Derleme
BibTex RIS Kaynak Göster

Emniyet, Verimlilik ve Performans: Havacılıkta İnsan-Bilgisayar Etkileşiminin Gücü

Yıl 2024, Cilt: 2 Sayı: 1, 81 - 95, 01.06.2024

Öz

İnsan-Makine Etkileşimi, havacılık endüstrisinde, insanlar ile bilgisayar sistemleri arasındaki işbirliğinin güvenlik, verimlilik ve optimal performans için hayati öneme sahip kritik bir unsurdur. Bu makale, havacılıkta İnsan-Makine Etkileşimi'nin önemini, güvenlik ve verimlilik üzerindeki etkisini, bu dinamik alandaki zorlukları ve ilerlemeleri keşfetmektedir. Havacılıkta İBE'nin manuel kontrollerden sofistike bilgisayar destekli ortamlara evrimi, insan yetenekleri ile teknolojik ilerlemeler arasında uyumlu bir denge sağlamanın önemini vurgulamaktadır. İBE'nin kokpit tasarımı, bilgi ekranları, ses tanıma sistemleri, Heads-Up Displays (HUD'lar), hava trafik yönetim sistemleri, eğitim simülatörleri, güvenlik artırma ve operasyonel verimlilik gibi çeşitli uygulamaları ele almaktadır. Yapay Zeka (YZ) ve Makine Öğrenimi (MÖ) nin İnsan-Makine Etkileşimi içindeki entegrasyonu, tahminsel analitiklerin, adaptif arayüzlerin ve kişiselleştirilmiş kullanıcı deneyimlerinin mümkün olmasını sağlayarak yeni ufuklar açmaktadır. İnsan-Makine Etkileşimi prensipleri, kullanıcı dostu arayüzlerin tasarlanmasında, karmaşık görevleri basitleştirmede, iletişimi artırmada ve işbirlikçi karar verme süreçlerini desteklemede önemli bir rol oynamaktadır. Makale, İBE'nin havacılık endüstrisinde güvenlik, eğitim etkinliği ve genel verimlilik üzerindeki katkılarını vurgulamaktadır.

Kaynakça

  • Abate, A. F., Guida, M., Leoncini, P., Nappi, M., & Ricciardi, S. (2009). A haptic-based approach to virtual training for aerospace industry. Journal of Visual Languages & Computing, 20(5), 318-325.
  • Alessi, S. M. (2017, May 15). Simulation Design for Training and Assessment. Routledge eBooks. https://doi.org/10.4324/9781315243092-5
  • Andriyanov, N., & Andriyanov, D. (2021, May 13). Intelligent Processing of Voice Messages in Civil Aviation: Message Recognition and the Emotional State of the Speaker Analysis. 2021 International Siberian Conference on Control and Communications (SIBCON). https://doi.org/10.1109/sibcon50419.2021.9438881
  • Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., & Babiloni, F. (2016). A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. Progress in brain research, 228, 295-328.
  • Bailey, R. E., Kramer, L. J., & Prinzel III, L. J. (2006, May). Crew and display concepts evaluation for synthetic/enhanced vision systems. In Enhanced and Synthetic Vision 2006 (Vol. 6226, pp. 154-171). SPIE.
  • Barbato, G. (1998). Integrating Voice Recognition and Automatic Target Cueing to Improve Aircrew-System Collaboration for Air-to-Ground Attack. In Proceedings of the NATO Research and Technology Organization System Concepts and Integration Symposium.
  • Barry, T. P., Liggett, K. K., & Williamson, D. T. (1997). Human-Electronic Crew Communication: Applications for Speech Recognition in the Cockpit. The Human-Electronic Crew: The Right Stıff?, 26, 123.
  • Billings, C. E. (2018). Aviation automation: The search for a human-centered approach. CRC Press.
  • Blundell, J., Scott, S., Harris, D., Huddlestone, J., & Richards, D. (2020). Workload benefits of colour coded head-up flight symbology during high workload flight. Displays, 65, 101973.
  • Bos, T. J. J., de Reus, A. J. C., Suijkerbuijk, H. C. H., Groeneweg, J., & Rouwhorst, W. F. J. A. (2018). Interactive head up display in the cockpit to reduce crew workload.
  • Boy, G. (1999). Human-computer interaction in aeronautics: a cognitive engineering perspective. Air & Space Europe, 1, 33-37. https://doi.org/10.1016/S1290-0958(99)80034-3.
  • Cao, K., Zhang, Y., Jiang, Y., Zeng, Y., Cui, B., & Dong, W. (2022, May 4). A Civil Aircraft Cockpit Layout Evaluation Method Based on Layout Design Principles. Aerospace, 9(5), 251. https://doi.org/10.3390/aerospace9050251
  • Carroll, M., & Dahlstrom, N. (2021). Human computer interaction on the modern flight deck. International Journal of Human–Computer Interaction, 37(7), 585-587.
  • Castillo, J. A. L. D., & Couture, N. (2016, September). The aircraft of the future: towards the tangible cockpit. In Proceedings of the International Conference on Human-Computer Interaction in Aerospace (pp. 1-8).
  • Chamberlain, R. M., Heers, S. T., Mejdal, S., Delnegro, R. A., & Beringer, D. B. (2013). Multi-Function Displays: A Guide for Human Factors Evaluation (No. DOT/FAA/AM-13/21). United States. Office of Aerospace Medicine.
  • Chaparro, A., Miranda, A., & Grubb, J. (2023). Aviation displays: Design for automation and new display formats. Human Factors in Aviation and Aerospace, 341-371.
  • Chumpitaz, D., Pereda, K., Espinoza, K., Villarreal, C., Perez, W., Moquillaza, A., Díaz, J., & Paz, F. (2019). Developing QR Authentication and Fingerprint Record in an ATM Interface Using User-Centered Design Techniques. , 420-430. https://doi.org/10.1007/978-3-030-23535-2_31.
  • Clamann, M., & Kaber, D. B. (2004). Applicability of usability evaluation techniques to aviation systems. The international journal of aviation psychology, 14(4), 395-420.
  • Collective, c., Karusala, N., Ch, N., Tosca, D., Ansah, A., Brulé, É., Fereydooni, N., Huang, L., Ismail, A., Jain, P., Khoo, Y., Muñoz, I., Schartmüller, C., Verma, H., Vyas, P., Boll, S., Fox, S., Raval, N., Wilson, M., Cox, A., Janssen, C., Mentis, H., Kumar, N., Shaer, O., & Kun, A. (2022). Human-Computer Interaction and the Future of Work. CHI Conference on Human Factors in Computing Systems Extended Abstracts. https://doi.org/10.1145/3491101.3516407.
  • Egan, D. E., & Goodson, J. E. (1978). Human factors engineering for head-up displays: A review of military specifications and recommendations for research.
  • Fadden, S., Ververs, P. M., & Wickens, C. D. (2001). Pathway HUDs: are they viable?. Human Factors, 43(2), 173-193.
  • Farelo, D. G., Bracaglia, L., Dailey, P., Tamrakar, S., Palladino, A., Carroll, M., & Valenti, A. (2022, June). An adaptive learning model for predicting and analyzing student performance on flight training tasks. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI (Vol. 12122, pp. 278-286). SPIE.
  • Ferris, T., Sarter, N., & Wickens, C. D. (2010). Cockpit automation: Still struggling to catch up…. In Human factors in aviation (pp. 479-503). Academic Press.
  • Fitzsimmons, F. S. (2002). The electronic flight bag: A multi-function tool for the modern cockpit (No. IITA Research Publication). Institute for Information Technology Applications.
  • Francis, G., & Reardon, M. J. (1997). Aircraft multifunction display and control systems: A new quantitative human factors design method for organizing functions and display contents. Fort Rucker, AL: US Army Aeromedical Research Laboratory.
  • Geacăr, C. M. (2010, September). Reducing pilot/ATC communication errors using voice recognition. In Proceedings of ICAS (Vol. 2010).
  • Hasan, M., & Yu, H. (2015). Innovative developments in HCI and future trends. International Journal of Automation and Computing, 14, 10-20. https://doi.org/10.1109/IConAC.2015.7313959.
  • Hecker, P., Doehler, H. U., & Suikat, R. (1999, July). Enhanced vision meets pilot assistance. In Enhanced and Synthetic Vision 1999 (Vol. 3691, pp. 125-136). SPIE.
  • Helmke, H., Ohneiser, O., Mühlhausen, T., & Wies, M. (2016, September). Reducing controller workload with automatic speech recognition. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) (pp. 1-10). IEEE.
  • Hoc, J. (2000). From human – machine interaction to human – machine cooperation. Ergonomics, 43, 833 - 843. https://doi.org/10.1080/001401300409044.
  • Hoc, J. M., & Lemoine, M. P. (1998). Cognitive evaluation of human-human and human-machine cooperation modes in air traffic control. The International Journal of Aviation Psychology, 8(1), 1-32.
  • Ingman, A. (2005). The Head Up Display Concept: A Summary with Special Attention to the Civil Aviation Industry.
  • Jiang, J., Karran, A. J., Coursaris, C. K., Léger, P. M., & Beringer, J. (2023). A situation awareness perspective on human-AI interaction: Tensions and opportunities. International Journal of Human–Computer Interaction, 39(9), 1789-1806.
  • Josh, S., Suresh, M., Biju, M. R., Sreelakshmi, V., & Thomas, R. (2022). Human machine interface in aviation. International journal of engineering technology and management sciences, 6(5), 416-420.
  • Kaminani, S. (2011, October). Human computer interaction issues with touch screen interfaces in the flight deck. In 2011 IEEE/AIAA 30th Digital Avionics Systems Conference (pp. 6B4-1). IEEE.
  • Landry, S. J. (2007). Human-computer interaction in aerospace. In The Human-Computer Interaction Handbook, 747-766. CRC Press.
  • Lathan, C. E., Tracey, M. R., Sebrechts, M. M., Clawson, D. M., & Higgins, G. A. (2002). Using virtual environments as training simulators: Measuring transfer. Handbook of virtual environments: Design, implementation, and applications, 403-414.
  • Lee, P. U. (2005, October). Understanding human-human collaboration to guide human-computer interaction design in air traffic control. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 1598-1603). IEEE.
  • Li, Q., Li, B., Wang, N., Li, W., Lyu, Z., Zhu, Y., & Liu, W. (2021). Human-machine interaction efficiency factors in flight simulator training towards Chinese pilots. In International Conference on Applied Human Factors and Ergonomics (pp. 26-32). Springer, Cham.
  • Li, X., Schlegel, T., Rotard, M., & Ertl, T. (2006). A Model-Based Graphical User-Interface for Process Control Systems in Manufacturing. , 89-94. https://doi.org/10.1016/B978-008045157-2/50022-5.
  • Liggett, K. K., & Calhoun, G. L. (2008). 5 Controls and Displays for Aviation Research Simulation. Human Factors in Simulation and Training, 75-113.
  • Lim, Y., Ramasamy, S., Gardi, A., Kistan, T., & Sabatini, R. (2018). Cognitive Human-Machine Interfaces and Interactions for Unmanned Aircraft. Journal of Intelligent & Robotic Systems, 91, 755-774. https://doi.org/10.1007/s10846-017-0648-9.
  • Mamessier, S., & Feigh, K. (2013). Simulating the Impact of Mental Models on Human Automation Interaction in Aviation. , 61-69. https://doi.org/10.1007/978-3-642-39173-6_8.
  • Marušić, Ž., Bartulović, D., Kezele, L., & Sumpor, D. (2018). General and ergonomic advantages of glass cockpit aircraft used for pilot training. In 7th International Ergonomics Conference ERGONOMICS 2018-Emphasis on Wellbeing (pp. 267-274).
  • Mercan, G., Godel, C., Gonzalez, P., Viry, B., Prats Menéndez, X., Rebaï, K., & Barret, C. (2020). SafeNcy-D1. 1: Technical Resources and Problem Definition.
  • Metzler, T. R., Boen, G. E., Williamson, J. E., Toms, M. L., & Cone, S. M. (1997). HCI Design Principles for Effective Cockpit Information Management. The Human-Electronic Crew: The Right Stuff?, 26, 5.
  • Montano, G. (2011). Dynamic reconfiguration of safety-critical systems: Automation and human involvement (Doctoral dissertation, University of York.
  • Naranji, E. (2015). Reducing human/pilot error in aviation using augmented cognition and automation systems in aircraft cockpit(Doctoral dissertation, The George Washington University).
  • Newman, R. L. (2017). Head-up displays: Designing the way ahead. Routledge.
  • Ohneiser, O., Jauer, M., Rein, J. R., & Wallace, M. (2018). Faster Command Input Using the Multimodal Controller Working Position “TriControl”. Aerospace, 5(2), 54.
  • Palanque, P., Cockburn, A., Désert-Legendre, L., Gutwin, C., & Deleris, Y. (2019). Brace touch: a dependable, turbulence-tolerant, multi-touch interaction technique for interactive cockpits. In Computer Safety, Reliability, and Security: 38th International Conference, SAFECOMP 2019, Turku, Finland, September 11–13, 2019, Proceedings 38 (pp. 53-68). Springer International Publishing.
  • Parnell, K. J., Banks, V. A., Wynne, R. A., Stanton, N. A., & Plant, K. L. (2023). Human Factors on the Flight Deck: A Practical Guide for Design, Modelling and Evaluation. CRC Press.
  • Prevot, T., Homola, J. R., Martin, L. H., Mercer, J. S., & Cabrall, C. D. (2012). Toward automated air traffic control—investigating a fundamental paradigm shift in human/systems interaction. International Journal of Human-Computer Interaction, 28(2), 77-98.
  • Pustejovsky, J., & Krishnaswamy, N. (2021, July). The role of embodiment and simulation in evaluating HCI: theory and framework. In International Conference on Human-Computer Interaction (pp. 288-303). Cham: Springer International Publishing.
  • Rebensky, S., Carroll, M., Bennett, W., & Hu, X. (2022). Impact of heads-up displays on small unmanned aircraft system operator situation awareness and performance: a simulated study. International Journal of Human–Computer Interaction, 38(5), 419-431.
  • Reisman, R., & Brown, D. (2006). Design of augmented reality tools for air traffic control towers. In 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO) (p. 7713).
  • Ren, J., Cui, Y., Chen, J., Qiao, Y., & Wang, L. (2020). Multi-modal human-computer interaction system in cockpit. In Journal of Physics: Conference Series (Vol. 1693, No. 1, p. 012212). IOP Publishing.
  • Rogalski, T., & Wielgat, R. (2010). A concept of voice guided general aviation aircraft. Aerospace Science and Technology, 14(5), 321-328.
  • Rozzi, S. (2016). The organisational precursors to human automation interaction issues in safety-critical domains: the case of an automated alarm system from the air traffic management domain (Doctoral dissertation, Middlesex University).
  • Sachs, F., Abdelmoula, F., & Vechtel, D. (2022). The Albatross Project–A European Initiative To Reduce Aviation’s Carbon Dioxide Emissions in Large Scale In 33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022.
  • Safi, M., Chung, J., & Pradhan, P. (2019). Review of augmented reality in aerospace industry. Aircraft engineering and aerospace technology, 91(9), 1187-1194.
  • Sampigethaya, K., & Poovendran, R. (2013). Aviation cyber–physical systems: Foundations for future aircraft and air transport. Proceedings of the IEEE, 101(8), 1834-1855.
  • Sarter, N. B., & Woods, D. D. (1992). Pilot interaction with cockpit automation: Operational experiences with the flight management system. The International Journal of Aviation Psychology, 2(4), 303-321.
  • Sheets, T. H., & Elmore, M. P. (2018). Abstract to action: targeted learning system theory applied to adaptive flight training. Air Command and Staff College.
  • Sikirda, Y., Shmelova, T., Kharchenko, V., & Kasatkin, M. (2021, March). Intelligent System for Supporting Collaborative Decision Making by the Pilot/Air Traffic Controller in Flight Emergencies. In IntelITSIS (pp. 127-141).
  • Socha, V., Socha, L., Hanakova, L., Valenta, V., Kusmirek, S., & Lalis, A. (2020). Pilots’ performance and workload assessment: Transition from analogue to glass-cockpit. Applied Sciences, 10(15), 5211-5228.
  • Stanton, N. A., Plant, K. L., Roberts, A. P., & Allison, C. K. (2019). Use of Highways in the Sky and a virtual pad for landing Head Up Display symbology to enable improved helicopter pilots situation awareness and workload in degraded visual conditions. Ergonomics, 62(2), 255-267.
  • Thomas, P., Biswas, P., & Langdon, P. (2015). State-of-the-art and future concepts for interaction in aircraft cockpits. In Universal Access in Human-Computer Interaction. Access to Interaction: 9th International Conference, UAHCI 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II 9 (pp. 538-549). Springer International Publishing.
  • Vere Michael Kiss, D. (n.d.). Human-Centered Design of the Enhanced Pilot Learning Interface for the Aviation Community. Scholarship Repository @ Florida Tech. https://repository.fit.edu/etd/762/
  • Wood, R. B., & Howells, P. J. (2017). Head-up display. Digital Avionics Handbook, 302-328.
  • Wright, S., & O'Hare, D. (2015). Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?. Applied Ergonomics, 47, 292-299.
  • Yang, S., & Qian, S. (2019). Understanding and predicting travel time with spatio-temporal features of network traffic flow, weather and incidents. IEEE Intelligent Transportation Systems Magazine, 11(3), 12-28.
  • Zhang, X., Sun, Y., & Zhang, Y. (2021). Ontology modelling of intelligent HCI in aircraft cockpit. Aircraft Engineering and Aerospace Technology, 93(5), 794-808.

Advancing Aviation Through Human-Computer Interaction: A Focus on Safety, Efficiency, and Performance

Yıl 2024, Cilt: 2 Sayı: 1, 81 - 95, 01.06.2024

Öz

Human-Computer Interaction (HCI) is a critical aspect of the aviation industry, where collaboration between humans and computer systems is paramount for safety, efficiency, and optimal performance. This article explores the significance of HCI in aviation, its impact on safety and efficiency, and the challenges and advancements within this dynamic field. The evolution of HCI in aviation is traced from manual controls to sophisticated computer-driven environments, emphasizing the importance of achieving a harmonious balance between human capabilities and technological advancements. Various applications of HCI in cockpit design, information displays, voice recognition systems, Heads-Up Displays (HUDs), air traffic management systems, training simulators, safety enhancement, and operational efficiency are discussed. The integration of Artificial Intelligence (AI) and Machine Learning (ML) in HCI opens new frontiers, enabling predictive analytics, adaptive interfaces, and personalized user experiences. HCI principles play a pivotal role in designing user-friendly interfaces, streamlining complex tasks, enhancing communication, and supporting collaborative decision-making. The article highlights HCI's contribution to safety, training effectiveness, and overall efficiency in the aviation industry.

Kaynakça

  • Abate, A. F., Guida, M., Leoncini, P., Nappi, M., & Ricciardi, S. (2009). A haptic-based approach to virtual training for aerospace industry. Journal of Visual Languages & Computing, 20(5), 318-325.
  • Alessi, S. M. (2017, May 15). Simulation Design for Training and Assessment. Routledge eBooks. https://doi.org/10.4324/9781315243092-5
  • Andriyanov, N., & Andriyanov, D. (2021, May 13). Intelligent Processing of Voice Messages in Civil Aviation: Message Recognition and the Emotional State of the Speaker Analysis. 2021 International Siberian Conference on Control and Communications (SIBCON). https://doi.org/10.1109/sibcon50419.2021.9438881
  • Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., & Babiloni, F. (2016). A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. Progress in brain research, 228, 295-328.
  • Bailey, R. E., Kramer, L. J., & Prinzel III, L. J. (2006, May). Crew and display concepts evaluation for synthetic/enhanced vision systems. In Enhanced and Synthetic Vision 2006 (Vol. 6226, pp. 154-171). SPIE.
  • Barbato, G. (1998). Integrating Voice Recognition and Automatic Target Cueing to Improve Aircrew-System Collaboration for Air-to-Ground Attack. In Proceedings of the NATO Research and Technology Organization System Concepts and Integration Symposium.
  • Barry, T. P., Liggett, K. K., & Williamson, D. T. (1997). Human-Electronic Crew Communication: Applications for Speech Recognition in the Cockpit. The Human-Electronic Crew: The Right Stıff?, 26, 123.
  • Billings, C. E. (2018). Aviation automation: The search for a human-centered approach. CRC Press.
  • Blundell, J., Scott, S., Harris, D., Huddlestone, J., & Richards, D. (2020). Workload benefits of colour coded head-up flight symbology during high workload flight. Displays, 65, 101973.
  • Bos, T. J. J., de Reus, A. J. C., Suijkerbuijk, H. C. H., Groeneweg, J., & Rouwhorst, W. F. J. A. (2018). Interactive head up display in the cockpit to reduce crew workload.
  • Boy, G. (1999). Human-computer interaction in aeronautics: a cognitive engineering perspective. Air & Space Europe, 1, 33-37. https://doi.org/10.1016/S1290-0958(99)80034-3.
  • Cao, K., Zhang, Y., Jiang, Y., Zeng, Y., Cui, B., & Dong, W. (2022, May 4). A Civil Aircraft Cockpit Layout Evaluation Method Based on Layout Design Principles. Aerospace, 9(5), 251. https://doi.org/10.3390/aerospace9050251
  • Carroll, M., & Dahlstrom, N. (2021). Human computer interaction on the modern flight deck. International Journal of Human–Computer Interaction, 37(7), 585-587.
  • Castillo, J. A. L. D., & Couture, N. (2016, September). The aircraft of the future: towards the tangible cockpit. In Proceedings of the International Conference on Human-Computer Interaction in Aerospace (pp. 1-8).
  • Chamberlain, R. M., Heers, S. T., Mejdal, S., Delnegro, R. A., & Beringer, D. B. (2013). Multi-Function Displays: A Guide for Human Factors Evaluation (No. DOT/FAA/AM-13/21). United States. Office of Aerospace Medicine.
  • Chaparro, A., Miranda, A., & Grubb, J. (2023). Aviation displays: Design for automation and new display formats. Human Factors in Aviation and Aerospace, 341-371.
  • Chumpitaz, D., Pereda, K., Espinoza, K., Villarreal, C., Perez, W., Moquillaza, A., Díaz, J., & Paz, F. (2019). Developing QR Authentication and Fingerprint Record in an ATM Interface Using User-Centered Design Techniques. , 420-430. https://doi.org/10.1007/978-3-030-23535-2_31.
  • Clamann, M., & Kaber, D. B. (2004). Applicability of usability evaluation techniques to aviation systems. The international journal of aviation psychology, 14(4), 395-420.
  • Collective, c., Karusala, N., Ch, N., Tosca, D., Ansah, A., Brulé, É., Fereydooni, N., Huang, L., Ismail, A., Jain, P., Khoo, Y., Muñoz, I., Schartmüller, C., Verma, H., Vyas, P., Boll, S., Fox, S., Raval, N., Wilson, M., Cox, A., Janssen, C., Mentis, H., Kumar, N., Shaer, O., & Kun, A. (2022). Human-Computer Interaction and the Future of Work. CHI Conference on Human Factors in Computing Systems Extended Abstracts. https://doi.org/10.1145/3491101.3516407.
  • Egan, D. E., & Goodson, J. E. (1978). Human factors engineering for head-up displays: A review of military specifications and recommendations for research.
  • Fadden, S., Ververs, P. M., & Wickens, C. D. (2001). Pathway HUDs: are they viable?. Human Factors, 43(2), 173-193.
  • Farelo, D. G., Bracaglia, L., Dailey, P., Tamrakar, S., Palladino, A., Carroll, M., & Valenti, A. (2022, June). An adaptive learning model for predicting and analyzing student performance on flight training tasks. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI (Vol. 12122, pp. 278-286). SPIE.
  • Ferris, T., Sarter, N., & Wickens, C. D. (2010). Cockpit automation: Still struggling to catch up…. In Human factors in aviation (pp. 479-503). Academic Press.
  • Fitzsimmons, F. S. (2002). The electronic flight bag: A multi-function tool for the modern cockpit (No. IITA Research Publication). Institute for Information Technology Applications.
  • Francis, G., & Reardon, M. J. (1997). Aircraft multifunction display and control systems: A new quantitative human factors design method for organizing functions and display contents. Fort Rucker, AL: US Army Aeromedical Research Laboratory.
  • Geacăr, C. M. (2010, September). Reducing pilot/ATC communication errors using voice recognition. In Proceedings of ICAS (Vol. 2010).
  • Hasan, M., & Yu, H. (2015). Innovative developments in HCI and future trends. International Journal of Automation and Computing, 14, 10-20. https://doi.org/10.1109/IConAC.2015.7313959.
  • Hecker, P., Doehler, H. U., & Suikat, R. (1999, July). Enhanced vision meets pilot assistance. In Enhanced and Synthetic Vision 1999 (Vol. 3691, pp. 125-136). SPIE.
  • Helmke, H., Ohneiser, O., Mühlhausen, T., & Wies, M. (2016, September). Reducing controller workload with automatic speech recognition. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) (pp. 1-10). IEEE.
  • Hoc, J. (2000). From human – machine interaction to human – machine cooperation. Ergonomics, 43, 833 - 843. https://doi.org/10.1080/001401300409044.
  • Hoc, J. M., & Lemoine, M. P. (1998). Cognitive evaluation of human-human and human-machine cooperation modes in air traffic control. The International Journal of Aviation Psychology, 8(1), 1-32.
  • Ingman, A. (2005). The Head Up Display Concept: A Summary with Special Attention to the Civil Aviation Industry.
  • Jiang, J., Karran, A. J., Coursaris, C. K., Léger, P. M., & Beringer, J. (2023). A situation awareness perspective on human-AI interaction: Tensions and opportunities. International Journal of Human–Computer Interaction, 39(9), 1789-1806.
  • Josh, S., Suresh, M., Biju, M. R., Sreelakshmi, V., & Thomas, R. (2022). Human machine interface in aviation. International journal of engineering technology and management sciences, 6(5), 416-420.
  • Kaminani, S. (2011, October). Human computer interaction issues with touch screen interfaces in the flight deck. In 2011 IEEE/AIAA 30th Digital Avionics Systems Conference (pp. 6B4-1). IEEE.
  • Landry, S. J. (2007). Human-computer interaction in aerospace. In The Human-Computer Interaction Handbook, 747-766. CRC Press.
  • Lathan, C. E., Tracey, M. R., Sebrechts, M. M., Clawson, D. M., & Higgins, G. A. (2002). Using virtual environments as training simulators: Measuring transfer. Handbook of virtual environments: Design, implementation, and applications, 403-414.
  • Lee, P. U. (2005, October). Understanding human-human collaboration to guide human-computer interaction design in air traffic control. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 1598-1603). IEEE.
  • Li, Q., Li, B., Wang, N., Li, W., Lyu, Z., Zhu, Y., & Liu, W. (2021). Human-machine interaction efficiency factors in flight simulator training towards Chinese pilots. In International Conference on Applied Human Factors and Ergonomics (pp. 26-32). Springer, Cham.
  • Li, X., Schlegel, T., Rotard, M., & Ertl, T. (2006). A Model-Based Graphical User-Interface for Process Control Systems in Manufacturing. , 89-94. https://doi.org/10.1016/B978-008045157-2/50022-5.
  • Liggett, K. K., & Calhoun, G. L. (2008). 5 Controls and Displays for Aviation Research Simulation. Human Factors in Simulation and Training, 75-113.
  • Lim, Y., Ramasamy, S., Gardi, A., Kistan, T., & Sabatini, R. (2018). Cognitive Human-Machine Interfaces and Interactions for Unmanned Aircraft. Journal of Intelligent & Robotic Systems, 91, 755-774. https://doi.org/10.1007/s10846-017-0648-9.
  • Mamessier, S., & Feigh, K. (2013). Simulating the Impact of Mental Models on Human Automation Interaction in Aviation. , 61-69. https://doi.org/10.1007/978-3-642-39173-6_8.
  • Marušić, Ž., Bartulović, D., Kezele, L., & Sumpor, D. (2018). General and ergonomic advantages of glass cockpit aircraft used for pilot training. In 7th International Ergonomics Conference ERGONOMICS 2018-Emphasis on Wellbeing (pp. 267-274).
  • Mercan, G., Godel, C., Gonzalez, P., Viry, B., Prats Menéndez, X., Rebaï, K., & Barret, C. (2020). SafeNcy-D1. 1: Technical Resources and Problem Definition.
  • Metzler, T. R., Boen, G. E., Williamson, J. E., Toms, M. L., & Cone, S. M. (1997). HCI Design Principles for Effective Cockpit Information Management. The Human-Electronic Crew: The Right Stuff?, 26, 5.
  • Montano, G. (2011). Dynamic reconfiguration of safety-critical systems: Automation and human involvement (Doctoral dissertation, University of York.
  • Naranji, E. (2015). Reducing human/pilot error in aviation using augmented cognition and automation systems in aircraft cockpit(Doctoral dissertation, The George Washington University).
  • Newman, R. L. (2017). Head-up displays: Designing the way ahead. Routledge.
  • Ohneiser, O., Jauer, M., Rein, J. R., & Wallace, M. (2018). Faster Command Input Using the Multimodal Controller Working Position “TriControl”. Aerospace, 5(2), 54.
  • Palanque, P., Cockburn, A., Désert-Legendre, L., Gutwin, C., & Deleris, Y. (2019). Brace touch: a dependable, turbulence-tolerant, multi-touch interaction technique for interactive cockpits. In Computer Safety, Reliability, and Security: 38th International Conference, SAFECOMP 2019, Turku, Finland, September 11–13, 2019, Proceedings 38 (pp. 53-68). Springer International Publishing.
  • Parnell, K. J., Banks, V. A., Wynne, R. A., Stanton, N. A., & Plant, K. L. (2023). Human Factors on the Flight Deck: A Practical Guide for Design, Modelling and Evaluation. CRC Press.
  • Prevot, T., Homola, J. R., Martin, L. H., Mercer, J. S., & Cabrall, C. D. (2012). Toward automated air traffic control—investigating a fundamental paradigm shift in human/systems interaction. International Journal of Human-Computer Interaction, 28(2), 77-98.
  • Pustejovsky, J., & Krishnaswamy, N. (2021, July). The role of embodiment and simulation in evaluating HCI: theory and framework. In International Conference on Human-Computer Interaction (pp. 288-303). Cham: Springer International Publishing.
  • Rebensky, S., Carroll, M., Bennett, W., & Hu, X. (2022). Impact of heads-up displays on small unmanned aircraft system operator situation awareness and performance: a simulated study. International Journal of Human–Computer Interaction, 38(5), 419-431.
  • Reisman, R., & Brown, D. (2006). Design of augmented reality tools for air traffic control towers. In 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO) (p. 7713).
  • Ren, J., Cui, Y., Chen, J., Qiao, Y., & Wang, L. (2020). Multi-modal human-computer interaction system in cockpit. In Journal of Physics: Conference Series (Vol. 1693, No. 1, p. 012212). IOP Publishing.
  • Rogalski, T., & Wielgat, R. (2010). A concept of voice guided general aviation aircraft. Aerospace Science and Technology, 14(5), 321-328.
  • Rozzi, S. (2016). The organisational precursors to human automation interaction issues in safety-critical domains: the case of an automated alarm system from the air traffic management domain (Doctoral dissertation, Middlesex University).
  • Sachs, F., Abdelmoula, F., & Vechtel, D. (2022). The Albatross Project–A European Initiative To Reduce Aviation’s Carbon Dioxide Emissions in Large Scale In 33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022.
  • Safi, M., Chung, J., & Pradhan, P. (2019). Review of augmented reality in aerospace industry. Aircraft engineering and aerospace technology, 91(9), 1187-1194.
  • Sampigethaya, K., & Poovendran, R. (2013). Aviation cyber–physical systems: Foundations for future aircraft and air transport. Proceedings of the IEEE, 101(8), 1834-1855.
  • Sarter, N. B., & Woods, D. D. (1992). Pilot interaction with cockpit automation: Operational experiences with the flight management system. The International Journal of Aviation Psychology, 2(4), 303-321.
  • Sheets, T. H., & Elmore, M. P. (2018). Abstract to action: targeted learning system theory applied to adaptive flight training. Air Command and Staff College.
  • Sikirda, Y., Shmelova, T., Kharchenko, V., & Kasatkin, M. (2021, March). Intelligent System for Supporting Collaborative Decision Making by the Pilot/Air Traffic Controller in Flight Emergencies. In IntelITSIS (pp. 127-141).
  • Socha, V., Socha, L., Hanakova, L., Valenta, V., Kusmirek, S., & Lalis, A. (2020). Pilots’ performance and workload assessment: Transition from analogue to glass-cockpit. Applied Sciences, 10(15), 5211-5228.
  • Stanton, N. A., Plant, K. L., Roberts, A. P., & Allison, C. K. (2019). Use of Highways in the Sky and a virtual pad for landing Head Up Display symbology to enable improved helicopter pilots situation awareness and workload in degraded visual conditions. Ergonomics, 62(2), 255-267.
  • Thomas, P., Biswas, P., & Langdon, P. (2015). State-of-the-art and future concepts for interaction in aircraft cockpits. In Universal Access in Human-Computer Interaction. Access to Interaction: 9th International Conference, UAHCI 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, Proceedings, Part II 9 (pp. 538-549). Springer International Publishing.
  • Vere Michael Kiss, D. (n.d.). Human-Centered Design of the Enhanced Pilot Learning Interface for the Aviation Community. Scholarship Repository @ Florida Tech. https://repository.fit.edu/etd/762/
  • Wood, R. B., & Howells, P. J. (2017). Head-up display. Digital Avionics Handbook, 302-328.
  • Wright, S., & O'Hare, D. (2015). Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?. Applied Ergonomics, 47, 292-299.
  • Yang, S., & Qian, S. (2019). Understanding and predicting travel time with spatio-temporal features of network traffic flow, weather and incidents. IEEE Intelligent Transportation Systems Magazine, 11(3), 12-28.
  • Zhang, X., Sun, Y., & Zhang, Y. (2021). Ontology modelling of intelligent HCI in aircraft cockpit. Aircraft Engineering and Aerospace Technology, 93(5), 794-808.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Havacılık Elektroniği
Bölüm Derlemeler
Yazarlar

Ezgi Yıldız 0000-0001-5140-0889

Erken Görünüm Tarihi 16 Nisan 2024
Yayımlanma Tarihi 1 Haziran 2024
Gönderilme Tarihi 26 Mart 2024
Kabul Tarihi 16 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 1

Kaynak Göster

APA Yıldız, E. (2024). Advancing Aviation Through Human-Computer Interaction: A Focus on Safety, Efficiency, and Performance. Journal of Aerospace Science and Management, 2(1), 81-95.

ERÜ Havacılık ve Uzay Çalışmaları Uygulama ve Araştırma Merkezi Dergisi 2021 | jasam@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-AynıLisanslaPaylaş (CC BY-NC-SA) 4.0 Uluslararası Lisansı ile lisanslanmıştır. by-nc-sa.png