Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Uçak Komponentleri İçin Talep Tahmini Ve Stok Kontrolüne İlişkin Bir Uygulama

Yıl 2022, Cilt 3, Sayı 1, 1 - 40, 28.08.2022
https://doi.org/10.52995/jass.1122940

Öz

Günümüzde uçak bakım-onarım sektöründe kullanılan envanterin yönetimi önemli bir konudur. Yedek parça envanteri bir diğer deyişle component envanteri bu tip firmaların ana sermaye kaynağını oluşturmaktadır. Bu sebeple uçak bakımıyla uğraşan kuruluşların yedek parça stoğunu etkin bir şekilde yönetmesi önemli ve hassas bir konudur. Yedek parça envanterinin etkin ve rasyonel şekilde yönetilmesi şirketlere önemli maliyet avantajları sağlayacaktır. Firmalar bir yandan hizmet seviyelerini yükseltmeye çalışırken diğer yandan ise stok maliyetlerini minimum seviyelerde tutmayı hedeflerler. Yedek parça envanterinin efektif olarak yönetilebilmesi için öncelikle gelecekle ilgili talep tahmininin doğru yapılması gerekmektedir. Bunun için parça yapısına uygun teknikler kullanılmalıdır. Tahminden sonraki aşama ileride stoksuzlukla karşılaşmamak için yeterli güven seviyesinde elde stok bulundurmaktır. Bunun için talepler dağılımlara uydurularak formülize edilirler. Bu çalışmada, havacılık bakım onarım sektöründe havayolu firmalarının uçaklarına bakım ve yedek parça hizmeti sunan yerel bir firmaya ait komponent verileri kullanılmıştır. Veri setine ilişkin talep kalıpları incelenmiş ve onlara kesikli tahmin yöntemleri uygulanmıştır. Daha sonra stokta bulundurulması gereken yedek miktarlarını belirlemek için çeşitli dağılımlardan yararlanılarak kıyaslama yapılmıştır. Elde edilen sonuçlar yorumlanarak değerlendirme yapılmıştır. Bu çalışmanın havacılık sektöründe ve diğer sektörlerde faaliyet gösteren kuruluşlara yedek parça stok yönetimi ve talep tahmini açısından ışık tutacağı ve fayda sağlayacağı değerlendirilmektedir.

Kaynakça

  • Alfieri, F. (tarih yok). Sunum Notları. Aircraft Maintenance and Repair – Rotable Inventory Components.
  • Altay, N. (2011). Distributional Assumptions for Parametric Forecasting of Intermittent Demand. Chapter 2, Service Parts Management, Springer,, 34-35,47.
  • Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control:Investigating the gap between research and practice. The International Journal of Management Science, 725.
  • Boylan J.E. & Syntetos A.A. (2008). Forecasting for Inventory Management of Service Parts. Chapter 20, Complex System Maintenance Handbook, Springer, 5.
  • Burden, C. R. (2014). An R Implementation of the Polya-Aeppli Distribution. Australian National University.
  • Callegaro, A. (2010). Forecasting Methods For Spare Parts Demand. Undergraduate Thesis.
  • Fukuda, J. (tarih yok). Website, . https://sites.google.com/site/jfukudasite/metric adresinden alındı
  • Ghobbar, A. A. (2003). Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers & Operations Research, 2105.
  • Hemeimat, R. (2016). Forecasting Spare Parts Demand Using Statistical Analysis. American Journal of Operations Research, 114.
  • Pham, H. (2006). Springer Handbook of Engineering Statistics. Springer, 907-908.
  • Syntetos, A. A. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 495-496.
  • Syntetos, A. A., & Boylan , J. (2001). On the bias of intermittent demand estimates. Int. J. Production Economics,, 457-461.
  • Website, S. (tarih yok). (Maintenance Planning-Spare Parts Stock Calculation), http://help.sap.com/saphelp_di471/helpdata/EN/23/e67674c3e3477b893fb48ec13a3c48/content.htmframeset=/en/18/b50d3a2b54c93ce10000000a11402f/frameset.htm adresinden alındı
  • Willemain, T. R. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 379.
  • Willemain, T. R. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 379-380.

An Application on Demand Forecasting and Stock Control for Aircraft Components

Yıl 2022, Cilt 3, Sayı 1, 1 - 40, 28.08.2022
https://doi.org/10.52995/jass.1122940

Öz

Today, the management of the inventory used in the aircraft maintenance-repair industry is an important issue. Spare parts inventory, in other words component inventory, constitutes the main capital resource of this type of companies. For this reason, it is an important and sensitive issue for organizations engaged in aircraft maintenance to effectively manage their spare parts stock. Effective and rational management of spare parts inventory will provide companies with significant cost advantages. While trying to increase service levels, companies aim to keep their inventory costs at minimum levels. In order to effectively manage the spare parts inventory, first of all, the demand forecast for the future must be made correctly. For this, techniques suitable for the part structure should be used. The next step after forecasting is to keep stock at a sufficient level of confidence to avoid running out of stock in the future. Because of this, demands are formulated by fitting distributions. In this study, component data of a local company that provides maintenance and spare parts services to the aircraft of airline companies in the aviation maintenance and repair sector was used. Demand patterns related to the data set were examined and discrete forecasting methods were applied to them. Afterwards, comparisons were made by using various distributions to determine the amount of spares that should be kept in stock. The results were interpreted and evaluated. It is assessed that this study will shed light on and benefit organizations operating in the aviation sector and other sectors in terms of spare part stock management and demand forecasting.

Kaynakça

  • Alfieri, F. (tarih yok). Sunum Notları. Aircraft Maintenance and Repair – Rotable Inventory Components.
  • Altay, N. (2011). Distributional Assumptions for Parametric Forecasting of Intermittent Demand. Chapter 2, Service Parts Management, Springer,, 34-35,47.
  • Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control:Investigating the gap between research and practice. The International Journal of Management Science, 725.
  • Boylan J.E. & Syntetos A.A. (2008). Forecasting for Inventory Management of Service Parts. Chapter 20, Complex System Maintenance Handbook, Springer, 5.
  • Burden, C. R. (2014). An R Implementation of the Polya-Aeppli Distribution. Australian National University.
  • Callegaro, A. (2010). Forecasting Methods For Spare Parts Demand. Undergraduate Thesis.
  • Fukuda, J. (tarih yok). Website, . https://sites.google.com/site/jfukudasite/metric adresinden alındı
  • Ghobbar, A. A. (2003). Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers & Operations Research, 2105.
  • Hemeimat, R. (2016). Forecasting Spare Parts Demand Using Statistical Analysis. American Journal of Operations Research, 114.
  • Pham, H. (2006). Springer Handbook of Engineering Statistics. Springer, 907-908.
  • Syntetos, A. A. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 495-496.
  • Syntetos, A. A., & Boylan , J. (2001). On the bias of intermittent demand estimates. Int. J. Production Economics,, 457-461.
  • Website, S. (tarih yok). (Maintenance Planning-Spare Parts Stock Calculation), http://help.sap.com/saphelp_di471/helpdata/EN/23/e67674c3e3477b893fb48ec13a3c48/content.htmframeset=/en/18/b50d3a2b54c93ce10000000a11402f/frameset.htm adresinden alındı
  • Willemain, T. R. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 379.
  • Willemain, T. R. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 379-380.

Ayrıntılar

Birincil Dil İngilizce
Konular Yöneylem, Araştırma ve Yönetim Bilimi
Bölüm Araştırma Makaleleri
Yazarlar

Emre EKİN> (Sorumlu Yazar)
Bir kuruma bağlı değildir
0000-0002-4043-9750
Türkiye

Yayımlanma Tarihi 28 Ağustos 2022
Başvuru Tarihi 29 Mayıs 2022
Kabul Tarihi 24 Ağustos 2022
Yayınlandığı Sayı Yıl 2022, Cilt 3, Sayı 1

Kaynak Göster

APA Ekin, E. (2022). An Application on Demand Forecasting and Stock Control for Aircraft Components . Havacılık ve Uzay Çalışmaları Dergisi , 3 (1) , 1-40 . DOI: 10.52995/jass.1122940