Araştırma Makalesi
BibTex RIS Kaynak Göster

Havacılıkta Parça Tasarımında Kök Neden Analiz Yöntemleri

Yıl 2020, , 1 - 9, 28.12.2020
https://doi.org/10.30518/jav.731048

Öz

Tasarım sürecinde tespit edilemeyen hata etkenleri, uygun şekilde tanımlanarak; önlem alınmadığında, tasarıma ait olgun ürün sürecinde, ürün kalitesini doğrudan olumsuz etkileme potansiyeline sahiptir. Havacılık özelinde, tasarımın ürün haline dönüşümü gerçekleştikten sonra, ilk bakışta küçük ölçekli kabul edilebilir olarak görülen kalite hataları, büyük etkileri olan uçuş güvenliği ve emniyetini etkileyen sorunlara yol açabilmektedir. Bu nedenle, tasarım süresince tespit edilen hataların kök neden analiz yöntemiyle incelenerek önlem alınması; ürünün kalitesi, emniyeti ve tasarım sürecinin etkin yönetilmesi açısından büyük önem taşımaktadır.
Bu çalışmanın amacı, havacılık tasarım sürecinde kök neden analizinin öneminin vurgulanması ve çoğunlukla kullanılan yöntemlerin örneklerle ifade edilerek farklılıkların anlatılmasıdır. Çalışma kapsamında kök neden analizine atıflarda bulunan uluslararası havacılık regülasyonlarından örneklemeler yapılarak, kullanılan yöntemlerin çözüme yönelik etkinliği değerlendirilmiş ve yorumlanmıştır. Çalışma sonucunda hatalarıntehlike sınıfına göre kullanılabilecek olan uygun metodlar sınıflandırılmış ve ifade edilmiştir.

Kaynakça

  • [1] Washington A. and et al, ‘’Adoption of a Bayesian Belief Network for the System Safety Assessment of Remotely Piloted Aircraft Systems’’, Safety Science vol:118, 654–673, 2019.
  • [2] Fröhling R., Spangenberg U., Reitmann E., ‘’Root cause analysis of locomotive wheel tread polygonisation’’, Wear 432–433 102911, 2019.
  • [3] Suresh P.M., Mruthunjaya M.‘’Root Cause Analysis of Forges Spline Yoke Shaft Using Finite Element Method’’, Materials Today: Proceedings vol:5 p. 23491–23498, 2018.
  • [4] Freitas M., Infante V., Baptista R.,‘’Failure analysis of the nose landing gear axle of an aircraft’’, Engineering Failure Analysis vol:101 113–120, 2019.
  • [5] Silveira E., Atxaga G., Erauzkin E. and Irisarri A.M. ‘’Study on the root causes for the premature failure of an aircraft turbine blade’’, Engineering Failure Analysis vol:16, 639–647,2009.
  • [6] Rabcan J. and et. Al.‘’Non-destructive diagnostic of aircraft engine blades by Fuzzy Decision Tree’’, Engineering Structures vol:197, 109396 ,2019.
  • [7] Wang J. and et. al., ‘’Root-cause analysis of occuring alarms in thermal power plants based on Bayesian networks, Electrical Power and Energy Systems’’ vol:103 p.67–74, 2018.
  • [8] Bhattacharjee R.M, Dash A.K., Paul P.S, ‘’A root cause failure analysis of coal dust explosion disaster- Gaps and lessons learnt’’. Engineering Failure Analysis, Article in press.
  • [9] Locheed Martin, ‘’ The Root Cause Analysis and Corrective Action’’ https://www.lockheedmartin.com/ [26.03.2019].
  • [10] Quality Management and Training Limited ‘’Mini Guide to Root Cause Analysis https://www.qmt.co.uk./ p.1-15, [28.04.2019].
  • [11] EASA Parts Regulation; M.A.619(c) - M.A.716(c) - M.A.905(c) - 145.A.95(c) -147.A.160(c) - 21.A.125B(c) - 21.A.158(c)
  • [12] Lillywhite M. and Dyer P. ‘’Root Cause Analysis, Publication of Civil Aviation Authority Publications p. 1-35, 2016.
  • [13] Chief Engineers Office and Office of Safety&Mission Assurance, ‘’Root Cause Analysis Overview’’, Nasa Publication, p. 1-31, 2003.
  • [14] Ruijter A. and Guldenmund F. ‘’The bowtie method: A review’’, Safety Science vol: 88, p. 211–218, 2016.
  • [15] Kumar T.S.M and Adaveesh B., Application of “8D Methodology for the Root Cause Analysis and Reduction of Valve Spring Rejection in a Valve Spring Manufacturing Company: A Case Study’’, Indian Journal of Science and Technology, vol 10 p. 1-1, 2017.
  • [16] EASA Part Regulation; M.A.905(c)

Root Cause Analysis Methods for The Design of Aviation Parts

Yıl 2020, , 1 - 9, 28.12.2020
https://doi.org/10.30518/jav.731048

Öz

Fault modes, which aren’t detected throughout the design phase if they are not defined with precautions have the crucial potential on the quality of mature products. At first glance, impression of the quality failures may be underestimated, before the design of aviation parts are implemented to production. But these failures may cause some problems on aviation safety and reliability. Therefore, the failures during the project phase, should be investigated by root cause analysis and defining the precautions both increase effectivity of design and quality of the outputs.
The aim of this study is, emphasizing importance of root cause analysis on design of aviation parts, and stating the analysis methods, which have been used mainly. In the scope of this effort, aviation regulations are researched which encourages the root cause analysis accordingly, related methods are evaluated for the resolutions. The common methods are classified based on the hazard review of the failures and explained in order to point out for the researchers.

Kaynakça

  • [1] Washington A. and et al, ‘’Adoption of a Bayesian Belief Network for the System Safety Assessment of Remotely Piloted Aircraft Systems’’, Safety Science vol:118, 654–673, 2019.
  • [2] Fröhling R., Spangenberg U., Reitmann E., ‘’Root cause analysis of locomotive wheel tread polygonisation’’, Wear 432–433 102911, 2019.
  • [3] Suresh P.M., Mruthunjaya M.‘’Root Cause Analysis of Forges Spline Yoke Shaft Using Finite Element Method’’, Materials Today: Proceedings vol:5 p. 23491–23498, 2018.
  • [4] Freitas M., Infante V., Baptista R.,‘’Failure analysis of the nose landing gear axle of an aircraft’’, Engineering Failure Analysis vol:101 113–120, 2019.
  • [5] Silveira E., Atxaga G., Erauzkin E. and Irisarri A.M. ‘’Study on the root causes for the premature failure of an aircraft turbine blade’’, Engineering Failure Analysis vol:16, 639–647,2009.
  • [6] Rabcan J. and et. Al.‘’Non-destructive diagnostic of aircraft engine blades by Fuzzy Decision Tree’’, Engineering Structures vol:197, 109396 ,2019.
  • [7] Wang J. and et. al., ‘’Root-cause analysis of occuring alarms in thermal power plants based on Bayesian networks, Electrical Power and Energy Systems’’ vol:103 p.67–74, 2018.
  • [8] Bhattacharjee R.M, Dash A.K., Paul P.S, ‘’A root cause failure analysis of coal dust explosion disaster- Gaps and lessons learnt’’. Engineering Failure Analysis, Article in press.
  • [9] Locheed Martin, ‘’ The Root Cause Analysis and Corrective Action’’ https://www.lockheedmartin.com/ [26.03.2019].
  • [10] Quality Management and Training Limited ‘’Mini Guide to Root Cause Analysis https://www.qmt.co.uk./ p.1-15, [28.04.2019].
  • [11] EASA Parts Regulation; M.A.619(c) - M.A.716(c) - M.A.905(c) - 145.A.95(c) -147.A.160(c) - 21.A.125B(c) - 21.A.158(c)
  • [12] Lillywhite M. and Dyer P. ‘’Root Cause Analysis, Publication of Civil Aviation Authority Publications p. 1-35, 2016.
  • [13] Chief Engineers Office and Office of Safety&Mission Assurance, ‘’Root Cause Analysis Overview’’, Nasa Publication, p. 1-31, 2003.
  • [14] Ruijter A. and Guldenmund F. ‘’The bowtie method: A review’’, Safety Science vol: 88, p. 211–218, 2016.
  • [15] Kumar T.S.M and Adaveesh B., Application of “8D Methodology for the Root Cause Analysis and Reduction of Valve Spring Rejection in a Valve Spring Manufacturing Company: A Case Study’’, Indian Journal of Science and Technology, vol 10 p. 1-1, 2017.
  • [16] EASA Part Regulation; M.A.905(c)
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Hamdi Selçuk Çelik 0000-0003-2538-7486

Yayımlanma Tarihi 28 Aralık 2020
Gönderilme Tarihi 2 Mayıs 2020
Kabul Tarihi 26 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Çelik, H. S. (2020). Root Cause Analysis Methods for The Design of Aviation Parts. Journal of Aviation, 4(2), 1-9. https://doi.org/10.30518/jav.731048

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence