Derleme
BibTex RIS Kaynak Göster

Genetik Belirteçler ve Hayvan Yetiştiriciliğinde Uygulamaları

Yıl 2024, Cilt: 7 Sayı: 2, 166 - 184, 29.12.2024
https://doi.org/10.51970/jasp.1524234

Öz

DNA dizilimlerinde genetik polimorfizmlerin keşfedilmesi, hayvanlarda gözlemlenen fenotipik varyasyonu açıklamak için yeni araçlar sunmuştur. Belirli lokuslarda allelik varyasyonun ortaya koyulması, bu çeşitliliğin anlaşılması amacıyla genetik belirteçler kullanılması yaygın hale gelmektedir. Bu da, çiftlik hayvanlarındaki genetik çeşitliliğin değerlendirilmesine, ebeveyn kontrolüne ve hastalık vektörlerinin belirlenmesinin yanında ekonomik öneme sahip özelliklerde rol oynayan önemli gen ve/veya genlerin tanımlanmasına (QTL ve MAS) olanak sağlamıştır. Bu çalışmada, son yıllarda hayvansal üretimde yaygın olarak kullanılan genetik belirteçlerin belirlenmesinde kullanılan yaygın yöntemlere (AFLP, RAPD, RFLP, SSCP, mikrosatellit işaretleyiciler, STR ve SNP) yer verilmiş ve uygulama alanları değerlendirilmiştir.

Kaynakça

  • Ajmone‐Marsan, P., Negrini, R., Milanesi, E., Bozzi, R., Nijman, I.J., Buntjer, J.B., Valentini, J., Lenstra, J.A., 2002. Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Animal Genetics. 33(4): 280-286.
  • Akyüz, B., Bayram, D., Gürbulak, K., 2011. Polimeraz zincir reaksiyonu (PZR) ile sığırlardaki freemartinismus sendromunun tanısı. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 17(3): 339-344.
  • Al-Samarai, F.R., Al-Kazaz, A.A., 2015. Molecular markers and its applications in animal breeding: A review. American Journal of Applied Scientific Research. 1(1): 1-5. doi: 10.11648/j.ajasr.20150101.11
  • Ashwell, M.S., JrC, R., Miller, R.H., VanRaden, P.M., Da, Y., 1997. Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. Animal Genetics. 28(3): 216-222.
  • Avanus K. 2007. Mikrosatellitler kullanılarak dna tipleme yöntemi ile köpeklerde ebeveyn tayini. Doktora Tezi. İstanbul Ünı̇versı̇tesı̇, Sağlık Bı̇lı̇mlerı̇ Enstı̇tüsü, 63 s.
  • Azari, M.A., Dehnavi, E., Yousefi, S., Shahmohamadi, L., 2012. Polymorphism of calpastatin, calpain and myostatin genes in native Dalagh sheep in Iran. Slovak Journal of Animal Science, 45(1): 1-6.
  • Bayraktar, M., 2020. Çiftlik hayvanlarında markör destekli seçim (MAS) uygulaması. International Eurasian Conference on Biotechnology and Biochemistry. Ankara, Turkey, 16-18 December 2020, pp. 193.
  • Beuzen, N.D., Stear, M.J., Chang, K.C., 2000. Molecular markers and their use in animal breeding. The Veterinary Journal. 160(1): 42-52.
  • Bhattacharya, T.K., Kumar, P., Joshi, J.D., Kumar, S., 2003. Estimation of inbreeding in cattle using RAPD markers. Journal of Dairy Research. 70(1): 127-129.
  • Bižienė, R., Miceikienė, I., Baltrėnaitė, L., Krasnopiorova, N., 2011. Association between growth hormone gene polymorphism and economic traits in pigs. Vet. Med. Zoot. 56(78): 56-78.
  • Bogani, D., Capomaccio, S., Cappelli, K., Sarti, F.M., 2001. Use of AFLP and SAMPL markers for the analysis of the genetic variability of three sheep groups belonging to the Appenninica, Massese and Suffolk breeds. XLV Convegno Annuale della Società Italiana di Genetica Agraria. Atti XLV Convegno Annuale della Società Italiana di Genetica Agraria. Italy, 26-29 September 2001.
  • Bovenhuis, H., Van Arendonk, J.A.M., Davis, G., Elsen, J.M., Haley, C.S., Hill, W.G., Baret, P.V., Hetzel, D.J.S., Nicholas, F.W., 1997. Detection and mapping of quantitative trait loci in farm animals. Livestock Production Science, 52(2):135-144.
  • Brym, P., Kamiñski, S., Rusc, A., 2004. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. Journal of Applied Genetics. 45(4): 445-452.
  • Buntjer, J.B., Otsen, M., Nijman, I.J., Kuiper, M.T.R., Lenstra, J.A., 2002. Phylogeny of bovine species based on AFLP fingerprinting. Heredity. 88(1): 46-51.
  • Cerit, H. and Avanus, K.. 2007. "Sex Determination by CHDW and CHDZ Genes of Avian Sex Chromosomes in Nymphicus hollandicus," Turkish Journal of Veterinary & Animal Sciences. 31: 6-1.
  • Chamberlain, A.J., Hayes, B.J., Savin, K., Bolormaa, S., McPartlan, H.C., Bowman, P.J., Van Der Jagt, C., MacEachern, S., Goddard, M.E., 2012. Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. Journal of Dairy Science. 95(2): 864-875.
  • Chaudhary, R. and Kumar, G.M. 2020. Restriction fragment length polymorphism. Encyclopedia of Animal Cognition and Behavior. 6(175): 1-3.
  • Chen, S., An, J., Lian, L., Qu, L., Zheng, J., Xu, G., Yang, N., 2013. Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-β genes are associated with myofiber characteristics in chickens. Poultry Science. 92(2): 325-330.
  • Cheng, H.H., Crittenden, L.B., 1994. Microsatellite markers for genetic mapping in the chicken. Poultry Science. 73(4): 539-546.
  • Chung, E.R., Shin, S.C., Shin, K.H., Chung, K.Y., 2008. SNP discovery in the leptin promoter gene and association with meat quality and carcass traits in Korean cattle. Asian-Australasian Journal of Animal Sciences. 21(12): 1689-1695.
  • Cole, J.B., Wiggans, G.R., Ma, L., Sonstegard, T.S., Lawlor, T.J., Crooker, B.A., Van Tassell, C.P., Yang, J., Wang, S., Matukumalli, L.K., Da, Y., 2011. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary US Holstein cows. BMC Genomics. 12(1): 1-17.
  • Crawford, A.M., Paterson, K.A., Dodds, K.G., Diez Tascon, C., Williamson, P.A., Roberts Thomson, M., Bisset, S.A., Beattie, A.E., Greer, G.J., Green, R.S., Wheeler, R., Shaw, R.J., Knowler, K., Mcewan, J.C., 2006. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics. 7:1-10.
  • Cushwa, W.T., Dodds, K.G., Crawford, A.M., Medrano, J.F., 1996. Identification and genetic mapping of random amplified polymorphic DNA (RAPD) markers to the sheep genome. Mammalian Genome.7: 580-585.
  • Dehnavi, E., Ahani, A.M., Hasani, S., Nassiry, M.R., Mohajer, M., Khan, A.A.R., 2012. Genetic variability of calpastatin and calpain genes in Iranian Zel sheep using PCR-RFLP and PCR-SSCP methods. Iranian Journal of Biotechnology. 10(2): 136-139.
  • Do, K.T., Lee, J.H., Lee, H.K., Kim, J., Park, K.D., 2014. Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse. Journal of Animal Science and Technology. 56(1): 1-6.
  • Drobik-Czwarno, W., Wolc, A., Fulton, J.E., Jankowski, T., Arango, J., O'sullivan, N.P., Dekkers, J.C.M., 2018. Genetic basis of resistance to avian influenza in different commercial varieties of layer chickens. Poultry Science. 97(10): 3421–3428.
  • Dumbovic, G., Forcales, S.V., Perucho, M., 2017. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics. 12(7): 515-526.
  • Ebegbulem, V.N., Ozung, P.O., 2013. Application of molecular markers in farm animal improvement: prospects and challenges. Online Journal of Animal and Feed Research. 3(3): 149-152.
  • Eker, S., Kolören, O., 2017. Yabancı otların moleküler teşhisinde ribozomal RNA (rRNA) internal transcribed spacer (ITS) gen bölgelerinin kullanımı. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 7(1): 11-21.
  • Elmacı, C., Öner, Y., Öziş, S., Tuncel, E., 2007. Türk koyun ırklarında DNA polimorfizminin RAPD analizi. Biyokimyasal Genetik. 45: 691-696.
  • Fabbri, M.C., Crovetti, A., Tinacci, L., Bertelloni, F., Armani, A., Mazzei, M., Fratini, F., Bozzi, R., Cecchi, F., 2022. Identification of candidate genes associated with bacterial and viral infections in wild boars hunted in Tuscany (Italy). Scientific Reports. 12(1): 8145.
  • Fan, S., Yuan, P., Li, S., Li, H., Bin, Z., Li, Y., Zhang, H., Gu, J., Li, H., Tian, Y., Kang, X., Zhang, Y., Li, G., 2023. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA. BMC Genomics. 24: 434 .
  • Fontanesi, L., Schiavo, G., Galimberti, G., Bovo, S., Russo, V., Gallo, M., Buttazzoni, L.. 2017. A genome-wide association study for a proxy of intermuscular fat level in the Italian large white breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Animal Genetics. 48(4): 459–465.
  • Gan, S.Q., Du, Z., Liu, S.R., Yang, Y.L., Shen, M., Wang, X.H., Yin, J.L., Hu, X.X., Fei, J., Fan, J.J., Wang, J.H., He, Q.H., Zhang, Y.S., Li, N., 2008. Association of SNP haplotypes at the myostatin gene with muscular hypertrophy in sheep. Asian-Australasian Journal of Animal Sciences. 21(7): 928-935.
  • Gerhards, K., Becker, S., Kuehling, J., Lechner, M., Bathke, J., Willems, H., Reiner, G., 2023 GWAS reveals genomic associations with swine inflammation and necrosis syndrome. Mamm Genome. 34(4): 586-601.
  • Glowatzki‐Mullis, M.L., Gaillard, C., Wigger, G., Fries, R., 1995. Microsatellite‐based parentage control in cattle. Animal Genetics. 26(1): 7-12.
  • Gottschalk, M., Metzger, J., Martinsson, G., Sieme, H., Distl, O., 2016. Genome-wide association study for semen quality traits in German warmblood stallions. Animal Reproduction Science: 171, 81–86.
  • Guichard, M., Dainat, B., Eynard, S., Vignal, A., Servin, B., 2021. Beestrong Consortium; Neuditschko M. Identification of quantitative trait loci associated with calmness and gentleness in honey bees using whole-genome sequences. Anim Genet. 52(4):472-481.
  • Guo, Y., Zhao, J., Xu, Q., Gao, S., Liu, M., Zhang, C., Shinckel, A.P., Zhou, B., 2022. Identification of functional single nucleotide polymorphisms in the porcine SLC6A4 gene associated with aggressive behavior in weaned pigs after mixing. Journal of Animal Science. 100(5): 1-14.
  • Gupta, P.K., Rustgi, S., Mir, R.R., 2008. Array-based high-throughput dna markers for crop improvement. Heredity. 101(1): 5-18.
  • Gutiérrez-Gil, B., El-Zarei, M.F., Alvarez, L., Bayón, Y., De La Fuente, L.F., San Primitivo, F., Arranz, J. J., 2009. Quantitative trait loci underlying milk production traits in sheep. Animal Genetics. 40(4): 423–434.
  • Gürses, M., Bayraktar, M., 2014. Moleküler markerlerin hayvan özellikleri ve genetiğinde kullanımı. Fırat Üniv Sağlık Bil Vet Derg. 28(2):99-106.
  • Haider, N., Nabulsi, I., Al-Safadi, B., 2012. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science. 90(2): 490-493.
  • Haley, C., Visscher, P., 1999. DNA markers and genetic testing in farm animal improvement: Current applications and future prospects. Annual Report. (98-99): 28-39.
  • Hassen, F., Bekele, E., Ayalew, W., Dessie, T., 2007. Genetic variability of five indigenous Ethiopian cattle breeds using RAPD markers. African Journal of Biotechnology. 6(19): 2274-2279.
  • Hayashi, K., Yandell, D.W., 1993. How sensitive is PCR‐SSCP?. Human Mutation. 2(5): 338-346.
  • Hayes, B., 2007. QTL mapping, MAS, and genomic selection. A short-course. Animal Breeding & Genetics Department of Animal Science. Iowa State University. 1(1): 3-4.
  • Hendrickson, S.L., 2013. A genome wide study of genetic adaptation to high altitude in feral andean horses of the Páramo. BMC Evolutionary Biology. 13: 273.
  • Höglund, J.K., Sahana, G., Brøndum, R.F., Guldbrandtsen, B., Buitenhuis, B., Lund, M.S., 2014. Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data. BMC Genomics. 15: 1-10.
  • Ihara, N., Takasuga, A., Mizoshita, K., Takeda, H., Sugimoto, M., Mizoguchi, Y., Hirano, T., Itoh, T., Watanabe, T., Reed, K.M., Snelling, W.M., Kappes, S.M., Beattie, C.W., Bennet, G.L., Sugimoto, Y., 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Research. 14(10a): 1987-1998.
  • Kaçamaklı, Z., Akşit, M., 2011. Mikrosatellit belirteçlerin kanatlılarda kullanım olanakları. VII. Ulusal Zootekni Öğrenci Kongresi. Aydın, 20-22 Mayıs 2011, s. 22-34.
  • Kalia, R.K., Rai, M.K., Kalia, S., Singh, R., Dhawan, A.K., 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 177(3): 309-334.
  • Karslı, T., Demir, E., Argun Karslı, B., Fidan, H.G., 2020. Comparing Autosomal SSR and PCR-RFLP Markers to Determine Phylogenetic Relationship Based on Genetic Distances in Livestock. Hayvansal Üretim. 61(2):135-141. https://doi.org/10.29185/hayuretim.709504
  • Kijas, J.W., Townley, D., Dalrymple, B.P., Heaton, M.P., Maddox, J.F., McGrath, Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Hutton Oddy, V., Nicholas, F.W., Raadsma, H., 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PloS One. 4(3): e4668.
  • Kim, S.W., Li, X.P., Lee, Y.M., Choi, Y.I., Cho, B.W., Choi, B.H., Kim, T.H, Kim, J.J., Kim, K.S., 2011. QTL scan for meat quality traits using high-density SNP chip analysis in cross between Korean native pig and Yorkshire. Asian-Australasian Journal of Animal Sciences. 24(9): 1184-1191.
  • Koyun, H., 2004. Developing of additional microsatellite markers on targeted regions containing ovulation rate QTL of bovine chromosome 7 (BTA7). PhD Thesis. Van-Yüzüncü Yıl University, Institute of Applied Natural Sciences.
  • Koyun, H., Okut, H., 2007. Gen belirteç lişkili seleksiyon (Marker-Assisted Selection) çalışmalarında son gelişmeler. V. Ulusal Zootekni Kongresi. Van, Türkiye, 05-08 September 2007.
  • Koyun, H., Kiraz, S., Karaca, S., Koncagül, S., Yılmaz, A., Karakuş, K., Yeşilova, A., Aygün, T., 2021. Single nucleotide polymorphisms of GDF9 gene/exon 2 region and their associations with milk yield andmilk content traits in 14 Karakaş and Norduz sheep breeds. Turkish Journal of Veterinary & Animal Sciences. 45(5): 881-889. https://doi.org/10.3906/vet-2010-26.
  • Lee, Y.H., Kwon, S.G., Park, D.H., Kwon, E.J., Cho, E.S., Bang, W.Y., Park, H.C., Park, B.Y., Choi, J.S., Kim, C.W., 2011. Development of high meat quality using microsatellite markers in Berkshire pigs. Journal of Animal Science and Technology. 53(2): 89-97.
  • Lipkin, E., Mosig, M.O., Darvasi, A., Ezra, E., Shalom, A., Friedmann, A., Soller, M., 1998. Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics. 149(3): 1557-1567.
  • Littiere, T.O., Castro, G.H.F., Rodriguez, M.D.P.R., Bonafé, C.M., Magalhães, A.F.B., Faleiros, R.R., Vieira, J.I.G., Santos, C.G., Verardo, L.L., 2020. Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel). 10;10(7):1173. doi: 10.3390/ani10071173.
  • Liu, B.H., 1998. Statistical genomics: Linkage, mapping, and QTL analysis. CRC Press LLC, Boca Raton New York. Machaty, Z., Paldi, A., Caski, T., Varga, Z., Kiss, İ., Barandi, Z., Vajta, G., 1993. Biopsy and sex determination by PCR of IVF bovine embryos J Reprod Fertil. 98: 467-470.
  • Machugh, D.E., Loftus, R.T., Bradley, D.G., Sharp, P.M., Cunningham, P., 1994. Microsatellite DNA variation within and among European cattle breeds. Proceedings of the Royal Society of London. Series B: Biological Sciences. 256(1345): 25-31.
  • Malau-Aduli, A.E.O., Bignell, C.W., Hegarty, R.S., Oddy, H., Johns, W., Tavassoli-Salardini, F., Smolenski, A.J., Malau-Aduli, B.S., Wells, B.B., Lane, P.A., Clark, R.J., 2006. RAPD marker variation in meat quality traits of Poll Dorset second-cross lambs selected for muscle or growth. 52nd International Congress of Meat Science and Technology, 13-18 Agust 2006, Dublin S.75-76.
  • Matika, O., Riggio, V., Anselme-Moizan, M., Law, A.S., Pong-Wong, R., Archibald, A.L., Bishop, S.C., 2016. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genetics Selection Evolution. 48: 1-15.
  • Mercan, L., Okumuş, A., 2004. Hayvancılıkta Genetik Çeşitlilik ve DAD-IS. 4. Ulusal Zootekni Bilim Kongresi. Isparta, 1-3 Eylül 2004. ss. 585-588.
  • Meredith, B.K., Kearney, F.J., Finlay, E.K., Bradley, D.G., Fahey, A.G., Berry, D.P., Lynn, D.J., 2012. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genetics. 13(1): 1-11.
  • Mitra, A., Yadav, B.R., Ganai, N.A., Balakrishnan, C.R., 1999. Molecular markers and their applications in livestock improvement. Current Science. 77(8): 1045-1053.
  • Moioli, B., Scatà, M.C., De Matteis, G., Annicchiarico, G., Catillo, G., Napolitano, F., 2013. The ACACA gene is a potential candidate gene for fat content in sheep milk. Animal Genetics. 44(5): 601-603.
  • Montgomery, G.W., Lord, E.A., Penty, J.M., Dodds, K.G., Broad, T.E., Cambridge, L., Sunden, S.L.F., Stone, R.T., Crawford, A.M., 1994. The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics. 22(1): 148-153.
  • Mustopa, A.Z., Puspitasari, I.F., Fatimah, F., Triratna, L., Kartina, G., 2018. Genetic diversity of mastitis cow’s milk bacteria based on RAPD-PCR. Biodiversitas Journal of Biological Diversity. 19(5): 1714-1721.
  • Negrini, R., Milanesi, E., Colli, L., Pellecchia, M., Nicoloso, L., Crepaldi, P., Lenstra, J.A., Ajmone‐Marsan, P., 2007. Breed assignment of Italian cattle using biallelic AFLP markers. Animal Genetics. 38(2): 147-153.
  • Nowacka, J., Switonski, M., Mackowski, M., Slota, E., Radko, A., Zabek, T., Urbaniak, K., 2004. The ambiguity of freemartinism diagnosis in cattle revealed by cytogenetic and molecular techniques. Czech Journal of Animal Science. 49(6): 239-243.
  • Oryan, A., Yazdi, H.S., Alidadi, S., Doostmohammadi, S., 2022. Use of a gyrB PCR-RFLP method to diagnose tuberculosis and identify the causative Mycobacterium sp. in cattle and humans. Comparative Immunology. Microbiology and Infectious Diseases. 82: 101767.
  • Othman, O.E., El-Fiky, S.A., Hassan, N.A., Mahfouz, E.R., Balabel, E.A., 2013. Genetic polymorphism detection of two α-Casein genes in three Egyptian sheep breeds. Journal of Genetic Engineering and Biotechnology. 11(2): 129-134.
  • Özşensoy, Y., Kurar, E., 2012. Markör sistemleri ve genetik karakterizasyon çalışmalarında kullanımları. J Cell Mol Biol. 10: 11-19.
  • Pandey, A.K., Sharma, R., Singh, Y., Prakash, B.B., Ahlawat, S.P.S., 2006. Genetic diversity studies of Kherigarh cattle based on microsatellite markers. Journal of Genetics. 85: 117-122.
  • Passarge, E., 2000. Genetik atlası, (Çev: G. Lüleci, M. Sakızlı, Ö. Alper). İstanbul: Nobel Tıp Kitabevleri.
  • Petersen, J.L., Mickelson, J.R., Cothran, E.G., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., Brama, P., Machado, A.C., Distl, O., Felicetti, M., Fox-Clipsham, L., Graves, K.T., Guérin, G., Haase, B., Hasegawa, T., Hemmann, K., Tepesi, E.W., Leeb, T., Lindgren, G., Lohi, H., Lopes, M.S., McGivney, B.A., Mikko, S., Orr, N., Penedo, M.C.T., Piercy, R.J., Raekallio, M., Rieder, S., Røed, K.H., Silvestrelli, M., Swinburne, H., Tozaki, T., Vaudin, M., Wade, C.M., McCue, M.E., 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PloS One. 8(1): e54997.
  • Peura, T., Hyttinen, J.M., Turunen, M., Jänne, J., 1991. Areliable sex determination assay for bovine preimplantation embryos using the polymerase chain reaction. Theriogenology. 35: 547-555.
  • Pierzchała, M., Blicharski, T., Kurył, J., 2004. Growth rate and carcass quality in relation to GH/MspI and GH/HaeII PCR-RFLP polymorphism in pigs. Anim. Sci. Pap. Rep. 22(1): 57-64.
  • Prajapati, B.M., Gupta, J.P., Pandey, D.P., Parmar, G.A., Chaudhari, J.D., 2017. Molecular markers for resistance against infectious diseases of economic importance. Veterinary World. 10(1): 112.
  • Qureshi, M.I., Sabir, J.S.M., Mutawakil, M.H.Z., El Hanafy, A.A., Ashmaoui, H.E., Ramadan, H., Anvar, Y., Sadek, M.A., Abou-Alsoud, M., Saini, K.S., Ahmed, M.M., 2014. Review of modern strategies to enhance livestock genetic performance: From molecular markers to next-generation sequencing technologies in goats. Journal of Food, Agriculture & Environment. 12(2): 752-761.
  • Ramos, Z., Garrick, D.J., Blair, H.T., Vera, B., Ciappesoni, G., Kenyon, P.R., 2023. Genomic regions associated with wool, growth and reproduction traits in Uruguayan merino sheep. Genes.14(1): 167.
  • Reshma, R.S., Das, D.N., 2021. Molecular markers and its application in animal breeding, Editor(s): Sukanta Mondal, Ram Lakhan Singh, Advances in Animal Genomics, Academic Press. Pages 123-140.
  • Rincón, G., D’angelo, M., Gagliardi, R., Kelly, L., Llambí, S., Postiglioni, A., 2000. Genomic polymorphism in Uruguayan Creole cattle using RAPD and microsatellite markers. Research in Veterinary Science. 69(2): 171-174.
  • Romé, H., Varenne, A., Hérault, F., Chapuis, H., Alleno, C., Dehais, P., Vignal, A., Burlot, T., Le Roy, P., 2015. GWAS analyses reveal QTL in egg layers that differ in response to diet differences. Genetics Selection Evolution. 47(1): 1-11.
  • Ropka‐Molik, K., Żukowski, K., Eckert, R., Gurgul, A., Piórkowska, K., Oczkowicz, M., 2014. Comprehensive analysis of the whole transcriptomes from two different pig breeds using rna‐seq method. Animal Genetics. 45(5): 674-684. https://doi.org/10.1111/age.12184.
  • Saatchi, M., Schnabel, R.D., Taylor, J.F., Garrick, D.J., 2014. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 15(1): 1-17.
  • Sahito, J.H., Zhang, H. Gishkori, Z.G.N., Ma, C., Wang, Z., Ding, D., Zhang, X., Tang, J., 2024. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int. J. Mol. Sci. 25, 1918. https://doi.org/10.3390/ijms25031918.
  • Sanchez, M.P., Tribout, T., Kadri, N.K., Chitneedi, P.K., Maak, C.H., Hoze, C., Boussaha, M., Croiseau, P., Philippe, R., Spengeler, M., Kühn, C., Wang, Y., Li, C., Plastow, G., Pausch, H., Boichard, D., 2023. Sequence-based GWAS meta-analyses for beef production traits. Genet Sel Evol. 55: 70. https://doi.org/10.1186/s12711-023-00848-5.
  • Sedighe, M.I.R., Dabirzadeh, M., Rokni, M.B., Aryaeipour, M., Shahraki, M.K., Azizi, H., 2019. Identification and Phylogenetic Classification of Fasciola species Isolated from Sheep and Cattle by PCR-RFLP in Zabol, in Sistan and Baluchistan Province, Southeast Iran. Iranian Journal of Public Health. 48(5): 934.
  • Sen, S., Shukla, R., Ranjan, R., Parmar, S.N.S., 2015. Analysis of genetic polymorphism of IL8R receptor gene a marker associated with bovine mastitis among crossbred cattle. Indian Journal of Animal Research. 49(3): 292-294.
  • Sharma, A., Lee, J.S., Dang, C.G., Sudrajad, P., Kim, H.C., Yeon, S.H., Kang, H.S., Lee, S.H., 2015. Stories and challenges of genome wide association studies in livestock-a review. Asian-Australasian Journal of Animal Sciences. 28(10): 1371.
  • Shin, S.C., Chung, E.R., 2006. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian-Australasian Journal of Animal Sciences. 20(2): 172-177.
  • Shiue, Y.L., Bickel, L.A., Caetano, A.R., Millon, L.V., Clark, R.S., Eggleston, M.L., Michelmore, R., Bailey, E., Guerin, G., Godard, S., Mickelson, J.R., Valberg, S.J., Murray, J.D., Bowling, A.T., 1999. A synteny map of the horse genome comprised of 240 microsatellite and RAPD markers. Animal Genetics. 30(1): 1-10.
  • Silvestrelli, M., Pieramati, C., Verini Supplizi, A., 1999. Breeding of saddle horse. From tradition to biotechnologies.(Selection against genetic diseases). Annali dell'Accademia di Agricoltura di Torino. s.305-320.
  • Smigielski, E.M., Sirotkin, K., Ward, M., Sherry, S.T., 2000. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Research. 28(1): 352-355. https://doi.org/10.1093/nar/28.1.352.
  • Staiger, E.A., Al Abri, M.A., Pflug, K.M., Kalla, S.E., Ainsworth, D.M., Miller, D., Raudsepp, T., Sutter, N.B., Brooks, S.A., 2016. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiological Genomics. 48(5): 325-335.
  • Stothard, P., Choi, J.W., Basu, U., Sumner-Thomson, J.M., Meng, Y., Liao, X., Moore, S.S., 2011. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics. 12: 1-14.
  • Sun, Y., Liu, R., Zhao, G., Zheng, M., Li, P., Liu, L., Wen, J., 2018. Genome-wide linkage analysis identifies loci for testicle and ovary traits in chickens. Animal Biotechnology. 29(4): 309-315.
  • Teneva, A., 2009. Molecular markers in animal genome analysis. Biotechnology in Animal Husbandry. 25(5-6-2): 1267-1284.
  • Thibier, M., Nibart, M., 1995. The sexing of bovine embryos in the field. Theriogenology. 43: 71-80.
  • Uimari, P., Sironen, A., Sevón-Aimonen, M.L., 2011. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics Selection Evolution. 43: 1-8.
  • Vaiman, D., 1999. The molecular genetics of cattle. In: The genetics of cattle (Eds: R.Fries and A. Ruvinski), CAB International. s.123-161.
  • Vajed Ebrahimi, M.T., Mohammadabadi, M., Esmailizadeh, A., 2017. Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Archives Animal Breeding. 60(3): 183-189.
  • Velie, B.D,, Fegraeus, K.J., Solé, M., Rosengren, M.K., Røed, K.H., Ihler, C.F., Strand, E., Lindgren, G., 2018. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genetics. 19(1): 1-13.
  • Verini Supplizi, A., Cappelli, K., Silvestrelli, M., 2003. Analysis of gene expression in endurance horses using cDNA-AFLP. 54th Annual Meeting of the European Association for Animal Production, 31 August - 3 September 2003, Rome, Wageningen, pp. 389-389.
  • Vidal-Puig, A., Moller, D.E., 1994. Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. Biotechniques. 17(3): 490-492.
  • Visscher, P.M., Thompson, R., Haley, C.S., 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics. 143: 1013-1020.
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V.D., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M., Zabeau, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. 23(21): 4407-4414.
  • Wang, Y., Ding, X., Tan, Z., Xing, K., Yang, T., Pan, Y., Wang, Y., Mi, S., Güneş, D., Wang, C., 2018. Genome‐wide association study for reproductive traits in a Large White pig population. Animal Genetics. 49(2): 127-131.
  • Weber, J.L., May, P.E., 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 44: 388–396.
  • Womack, J.E., 1997. Mapping animal genomes. Advances in Veterinary Medicine. 40: 157-189.
  • Yadav, A.K., Tomar, S.S., Jha, A.K., Singh, J., 2017. Importance of molecular markers in livestock improvement: a review. International Journal of Agriculture Innovations and Research. 5(4): 614-622.
  • Yao, J., Aggrey, S.E., Zadworny, D., Hayes, J.F., Kühnlein, U., 1996. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics. 144(4): 1809-1816.
  • Zhang, C., Liu, B., Chen, H., Lan, X., Lei, C., Zhang, Z., Zhang, R., 2009. Associations of a Hinf I PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Animal Biotechnology. 20(2): 71-74.
  • Zhang, H., Wang, Z., Wang, S., Li, H., 2012. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology. 3(1): 1-10. https://doi.org/10.1186/2049-1891-3-26.
  • Zhang, L., Liu, J., Zhao, F., Ren, H., Xu, L., Lu, J., Zhang, X., Wei, C., Lu, G., Zheng, Y., Du, L., 2013. Genome-Wide Association Studies for Growth and Meat Production Traits in Sheep. PLoS ONE. 8(6): e66569. https://doi.org/10.1371/journal.pone.0066569.
  • Zhang, Q., Calus, M.P., Guldbrandtsen, B., Lund, M. S., Sahana, G., 2015. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics. 16(1): 1-11.

Genetic Markers and Their Applications in Animal Breeding

Yıl 2024, Cilt: 7 Sayı: 2, 166 - 184, 29.12.2024
https://doi.org/10.51970/jasp.1524234

Öz

The discovery of genetic polymorphisms in DNA sequences has opened up new possibilities for explaining phenotypic variation in animals. It is becoming increasingly common to uncover allelic variations at specific loci and to use genetic markers to understand these variations. This has made it possible to find disease-carrying animals and measure genetic diversity in animal breeding. It has also helped to find important genes and genes involved in economically important traits (QTL and MAS). In this study, common methods (AFLP, RAPD, RFLP, SSCP, microsatellite markers, STR and SNP) that have been used in recent years in the determination of genetic markers widely used in animal production were included and their areas of application were evaluated.

Kaynakça

  • Ajmone‐Marsan, P., Negrini, R., Milanesi, E., Bozzi, R., Nijman, I.J., Buntjer, J.B., Valentini, J., Lenstra, J.A., 2002. Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Animal Genetics. 33(4): 280-286.
  • Akyüz, B., Bayram, D., Gürbulak, K., 2011. Polimeraz zincir reaksiyonu (PZR) ile sığırlardaki freemartinismus sendromunun tanısı. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 17(3): 339-344.
  • Al-Samarai, F.R., Al-Kazaz, A.A., 2015. Molecular markers and its applications in animal breeding: A review. American Journal of Applied Scientific Research. 1(1): 1-5. doi: 10.11648/j.ajasr.20150101.11
  • Ashwell, M.S., JrC, R., Miller, R.H., VanRaden, P.M., Da, Y., 1997. Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. Animal Genetics. 28(3): 216-222.
  • Avanus K. 2007. Mikrosatellitler kullanılarak dna tipleme yöntemi ile köpeklerde ebeveyn tayini. Doktora Tezi. İstanbul Ünı̇versı̇tesı̇, Sağlık Bı̇lı̇mlerı̇ Enstı̇tüsü, 63 s.
  • Azari, M.A., Dehnavi, E., Yousefi, S., Shahmohamadi, L., 2012. Polymorphism of calpastatin, calpain and myostatin genes in native Dalagh sheep in Iran. Slovak Journal of Animal Science, 45(1): 1-6.
  • Bayraktar, M., 2020. Çiftlik hayvanlarında markör destekli seçim (MAS) uygulaması. International Eurasian Conference on Biotechnology and Biochemistry. Ankara, Turkey, 16-18 December 2020, pp. 193.
  • Beuzen, N.D., Stear, M.J., Chang, K.C., 2000. Molecular markers and their use in animal breeding. The Veterinary Journal. 160(1): 42-52.
  • Bhattacharya, T.K., Kumar, P., Joshi, J.D., Kumar, S., 2003. Estimation of inbreeding in cattle using RAPD markers. Journal of Dairy Research. 70(1): 127-129.
  • Bižienė, R., Miceikienė, I., Baltrėnaitė, L., Krasnopiorova, N., 2011. Association between growth hormone gene polymorphism and economic traits in pigs. Vet. Med. Zoot. 56(78): 56-78.
  • Bogani, D., Capomaccio, S., Cappelli, K., Sarti, F.M., 2001. Use of AFLP and SAMPL markers for the analysis of the genetic variability of three sheep groups belonging to the Appenninica, Massese and Suffolk breeds. XLV Convegno Annuale della Società Italiana di Genetica Agraria. Atti XLV Convegno Annuale della Società Italiana di Genetica Agraria. Italy, 26-29 September 2001.
  • Bovenhuis, H., Van Arendonk, J.A.M., Davis, G., Elsen, J.M., Haley, C.S., Hill, W.G., Baret, P.V., Hetzel, D.J.S., Nicholas, F.W., 1997. Detection and mapping of quantitative trait loci in farm animals. Livestock Production Science, 52(2):135-144.
  • Brym, P., Kamiñski, S., Rusc, A., 2004. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. Journal of Applied Genetics. 45(4): 445-452.
  • Buntjer, J.B., Otsen, M., Nijman, I.J., Kuiper, M.T.R., Lenstra, J.A., 2002. Phylogeny of bovine species based on AFLP fingerprinting. Heredity. 88(1): 46-51.
  • Cerit, H. and Avanus, K.. 2007. "Sex Determination by CHDW and CHDZ Genes of Avian Sex Chromosomes in Nymphicus hollandicus," Turkish Journal of Veterinary & Animal Sciences. 31: 6-1.
  • Chamberlain, A.J., Hayes, B.J., Savin, K., Bolormaa, S., McPartlan, H.C., Bowman, P.J., Van Der Jagt, C., MacEachern, S., Goddard, M.E., 2012. Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. Journal of Dairy Science. 95(2): 864-875.
  • Chaudhary, R. and Kumar, G.M. 2020. Restriction fragment length polymorphism. Encyclopedia of Animal Cognition and Behavior. 6(175): 1-3.
  • Chen, S., An, J., Lian, L., Qu, L., Zheng, J., Xu, G., Yang, N., 2013. Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-β genes are associated with myofiber characteristics in chickens. Poultry Science. 92(2): 325-330.
  • Cheng, H.H., Crittenden, L.B., 1994. Microsatellite markers for genetic mapping in the chicken. Poultry Science. 73(4): 539-546.
  • Chung, E.R., Shin, S.C., Shin, K.H., Chung, K.Y., 2008. SNP discovery in the leptin promoter gene and association with meat quality and carcass traits in Korean cattle. Asian-Australasian Journal of Animal Sciences. 21(12): 1689-1695.
  • Cole, J.B., Wiggans, G.R., Ma, L., Sonstegard, T.S., Lawlor, T.J., Crooker, B.A., Van Tassell, C.P., Yang, J., Wang, S., Matukumalli, L.K., Da, Y., 2011. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary US Holstein cows. BMC Genomics. 12(1): 1-17.
  • Crawford, A.M., Paterson, K.A., Dodds, K.G., Diez Tascon, C., Williamson, P.A., Roberts Thomson, M., Bisset, S.A., Beattie, A.E., Greer, G.J., Green, R.S., Wheeler, R., Shaw, R.J., Knowler, K., Mcewan, J.C., 2006. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics. 7:1-10.
  • Cushwa, W.T., Dodds, K.G., Crawford, A.M., Medrano, J.F., 1996. Identification and genetic mapping of random amplified polymorphic DNA (RAPD) markers to the sheep genome. Mammalian Genome.7: 580-585.
  • Dehnavi, E., Ahani, A.M., Hasani, S., Nassiry, M.R., Mohajer, M., Khan, A.A.R., 2012. Genetic variability of calpastatin and calpain genes in Iranian Zel sheep using PCR-RFLP and PCR-SSCP methods. Iranian Journal of Biotechnology. 10(2): 136-139.
  • Do, K.T., Lee, J.H., Lee, H.K., Kim, J., Park, K.D., 2014. Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse. Journal of Animal Science and Technology. 56(1): 1-6.
  • Drobik-Czwarno, W., Wolc, A., Fulton, J.E., Jankowski, T., Arango, J., O'sullivan, N.P., Dekkers, J.C.M., 2018. Genetic basis of resistance to avian influenza in different commercial varieties of layer chickens. Poultry Science. 97(10): 3421–3428.
  • Dumbovic, G., Forcales, S.V., Perucho, M., 2017. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics. 12(7): 515-526.
  • Ebegbulem, V.N., Ozung, P.O., 2013. Application of molecular markers in farm animal improvement: prospects and challenges. Online Journal of Animal and Feed Research. 3(3): 149-152.
  • Eker, S., Kolören, O., 2017. Yabancı otların moleküler teşhisinde ribozomal RNA (rRNA) internal transcribed spacer (ITS) gen bölgelerinin kullanımı. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 7(1): 11-21.
  • Elmacı, C., Öner, Y., Öziş, S., Tuncel, E., 2007. Türk koyun ırklarında DNA polimorfizminin RAPD analizi. Biyokimyasal Genetik. 45: 691-696.
  • Fabbri, M.C., Crovetti, A., Tinacci, L., Bertelloni, F., Armani, A., Mazzei, M., Fratini, F., Bozzi, R., Cecchi, F., 2022. Identification of candidate genes associated with bacterial and viral infections in wild boars hunted in Tuscany (Italy). Scientific Reports. 12(1): 8145.
  • Fan, S., Yuan, P., Li, S., Li, H., Bin, Z., Li, Y., Zhang, H., Gu, J., Li, H., Tian, Y., Kang, X., Zhang, Y., Li, G., 2023. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA. BMC Genomics. 24: 434 .
  • Fontanesi, L., Schiavo, G., Galimberti, G., Bovo, S., Russo, V., Gallo, M., Buttazzoni, L.. 2017. A genome-wide association study for a proxy of intermuscular fat level in the Italian large white breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Animal Genetics. 48(4): 459–465.
  • Gan, S.Q., Du, Z., Liu, S.R., Yang, Y.L., Shen, M., Wang, X.H., Yin, J.L., Hu, X.X., Fei, J., Fan, J.J., Wang, J.H., He, Q.H., Zhang, Y.S., Li, N., 2008. Association of SNP haplotypes at the myostatin gene with muscular hypertrophy in sheep. Asian-Australasian Journal of Animal Sciences. 21(7): 928-935.
  • Gerhards, K., Becker, S., Kuehling, J., Lechner, M., Bathke, J., Willems, H., Reiner, G., 2023 GWAS reveals genomic associations with swine inflammation and necrosis syndrome. Mamm Genome. 34(4): 586-601.
  • Glowatzki‐Mullis, M.L., Gaillard, C., Wigger, G., Fries, R., 1995. Microsatellite‐based parentage control in cattle. Animal Genetics. 26(1): 7-12.
  • Gottschalk, M., Metzger, J., Martinsson, G., Sieme, H., Distl, O., 2016. Genome-wide association study for semen quality traits in German warmblood stallions. Animal Reproduction Science: 171, 81–86.
  • Guichard, M., Dainat, B., Eynard, S., Vignal, A., Servin, B., 2021. Beestrong Consortium; Neuditschko M. Identification of quantitative trait loci associated with calmness and gentleness in honey bees using whole-genome sequences. Anim Genet. 52(4):472-481.
  • Guo, Y., Zhao, J., Xu, Q., Gao, S., Liu, M., Zhang, C., Shinckel, A.P., Zhou, B., 2022. Identification of functional single nucleotide polymorphisms in the porcine SLC6A4 gene associated with aggressive behavior in weaned pigs after mixing. Journal of Animal Science. 100(5): 1-14.
  • Gupta, P.K., Rustgi, S., Mir, R.R., 2008. Array-based high-throughput dna markers for crop improvement. Heredity. 101(1): 5-18.
  • Gutiérrez-Gil, B., El-Zarei, M.F., Alvarez, L., Bayón, Y., De La Fuente, L.F., San Primitivo, F., Arranz, J. J., 2009. Quantitative trait loci underlying milk production traits in sheep. Animal Genetics. 40(4): 423–434.
  • Gürses, M., Bayraktar, M., 2014. Moleküler markerlerin hayvan özellikleri ve genetiğinde kullanımı. Fırat Üniv Sağlık Bil Vet Derg. 28(2):99-106.
  • Haider, N., Nabulsi, I., Al-Safadi, B., 2012. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science. 90(2): 490-493.
  • Haley, C., Visscher, P., 1999. DNA markers and genetic testing in farm animal improvement: Current applications and future prospects. Annual Report. (98-99): 28-39.
  • Hassen, F., Bekele, E., Ayalew, W., Dessie, T., 2007. Genetic variability of five indigenous Ethiopian cattle breeds using RAPD markers. African Journal of Biotechnology. 6(19): 2274-2279.
  • Hayashi, K., Yandell, D.W., 1993. How sensitive is PCR‐SSCP?. Human Mutation. 2(5): 338-346.
  • Hayes, B., 2007. QTL mapping, MAS, and genomic selection. A short-course. Animal Breeding & Genetics Department of Animal Science. Iowa State University. 1(1): 3-4.
  • Hendrickson, S.L., 2013. A genome wide study of genetic adaptation to high altitude in feral andean horses of the Páramo. BMC Evolutionary Biology. 13: 273.
  • Höglund, J.K., Sahana, G., Brøndum, R.F., Guldbrandtsen, B., Buitenhuis, B., Lund, M.S., 2014. Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data. BMC Genomics. 15: 1-10.
  • Ihara, N., Takasuga, A., Mizoshita, K., Takeda, H., Sugimoto, M., Mizoguchi, Y., Hirano, T., Itoh, T., Watanabe, T., Reed, K.M., Snelling, W.M., Kappes, S.M., Beattie, C.W., Bennet, G.L., Sugimoto, Y., 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Research. 14(10a): 1987-1998.
  • Kaçamaklı, Z., Akşit, M., 2011. Mikrosatellit belirteçlerin kanatlılarda kullanım olanakları. VII. Ulusal Zootekni Öğrenci Kongresi. Aydın, 20-22 Mayıs 2011, s. 22-34.
  • Kalia, R.K., Rai, M.K., Kalia, S., Singh, R., Dhawan, A.K., 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 177(3): 309-334.
  • Karslı, T., Demir, E., Argun Karslı, B., Fidan, H.G., 2020. Comparing Autosomal SSR and PCR-RFLP Markers to Determine Phylogenetic Relationship Based on Genetic Distances in Livestock. Hayvansal Üretim. 61(2):135-141. https://doi.org/10.29185/hayuretim.709504
  • Kijas, J.W., Townley, D., Dalrymple, B.P., Heaton, M.P., Maddox, J.F., McGrath, Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Hutton Oddy, V., Nicholas, F.W., Raadsma, H., 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PloS One. 4(3): e4668.
  • Kim, S.W., Li, X.P., Lee, Y.M., Choi, Y.I., Cho, B.W., Choi, B.H., Kim, T.H, Kim, J.J., Kim, K.S., 2011. QTL scan for meat quality traits using high-density SNP chip analysis in cross between Korean native pig and Yorkshire. Asian-Australasian Journal of Animal Sciences. 24(9): 1184-1191.
  • Koyun, H., 2004. Developing of additional microsatellite markers on targeted regions containing ovulation rate QTL of bovine chromosome 7 (BTA7). PhD Thesis. Van-Yüzüncü Yıl University, Institute of Applied Natural Sciences.
  • Koyun, H., Okut, H., 2007. Gen belirteç lişkili seleksiyon (Marker-Assisted Selection) çalışmalarında son gelişmeler. V. Ulusal Zootekni Kongresi. Van, Türkiye, 05-08 September 2007.
  • Koyun, H., Kiraz, S., Karaca, S., Koncagül, S., Yılmaz, A., Karakuş, K., Yeşilova, A., Aygün, T., 2021. Single nucleotide polymorphisms of GDF9 gene/exon 2 region and their associations with milk yield andmilk content traits in 14 Karakaş and Norduz sheep breeds. Turkish Journal of Veterinary & Animal Sciences. 45(5): 881-889. https://doi.org/10.3906/vet-2010-26.
  • Lee, Y.H., Kwon, S.G., Park, D.H., Kwon, E.J., Cho, E.S., Bang, W.Y., Park, H.C., Park, B.Y., Choi, J.S., Kim, C.W., 2011. Development of high meat quality using microsatellite markers in Berkshire pigs. Journal of Animal Science and Technology. 53(2): 89-97.
  • Lipkin, E., Mosig, M.O., Darvasi, A., Ezra, E., Shalom, A., Friedmann, A., Soller, M., 1998. Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics. 149(3): 1557-1567.
  • Littiere, T.O., Castro, G.H.F., Rodriguez, M.D.P.R., Bonafé, C.M., Magalhães, A.F.B., Faleiros, R.R., Vieira, J.I.G., Santos, C.G., Verardo, L.L., 2020. Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel). 10;10(7):1173. doi: 10.3390/ani10071173.
  • Liu, B.H., 1998. Statistical genomics: Linkage, mapping, and QTL analysis. CRC Press LLC, Boca Raton New York. Machaty, Z., Paldi, A., Caski, T., Varga, Z., Kiss, İ., Barandi, Z., Vajta, G., 1993. Biopsy and sex determination by PCR of IVF bovine embryos J Reprod Fertil. 98: 467-470.
  • Machugh, D.E., Loftus, R.T., Bradley, D.G., Sharp, P.M., Cunningham, P., 1994. Microsatellite DNA variation within and among European cattle breeds. Proceedings of the Royal Society of London. Series B: Biological Sciences. 256(1345): 25-31.
  • Malau-Aduli, A.E.O., Bignell, C.W., Hegarty, R.S., Oddy, H., Johns, W., Tavassoli-Salardini, F., Smolenski, A.J., Malau-Aduli, B.S., Wells, B.B., Lane, P.A., Clark, R.J., 2006. RAPD marker variation in meat quality traits of Poll Dorset second-cross lambs selected for muscle or growth. 52nd International Congress of Meat Science and Technology, 13-18 Agust 2006, Dublin S.75-76.
  • Matika, O., Riggio, V., Anselme-Moizan, M., Law, A.S., Pong-Wong, R., Archibald, A.L., Bishop, S.C., 2016. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genetics Selection Evolution. 48: 1-15.
  • Mercan, L., Okumuş, A., 2004. Hayvancılıkta Genetik Çeşitlilik ve DAD-IS. 4. Ulusal Zootekni Bilim Kongresi. Isparta, 1-3 Eylül 2004. ss. 585-588.
  • Meredith, B.K., Kearney, F.J., Finlay, E.K., Bradley, D.G., Fahey, A.G., Berry, D.P., Lynn, D.J., 2012. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genetics. 13(1): 1-11.
  • Mitra, A., Yadav, B.R., Ganai, N.A., Balakrishnan, C.R., 1999. Molecular markers and their applications in livestock improvement. Current Science. 77(8): 1045-1053.
  • Moioli, B., Scatà, M.C., De Matteis, G., Annicchiarico, G., Catillo, G., Napolitano, F., 2013. The ACACA gene is a potential candidate gene for fat content in sheep milk. Animal Genetics. 44(5): 601-603.
  • Montgomery, G.W., Lord, E.A., Penty, J.M., Dodds, K.G., Broad, T.E., Cambridge, L., Sunden, S.L.F., Stone, R.T., Crawford, A.M., 1994. The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics. 22(1): 148-153.
  • Mustopa, A.Z., Puspitasari, I.F., Fatimah, F., Triratna, L., Kartina, G., 2018. Genetic diversity of mastitis cow’s milk bacteria based on RAPD-PCR. Biodiversitas Journal of Biological Diversity. 19(5): 1714-1721.
  • Negrini, R., Milanesi, E., Colli, L., Pellecchia, M., Nicoloso, L., Crepaldi, P., Lenstra, J.A., Ajmone‐Marsan, P., 2007. Breed assignment of Italian cattle using biallelic AFLP markers. Animal Genetics. 38(2): 147-153.
  • Nowacka, J., Switonski, M., Mackowski, M., Slota, E., Radko, A., Zabek, T., Urbaniak, K., 2004. The ambiguity of freemartinism diagnosis in cattle revealed by cytogenetic and molecular techniques. Czech Journal of Animal Science. 49(6): 239-243.
  • Oryan, A., Yazdi, H.S., Alidadi, S., Doostmohammadi, S., 2022. Use of a gyrB PCR-RFLP method to diagnose tuberculosis and identify the causative Mycobacterium sp. in cattle and humans. Comparative Immunology. Microbiology and Infectious Diseases. 82: 101767.
  • Othman, O.E., El-Fiky, S.A., Hassan, N.A., Mahfouz, E.R., Balabel, E.A., 2013. Genetic polymorphism detection of two α-Casein genes in three Egyptian sheep breeds. Journal of Genetic Engineering and Biotechnology. 11(2): 129-134.
  • Özşensoy, Y., Kurar, E., 2012. Markör sistemleri ve genetik karakterizasyon çalışmalarında kullanımları. J Cell Mol Biol. 10: 11-19.
  • Pandey, A.K., Sharma, R., Singh, Y., Prakash, B.B., Ahlawat, S.P.S., 2006. Genetic diversity studies of Kherigarh cattle based on microsatellite markers. Journal of Genetics. 85: 117-122.
  • Passarge, E., 2000. Genetik atlası, (Çev: G. Lüleci, M. Sakızlı, Ö. Alper). İstanbul: Nobel Tıp Kitabevleri.
  • Petersen, J.L., Mickelson, J.R., Cothran, E.G., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., Brama, P., Machado, A.C., Distl, O., Felicetti, M., Fox-Clipsham, L., Graves, K.T., Guérin, G., Haase, B., Hasegawa, T., Hemmann, K., Tepesi, E.W., Leeb, T., Lindgren, G., Lohi, H., Lopes, M.S., McGivney, B.A., Mikko, S., Orr, N., Penedo, M.C.T., Piercy, R.J., Raekallio, M., Rieder, S., Røed, K.H., Silvestrelli, M., Swinburne, H., Tozaki, T., Vaudin, M., Wade, C.M., McCue, M.E., 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PloS One. 8(1): e54997.
  • Peura, T., Hyttinen, J.M., Turunen, M., Jänne, J., 1991. Areliable sex determination assay for bovine preimplantation embryos using the polymerase chain reaction. Theriogenology. 35: 547-555.
  • Pierzchała, M., Blicharski, T., Kurył, J., 2004. Growth rate and carcass quality in relation to GH/MspI and GH/HaeII PCR-RFLP polymorphism in pigs. Anim. Sci. Pap. Rep. 22(1): 57-64.
  • Prajapati, B.M., Gupta, J.P., Pandey, D.P., Parmar, G.A., Chaudhari, J.D., 2017. Molecular markers for resistance against infectious diseases of economic importance. Veterinary World. 10(1): 112.
  • Qureshi, M.I., Sabir, J.S.M., Mutawakil, M.H.Z., El Hanafy, A.A., Ashmaoui, H.E., Ramadan, H., Anvar, Y., Sadek, M.A., Abou-Alsoud, M., Saini, K.S., Ahmed, M.M., 2014. Review of modern strategies to enhance livestock genetic performance: From molecular markers to next-generation sequencing technologies in goats. Journal of Food, Agriculture & Environment. 12(2): 752-761.
  • Ramos, Z., Garrick, D.J., Blair, H.T., Vera, B., Ciappesoni, G., Kenyon, P.R., 2023. Genomic regions associated with wool, growth and reproduction traits in Uruguayan merino sheep. Genes.14(1): 167.
  • Reshma, R.S., Das, D.N., 2021. Molecular markers and its application in animal breeding, Editor(s): Sukanta Mondal, Ram Lakhan Singh, Advances in Animal Genomics, Academic Press. Pages 123-140.
  • Rincón, G., D’angelo, M., Gagliardi, R., Kelly, L., Llambí, S., Postiglioni, A., 2000. Genomic polymorphism in Uruguayan Creole cattle using RAPD and microsatellite markers. Research in Veterinary Science. 69(2): 171-174.
  • Romé, H., Varenne, A., Hérault, F., Chapuis, H., Alleno, C., Dehais, P., Vignal, A., Burlot, T., Le Roy, P., 2015. GWAS analyses reveal QTL in egg layers that differ in response to diet differences. Genetics Selection Evolution. 47(1): 1-11.
  • Ropka‐Molik, K., Żukowski, K., Eckert, R., Gurgul, A., Piórkowska, K., Oczkowicz, M., 2014. Comprehensive analysis of the whole transcriptomes from two different pig breeds using rna‐seq method. Animal Genetics. 45(5): 674-684. https://doi.org/10.1111/age.12184.
  • Saatchi, M., Schnabel, R.D., Taylor, J.F., Garrick, D.J., 2014. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 15(1): 1-17.
  • Sahito, J.H., Zhang, H. Gishkori, Z.G.N., Ma, C., Wang, Z., Ding, D., Zhang, X., Tang, J., 2024. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int. J. Mol. Sci. 25, 1918. https://doi.org/10.3390/ijms25031918.
  • Sanchez, M.P., Tribout, T., Kadri, N.K., Chitneedi, P.K., Maak, C.H., Hoze, C., Boussaha, M., Croiseau, P., Philippe, R., Spengeler, M., Kühn, C., Wang, Y., Li, C., Plastow, G., Pausch, H., Boichard, D., 2023. Sequence-based GWAS meta-analyses for beef production traits. Genet Sel Evol. 55: 70. https://doi.org/10.1186/s12711-023-00848-5.
  • Sedighe, M.I.R., Dabirzadeh, M., Rokni, M.B., Aryaeipour, M., Shahraki, M.K., Azizi, H., 2019. Identification and Phylogenetic Classification of Fasciola species Isolated from Sheep and Cattle by PCR-RFLP in Zabol, in Sistan and Baluchistan Province, Southeast Iran. Iranian Journal of Public Health. 48(5): 934.
  • Sen, S., Shukla, R., Ranjan, R., Parmar, S.N.S., 2015. Analysis of genetic polymorphism of IL8R receptor gene a marker associated with bovine mastitis among crossbred cattle. Indian Journal of Animal Research. 49(3): 292-294.
  • Sharma, A., Lee, J.S., Dang, C.G., Sudrajad, P., Kim, H.C., Yeon, S.H., Kang, H.S., Lee, S.H., 2015. Stories and challenges of genome wide association studies in livestock-a review. Asian-Australasian Journal of Animal Sciences. 28(10): 1371.
  • Shin, S.C., Chung, E.R., 2006. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian-Australasian Journal of Animal Sciences. 20(2): 172-177.
  • Shiue, Y.L., Bickel, L.A., Caetano, A.R., Millon, L.V., Clark, R.S., Eggleston, M.L., Michelmore, R., Bailey, E., Guerin, G., Godard, S., Mickelson, J.R., Valberg, S.J., Murray, J.D., Bowling, A.T., 1999. A synteny map of the horse genome comprised of 240 microsatellite and RAPD markers. Animal Genetics. 30(1): 1-10.
  • Silvestrelli, M., Pieramati, C., Verini Supplizi, A., 1999. Breeding of saddle horse. From tradition to biotechnologies.(Selection against genetic diseases). Annali dell'Accademia di Agricoltura di Torino. s.305-320.
  • Smigielski, E.M., Sirotkin, K., Ward, M., Sherry, S.T., 2000. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Research. 28(1): 352-355. https://doi.org/10.1093/nar/28.1.352.
  • Staiger, E.A., Al Abri, M.A., Pflug, K.M., Kalla, S.E., Ainsworth, D.M., Miller, D., Raudsepp, T., Sutter, N.B., Brooks, S.A., 2016. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiological Genomics. 48(5): 325-335.
  • Stothard, P., Choi, J.W., Basu, U., Sumner-Thomson, J.M., Meng, Y., Liao, X., Moore, S.S., 2011. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics. 12: 1-14.
  • Sun, Y., Liu, R., Zhao, G., Zheng, M., Li, P., Liu, L., Wen, J., 2018. Genome-wide linkage analysis identifies loci for testicle and ovary traits in chickens. Animal Biotechnology. 29(4): 309-315.
  • Teneva, A., 2009. Molecular markers in animal genome analysis. Biotechnology in Animal Husbandry. 25(5-6-2): 1267-1284.
  • Thibier, M., Nibart, M., 1995. The sexing of bovine embryos in the field. Theriogenology. 43: 71-80.
  • Uimari, P., Sironen, A., Sevón-Aimonen, M.L., 2011. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics Selection Evolution. 43: 1-8.
  • Vaiman, D., 1999. The molecular genetics of cattle. In: The genetics of cattle (Eds: R.Fries and A. Ruvinski), CAB International. s.123-161.
  • Vajed Ebrahimi, M.T., Mohammadabadi, M., Esmailizadeh, A., 2017. Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Archives Animal Breeding. 60(3): 183-189.
  • Velie, B.D,, Fegraeus, K.J., Solé, M., Rosengren, M.K., Røed, K.H., Ihler, C.F., Strand, E., Lindgren, G., 2018. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genetics. 19(1): 1-13.
  • Verini Supplizi, A., Cappelli, K., Silvestrelli, M., 2003. Analysis of gene expression in endurance horses using cDNA-AFLP. 54th Annual Meeting of the European Association for Animal Production, 31 August - 3 September 2003, Rome, Wageningen, pp. 389-389.
  • Vidal-Puig, A., Moller, D.E., 1994. Comparative sensitivity of alternative single-strand conformation polymorphism (SSCP) methods. Biotechniques. 17(3): 490-492.
  • Visscher, P.M., Thompson, R., Haley, C.S., 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics. 143: 1013-1020.
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V.D., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M., Zabeau, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. 23(21): 4407-4414.
  • Wang, Y., Ding, X., Tan, Z., Xing, K., Yang, T., Pan, Y., Wang, Y., Mi, S., Güneş, D., Wang, C., 2018. Genome‐wide association study for reproductive traits in a Large White pig population. Animal Genetics. 49(2): 127-131.
  • Weber, J.L., May, P.E., 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 44: 388–396.
  • Womack, J.E., 1997. Mapping animal genomes. Advances in Veterinary Medicine. 40: 157-189.
  • Yadav, A.K., Tomar, S.S., Jha, A.K., Singh, J., 2017. Importance of molecular markers in livestock improvement: a review. International Journal of Agriculture Innovations and Research. 5(4): 614-622.
  • Yao, J., Aggrey, S.E., Zadworny, D., Hayes, J.F., Kühnlein, U., 1996. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics. 144(4): 1809-1816.
  • Zhang, C., Liu, B., Chen, H., Lan, X., Lei, C., Zhang, Z., Zhang, R., 2009. Associations of a Hinf I PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Animal Biotechnology. 20(2): 71-74.
  • Zhang, H., Wang, Z., Wang, S., Li, H., 2012. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology. 3(1): 1-10. https://doi.org/10.1186/2049-1891-3-26.
  • Zhang, L., Liu, J., Zhao, F., Ren, H., Xu, L., Lu, J., Zhang, X., Wei, C., Lu, G., Zheng, Y., Du, L., 2013. Genome-Wide Association Studies for Growth and Meat Production Traits in Sheep. PLoS ONE. 8(6): e66569. https://doi.org/10.1371/journal.pone.0066569.
  • Zhang, Q., Calus, M.P., Guldbrandtsen, B., Lund, M. S., Sahana, G., 2015. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics. 16(1): 1-11.
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Derleme Makalesi
Yazarlar

Muhammed Furkan Üstün 0009-0008-4219-070X

Hasan Koyun 0000-0001-9424-6850

Erken Görünüm Tarihi 29 Aralık 2024
Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 29 Temmuz 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Üstün, M. F., & Koyun, H. (2024). Genetik Belirteçler ve Hayvan Yetiştiriciliğinde Uygulamaları. Hayvan Bilimi Ve Ürünleri Dergisi, 7(2), 166-184. https://doi.org/10.51970/jasp.1524234


Tarandığı indeksler:

Google Scholar        Directory of Research Journals Indexing        iealonline        19413        BASE (Bielefeld Academic Search Engine)        

Index Copernicus        Cite Factor        JournalTOCs

InfoBase Index        SIS Scientific Group        Food and Agriculture Organization of the United Nations

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır (The journal doesn’t have APC or any submission charges).
Uluslararası Hakemli Dergi ( International Peer Reviewed Journal)

Creative Commons Lisansı