters 1–9. U.S. Department of Transportation, Federal Aviation Administration (pp. 1–9). Washington, D.C.: Battelle Memorial Institute
  • 19. U.S. Department of Transportation Federal Aviation Administration. (2023). Flight Controls. U.S. Department of Transportation Federal Aviation Administration (Ed.), Pilot’s Handbook of Aeronautical Knowledge. Washington, D.C.: U.S. Government Publishing Office.
  • 20. Ikhana, the NASA Predator-B Unmanned Aircraft. (2010, 07 January) access link: https://www.nasa.gov/image-article/ikhana-nasa-predator-b-unmanned-aircraft/

Excel'de Dört Kol Mekanizması Yöntemi ile Bir Aileronun Modellenmesi

Yıl 2025, Cilt: 3 Sayı: 2, 95 - 117, 30.12.2025

Öz

Bu çalışma, bir aileron mekanizmasının Excel VBA tabanlı interaktif modellemesini ve simülasyonunu sunmaktadır. Çalışmanın temel amacı, aileron dinamiği, menteşe momenti ve aktüatör kuvvetleri arasındaki ilişkilerin pratik ve hızlı bir şekilde analiz edilmesi ve sistemin durumunun görselleştirilmesidir. Modelin altyapısı, kinematik denklemleri trigonometrik bağıntılarla ifade edilen ve beş çubuk mekanizmasından indirgenmiş bir dört çubuk mekanizmasına dayanmaktadır. Giriş parametreleri olarak mekanizmayı oluşturan çubuk uzunlukları, bağlantı noktası koordinatları ve giriş açısı gibi temel geometrik veriler tanımlanmıştır. Uygulama kapsamında seçilen örnek konfigürasyon, Orta İrtifa Uzun Havada Kalış (MALE) sınıfı bir insansız hava aracına (İHA) ait olup, modelin gerçekçi bir senaryoya uyarlanmasını sağlamaktadır. VBA kullanılarak geliştirilen kullanıcı dostu arayüz, sistemin interaktif olarak incelenmesine olanak tanımaktadır. Arayüzün sol panelinde aileron açısı, menteşe momenti, aktüatör kuvveti ve sistemin kinematik durumunu belirleyen elemanlar arası açılar anlık sayısal verilerle sunulmaktadır. Sağ panelde ise sistemin mevcut aileron pozisyonundaki kinematik durumu grafiksel olarak gösterilmektedir. Kullanıcı, arayüzdeki kontrol butonları ile aileron sapma açısını yaklaşık ±15° aralığında anlık olarak ayarlayabilmektedir. Yapılan her açısal değişiklik, ilgili aerodinamik moment ve kuvvet hesaplamalarına otomatik olarak yansıtılmaktadır. Sonuç olarak, bu modelleme aracı, aerodinamik ve mekanik parametreler arasındaki etkileşimi etkin bir şekilde görselleştirmekte, tasarım doğrulama süreçlerini ivmelendirmekte ve eğitim amaçlı analizler için erişilebilirliği yüksek,dinamik bir platform sağlamaktadır. Bu sayede, hava aracı kontrol yüzeylerinin tasarım aşamasında hızlı ve interaktif bir değerlendirme imkânı sunularak mühendislik süreçlerine önemli bir katkı sağlanmıştır.

Destekleyen Kurum

Necmettin Erbakan Üniversitesi

Teşekkür

Bu çalışmada kullanılan yazılım ve bilimsel kaynaklara erişim, Necmettin Erbakan Üniversitesi tarafından sağlanan Microsoft Excel lisansı ve akademik veri tabanlarına erişim sayesinde mümkün olmuştur. Necmettin Erbakan Üniversitesi'ne altyapı ve kaynak desteği sağladığı için teşekkür ederiz.

Kaynakça

  • 1. Uicker, J. J., Uicker Jr, J. J., Pennock, G. R., & Shigley, J. E. (2023). Theory of machines and mechanisms. Cambridge University Press.
  • 2. Mishra, R. (2021). Mechanisms of flexible four-bar linkages: A brief review. Materials Today: Proceedings, 47, 5570-5574.
  • 3. Kim, J. W., Seo, T., & Kim, J. (2016). A new design methodology for four-bar linkage mechanisms based on derivations of coupler curve. Mechanism and Machine Theory, 100, 138-154.
  • 4. Alfaro, M. E., Bolnick, D. I., & Wainwright, P. C. (2004). Evolutionary dynamics of complex biomechanical systems: an example using the four‐bar mechanism. Evolution, 58(3), 495-503.
  • 5. Acharyya, S. K., & Mandal, M. (2009). Performance of EAs for four-bar linkage synthesis. Mechanism and Machine Theory, 44(9), 1784-1794.
  • 6. Parlaktaş, V., Tanık, E., & Tanık, Ç. M. (2019). On the design of a novel fully compliant spherical four-bar mechanism. Advances in Mechanical Engineering, 11(9), 1687814019879548.
  • 7. Şenol, M. G. (2016). Design and testing of a four-bar flapping wing mechanism (Master's thesis, Middle East Technical University (Turkey)).
  • 8. Şahin, H. L., & Yaman, Y. (2018). Design and analysis of a novel mechanism for the morphing of trailing edge of an aircraft wing.
  • 9. Tuna, T., Ovur, S. E., Gokbel, E., & Kumbasar, T. (2020). Design and development of FOLLY: A self-foldable and self-deployable quadcopter. Aerospace Science and Technology, 100, 105807.
  • 10. Panagiotou, P., Kaparos, P., Salpingidou, C., & Yakinthos, K. (2016). Aerodynamic design of a MALE UAV. Aerospace Science and Technology, 50, 127-138.
  • 11. Antonio-Cruz, M., Silva-Ortigoza, R., Sandoval-Gutiérrez, J., Merlo-Zapata, C. A., Taud, H., Márquez-Sánchez, C., & Hernández-Guzmán, V. M. (2015, February). Modeling, simulation, and construction of a furuta pendulum test-bed. In 2015 International Conference on Electronics, Communications and Computers (CONIELECOMP) (pp. 72-79). IEEE.
  • 12. Söylemez, E. (2023). Kinematic Synthesis of Mechanisms: Using Excel® and Geogebra (Vol. 131). Springer Nature.
  • 13. Akay, O. E. (2021). Obtaining the parametric position equations of a four-bar mechanism using the parametric position equations of the planar manipulator with 3 revolute joints (3rm). Konya Journal of Engineering Sciences, 9(1), 8-16.
  • 14. Soriano-Heras, E., Pérez-Carrera, C., & Rubio, H. (2024). Mathematical Dimensional Synthesis of Four-Bar Linkages Based on Cognate Mechanisms. Mathematics, 13(1), 11.
  • 15. Lachaume, C. (2021). Primary flight control design for a 4-seat electric aircraft.
  • 16. Herdiana, D., Pinindriya, S., & Triwulandari, R. (2014). Investigation of Aileron Hinge Moment of National Transport Aircraft Basic to Numeric Method. In Proceedings International Seminar of Aerospace Science and Technology, 2015 (pp. 45-51). LAPAN.
  • 17. Simpson, C. D. (2016). Control surface hinge moment prediction using computational fluid dynamics. The University of Alabama.
  • 18. Battelle Memorial Institute. (2019). Metallic Materials Properties Development and Standardization (MMPDS-14), Chapters 1–9. U.S. Department of Transportation, Federal Aviation Administration (pp. 1–9). Washington, D.C.: Battelle Memorial Institute
  • 19. U.S. Department of Transportation Federal Aviation Administration. (2023). Flight Controls. U.S. Department of Transportation Federal Aviation Administration (Ed.), Pilot’s Handbook of Aeronautical Knowledge. Washington, D.C.: U.S. Government Publishing Office.
  • 20. Ikhana, the NASA Predator-B Unmanned Aircraft. (2010, 07 January) access link: https://www.nasa.gov/image-article/ikhana-nasa-predator-b-unmanned-aircraft/
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Modelleme ve Mekanik Karakterizasyon, Havacılık Yapıları, Uçak Performansı ve Uçuş Kontrol Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Osman Oturakçı 0009-0001-1314-0606

Ataberk Gezgin 0009-0009-7050-6481

Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 6 Kasım 2025
Erken Görünüm Tarihi 1 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Oturakçı, O., & Gezgin, A. (2025). Modeling an Aileron using Four-Bar Linkage Method in Excel. Journal of Aerospace Science and Management, 3(2), 95-117.

ERÜ Havacılık ve Uzay Çalışmaları Uygulama ve Araştırma Merkezi Dergisi 2021 | jasam@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez (CC BY-NC-ND) 4.0 Uluslararası Lisansı ile lisanslanmıştır. by-nc-nd.png