Araştırma Makalesi
BibTex RIS Kaynak Göster

Bioinformatic Comparisons of Some Web-based PCR Primer Design Programs

Yıl 2024, Cilt: 7 Sayı: 2, 134 - 144, 29.12.2024
https://doi.org/10.51970/jasp.1596993

Öz

Bioinformatics has become an indispensable tool for both basic and applied research in biotechnology in the life sciences. The polymerase chain reaction (PCR) is a laboratory method that can be used to quickly amplify a large number of identical copies of a specific DNA segment. In PCR, short synthetic DNA fragments known as primers are used to selectively amplify a specific section of the genome. For PCR to be as efficient and specific as possible, it is important to choose an effective primer sequence and use the correct concentration of primers. If the primer is not designed carefully, non-specific amplification and/or primer dimer formation may occur, which may prevent product formation. Currently, a number of different design tools are available on the internet to assist molecular geneticists in designing PCR primers under optimal conditions. In this study, out of 39 web-based PCR primer design programs, 7 accessible, freely available and widely used web-based PCR primer design programs (NCBI, Primer3, Biserach, Genscript and Primer3plus; Stitcher 2.0; and PrimerQest Tool) were compared using bioinformatics applications for genomic sequences. The advantages and disadvantages of the web-based PCR programs are discussed on the basis of the comparison results.

Etik Beyan

No ethical documentation was required in this study. As this study is a bioinformatic research, no living being (human, animal, etc.) was used as material.

Kaynakça

  • Abd-Elsalam, K.A., 2003. Bioinformatic tools and guideline for PCR primer desing. African Journal of Biotechnology. 2(5):91-95.
  • Al-Samarai, F.R., Al-Kazaz, A.A., 2015. Applications of Molecular Markers in Animal Breeding: A review. American Journal of Applied Scientific Research, 1(1): 1-5.
  • Andrade, M.A., Sander, C., 1997. Bioinformatics: from genome data to biological knowledge. Current Opinion in Biotechnology. 8(6): 675-683.
  • Anonymous, (2024a). National Library of Medicine (NCBİ). https://www.ncbi.nlm.nih.gov. Access date: 10.05.2024.
  • Anonymous, (2024b). Primer3web. https://primer3.ut.ee. Access date:10.05.2024.
  • Anonymous, (2024c). Bisearch. http://bisearch.enzim.hu/?m=search. Access date: 10.05.2024.
  • Anonymous, (2024ç). Genscrpit. https://www.genscript.com/tools/real-time-pcr-taqman-primer-design-tool?src=pullmenu. Access date: 10.05.2024.
  • Anonymous, (2024d). Primer3Plus. https://www.primer3plus.com/index.html. Access date: 10.05.2024.
  • Anonymous, (2024e). Stitcher 2.0. http://www.ohalloranlab.net/STITCHER_2_0/index.html. Access date: 10.05.2024.
  • Anonymous, (2024f). PrimerQuest™ Tool. https://www.idtdna.com/pages/tools/primerquest. Access date: 10.05.2024.
  • Anonymous, (2024g). MFEprimer3.1. https://mfeprimer3.igenetech.com/spec. Access date:: 10.05.2024.
  • Anonymous, (2024ğ). dnaMATEv1.0. http://melolab.org/dnaMATE/. Access date:: 11.05.2024.
  • Anonymous. (2024h). TaxMan. https://www.ibi.vu.nl/programs/taxmanwww/. Access date: 11.05.2024.
  • Anonymous, (2024ı). Amuser1.0. https://services.healthtech.dtu.dk/services/AMUSER-1.0/. Access date: 11.05.2024.
  • Anonymous, (2024i). Protein to DNA reverse translation. http://www.biophp.org/minitools/protein_to_dna/demo.php. Access date: 11.05.2024.
  • Anonymous, (2024j). Primerize. https://primerize.stanford.edu/design_1d/. Access date: 11.05.2024.
  • Anonymous, (2024k). VIRsiRNApred. http://crdd.osdd.net/servers/virsirnapred/. Access date: 11.05.2024.
  • Anonymous, (2024l). pssRNAit. https://www.zhaolab.org/pssRNAit/. Access date: 11.05.2024.
  • Anonymous, (2024m). PCR Primer Design Tool. https://eurofinsgenomics.eu/en/ecom/tools/pcr-primer-design/. Access date: 11.05.2024.
  • Anonymous, (2024n). Primerx. http://www.bioinformatics.org/primerx/cgi-bin/DNA_1.cgi. Access date: 11.05.2024.
  • Anonymous, (2024o). OligoEvaluator. http://www.oligoevaluator.com/LoginServlet. Access date: 11.05.2024.
  • Anonymous, (2024ö). Desıgn pcr prımers. https://molbiol-tools.ca/PCR.htm. Access date: 11.05.2024.
  • Baxevanis, A.D., Bateman, A., 2015. The importance of biological databases in biological discovery. Current protocols in bioinformatics. 50(1): 1-1.
  • Benita, Y., Oosting, R.S., Lok, M.C., Wise, M.J., Humphery‐Smith, I., 2003. Regionalized GC content of template DNA as a predictor of PCR success. Nucleic acids research. 31(16): e99.
  • Collins, F.S., Morgan, M., Patrinos., 2003 A. The human genome project: lessons from large scale biology. Science. 300(5617): 286-290.
  • Desquesnes, M., Dávila, A.M., 2002. Applications of PCR-based tools for detection and identification of animal trypanosomes: a review and perspectives. Vet Parasitol. 109(3-4): 213-31.
  • Dieffenbach, C.W., Lowe, T.M., Dveksler, G.S., 1993. General concepts for PCR primer design. PCR methods appl. 3(3): S30-S37.
  • Fitzsimmons, C.J., Schmutz, S.M., Bergen, R.D., McKinnon, J.J., 1998. A potential association between the BM 1500 microsatellite and fat deposition in beef cattle. Mammalian Genome. 9: 432-434.
  • Kaunitz, J.D., 2015. The discovery of PCR: ProCuRement of divine power. Digestive diseases and sciences, 60(8): 2230-2231.
  • Leifers, S.C., Veerkamp, R.F., Te Pas, M.F.W., Chilliard, Y., Van der Lende, T. 2005. Genetics and Physiology of leptin in periparturient dairy cows. Domestic Animal Endocrinology 29: 227-238.
  • Obradovic, J., Jurisic, V., Tosic, N., Mrdjanovic, J., Perin, B., Pavlovic, S., Djordjevic, N., 2013. Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence. J Clin Lab Anal. 27(6):487-93.
  • Rose, E.A., 1991. Applications of the polymerase chain reaction to genome analysis. The FASEB journal, 5(1): 46-54.
  • Ruijter, J.M., Ramakers, C., Hoogaars, W.M., Karlen, Y., Bakker, O., van den Hoff, M.J., Moorman, A.F,. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37(6): e45.
  • Ryan, M.C., Zeeberg, B.R., Caplen, N.J., Cleland, J.A., Kahn, A.B., Liu, H., Weinstein, J.N., 2008. SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies. BMC bioinformatics, 9: 1-12.
  • Sahu, S., Supriya, P., Sharma, S., Shiv, A., Singh, D.B., 2024. Role of bioinformatics in genome analysis. In Integrative Omics (pp. 187-199). Academic Press.
  • Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M.W., Kubista, M., 2015. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomolecular detection and quantification. 3: 9-16.
  • Yang, S., Rothman, R.E., 2004. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet infectious diseases. 4(6): 337-348.
  • You, F.M., Huo, N., Gu, Y.Q., Luo, M.C., Ma, Y., Hane, D., lazo, G.R., Dvorak, j., Anderson, O. D., 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC bioinformatics. 9: 1-13.
  • Wylie, A.R.G., 2011. Leptin in farm animals: where are we and where can we go?. Animal. 5(2): 246-267.

Web Tabanlı Bazı PCR Primer Tasarım Programlarının Biyoinformatik Karşılaştırılması

Yıl 2024, Cilt: 7 Sayı: 2, 134 - 144, 29.12.2024
https://doi.org/10.51970/jasp.1596993

Öz

Biyoinformatik, yaşam bilimleri biyoteknolojisinde hem temel hem de uygulamalı araştırmalar için önemli bir araç haline gelmiştir. Polimeraz zincir reaksiyonu (PCR), DNA'nın belirli bir bölümünün çok sayıda özdeş kopyasını hızla çoğaltmak için kullanılan bir laboratuvar yöntemidir. PCR, genomun belirli bir bölümünü seçici olarak çoğaltmak için primer adı verilen kısa sentetik DNA parçalarını kullanır. PCR'nin mümkün olduğu kadar verimli ve spesifik olması için etkili bir primer dizisinin seçilmesi ve doğru primer konsantrasyonunun kullanılması önemlidir. Primer dikkatli bir şekilde tasarlanmadığı sürece spesifik olmayan amplifikasyon ve/veya primer dimer oluşumu meydana gelebilir ve bu durum hedeflenen PCR ürününün oluşumunu engelleyebilir. Günümüzde moleküler genetikçiler için optimum koşullarda PCR primerleri oluşturmasına yardımcı olacak çeşitli tasarım araçlarına internette kolaylıkla erişilebilir. Bu çalışmada erişilebilir, kullanıma açık ve yagın olarak kullanılan 39 adet web tabanlı PCR primer tasarım programlarından, 7 adet web tabanlı PCR primer tasarım programları (NCBI, Primer3, Biserach, Genscript, Primer3plus, Stitcher 2.0, PrimerQest Tool) biyoinformatik tabanlı genomik dizi uygulamaları ile karşılaştırılmıştır. Karşılaştırma sonuçlarına göre web tabanlı PCR programlarının kullanım üstünlükleri ile olumsuz yanları tartışılmıştır.

Kaynakça

  • Abd-Elsalam, K.A., 2003. Bioinformatic tools and guideline for PCR primer desing. African Journal of Biotechnology. 2(5):91-95.
  • Al-Samarai, F.R., Al-Kazaz, A.A., 2015. Applications of Molecular Markers in Animal Breeding: A review. American Journal of Applied Scientific Research, 1(1): 1-5.
  • Andrade, M.A., Sander, C., 1997. Bioinformatics: from genome data to biological knowledge. Current Opinion in Biotechnology. 8(6): 675-683.
  • Anonymous, (2024a). National Library of Medicine (NCBİ). https://www.ncbi.nlm.nih.gov. Access date: 10.05.2024.
  • Anonymous, (2024b). Primer3web. https://primer3.ut.ee. Access date:10.05.2024.
  • Anonymous, (2024c). Bisearch. http://bisearch.enzim.hu/?m=search. Access date: 10.05.2024.
  • Anonymous, (2024ç). Genscrpit. https://www.genscript.com/tools/real-time-pcr-taqman-primer-design-tool?src=pullmenu. Access date: 10.05.2024.
  • Anonymous, (2024d). Primer3Plus. https://www.primer3plus.com/index.html. Access date: 10.05.2024.
  • Anonymous, (2024e). Stitcher 2.0. http://www.ohalloranlab.net/STITCHER_2_0/index.html. Access date: 10.05.2024.
  • Anonymous, (2024f). PrimerQuest™ Tool. https://www.idtdna.com/pages/tools/primerquest. Access date: 10.05.2024.
  • Anonymous, (2024g). MFEprimer3.1. https://mfeprimer3.igenetech.com/spec. Access date:: 10.05.2024.
  • Anonymous, (2024ğ). dnaMATEv1.0. http://melolab.org/dnaMATE/. Access date:: 11.05.2024.
  • Anonymous. (2024h). TaxMan. https://www.ibi.vu.nl/programs/taxmanwww/. Access date: 11.05.2024.
  • Anonymous, (2024ı). Amuser1.0. https://services.healthtech.dtu.dk/services/AMUSER-1.0/. Access date: 11.05.2024.
  • Anonymous, (2024i). Protein to DNA reverse translation. http://www.biophp.org/minitools/protein_to_dna/demo.php. Access date: 11.05.2024.
  • Anonymous, (2024j). Primerize. https://primerize.stanford.edu/design_1d/. Access date: 11.05.2024.
  • Anonymous, (2024k). VIRsiRNApred. http://crdd.osdd.net/servers/virsirnapred/. Access date: 11.05.2024.
  • Anonymous, (2024l). pssRNAit. https://www.zhaolab.org/pssRNAit/. Access date: 11.05.2024.
  • Anonymous, (2024m). PCR Primer Design Tool. https://eurofinsgenomics.eu/en/ecom/tools/pcr-primer-design/. Access date: 11.05.2024.
  • Anonymous, (2024n). Primerx. http://www.bioinformatics.org/primerx/cgi-bin/DNA_1.cgi. Access date: 11.05.2024.
  • Anonymous, (2024o). OligoEvaluator. http://www.oligoevaluator.com/LoginServlet. Access date: 11.05.2024.
  • Anonymous, (2024ö). Desıgn pcr prımers. https://molbiol-tools.ca/PCR.htm. Access date: 11.05.2024.
  • Baxevanis, A.D., Bateman, A., 2015. The importance of biological databases in biological discovery. Current protocols in bioinformatics. 50(1): 1-1.
  • Benita, Y., Oosting, R.S., Lok, M.C., Wise, M.J., Humphery‐Smith, I., 2003. Regionalized GC content of template DNA as a predictor of PCR success. Nucleic acids research. 31(16): e99.
  • Collins, F.S., Morgan, M., Patrinos., 2003 A. The human genome project: lessons from large scale biology. Science. 300(5617): 286-290.
  • Desquesnes, M., Dávila, A.M., 2002. Applications of PCR-based tools for detection and identification of animal trypanosomes: a review and perspectives. Vet Parasitol. 109(3-4): 213-31.
  • Dieffenbach, C.W., Lowe, T.M., Dveksler, G.S., 1993. General concepts for PCR primer design. PCR methods appl. 3(3): S30-S37.
  • Fitzsimmons, C.J., Schmutz, S.M., Bergen, R.D., McKinnon, J.J., 1998. A potential association between the BM 1500 microsatellite and fat deposition in beef cattle. Mammalian Genome. 9: 432-434.
  • Kaunitz, J.D., 2015. The discovery of PCR: ProCuRement of divine power. Digestive diseases and sciences, 60(8): 2230-2231.
  • Leifers, S.C., Veerkamp, R.F., Te Pas, M.F.W., Chilliard, Y., Van der Lende, T. 2005. Genetics and Physiology of leptin in periparturient dairy cows. Domestic Animal Endocrinology 29: 227-238.
  • Obradovic, J., Jurisic, V., Tosic, N., Mrdjanovic, J., Perin, B., Pavlovic, S., Djordjevic, N., 2013. Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence. J Clin Lab Anal. 27(6):487-93.
  • Rose, E.A., 1991. Applications of the polymerase chain reaction to genome analysis. The FASEB journal, 5(1): 46-54.
  • Ruijter, J.M., Ramakers, C., Hoogaars, W.M., Karlen, Y., Bakker, O., van den Hoff, M.J., Moorman, A.F,. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37(6): e45.
  • Ryan, M.C., Zeeberg, B.R., Caplen, N.J., Cleland, J.A., Kahn, A.B., Liu, H., Weinstein, J.N., 2008. SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies. BMC bioinformatics, 9: 1-12.
  • Sahu, S., Supriya, P., Sharma, S., Shiv, A., Singh, D.B., 2024. Role of bioinformatics in genome analysis. In Integrative Omics (pp. 187-199). Academic Press.
  • Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M.W., Kubista, M., 2015. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomolecular detection and quantification. 3: 9-16.
  • Yang, S., Rothman, R.E., 2004. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet infectious diseases. 4(6): 337-348.
  • You, F.M., Huo, N., Gu, Y.Q., Luo, M.C., Ma, Y., Hane, D., lazo, G.R., Dvorak, j., Anderson, O. D., 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC bioinformatics. 9: 1-13.
  • Wylie, A.R.G., 2011. Leptin in farm animals: where are we and where can we go?. Animal. 5(2): 246-267.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hasan Koyun 0000-0001-9424-6850

Muhammed Furkan Üstün 0009-0008-4219-070X

Erken Görünüm Tarihi 29 Aralık 2024
Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Koyun, H., & Üstün, M. F. (2024). Bioinformatic Comparisons of Some Web-based PCR Primer Design Programs. Hayvan Bilimi Ve Ürünleri Dergisi, 7(2), 134-144. https://doi.org/10.51970/jasp.1596993


Tarandığı indeksler:

Google Scholar        Directory of Research Journals Indexing        iealonline        19413        BASE (Bielefeld Academic Search Engine)        

Index Copernicus        Cite Factor        JournalTOCs

InfoBase Index        SIS Scientific Group        Food and Agriculture Organization of the United Nations

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır (The journal doesn’t have APC or any submission charges).
Uluslararası Hakemli Dergi ( International Peer Reviewed Journal)

Creative Commons Lisansı