Araştırma Makalesi
BibTex RIS Kaynak Göster

A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies

Yıl 2020, Cilt: 4 Sayı: 3, 197 - 204, 01.09.2020

Öz

Over the last 20 years, monoclonal antibodies have become the backbone of biological therapeutics for the treatment and diagnosis of several
diseases. The rising incidence of cancer and other immunologic diseases promoted the increasing investments of the global pharmaceutical
industry in monoclonal antibody development. The R&D has focused on the highest efficacy which is majorly correlated with the antigenbinding
specificity and the lowest immunogenicity of monoclonal antibodies. This review aims to provide a brief description and explanation
of each stage in the development path of mAbs.
Keywords: monoclonal antibodies, industry, cancer

Kaynakça

  • 1. Liu JKH. The history of monoclonal antibody development-Progress, remaining challenges and future innovations. Ann Med Surg 2014;3:113–116. [CrossRef]
  • 2. Payne WJ, Marshall DL, Shockley RK, Martin WJ. Clinical laboratory applications of monoclonal antibodies. Clin Microbiol Rev 1988;1:313–329. [CrossRef
  • 3. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs 2015;7:9–14. [CrossRef]
  • 4. Walker N. Innovation at the Heart of Biopharmaceutical Industry Growth. Am Pharma Rev 2016. https://www. americanpharmaceuticalreview.com/Featured-Articles/187354- Innovation-at-the-Heart-of-Biopharmaceutical-Industry-Growth/
  • 5. Leavy O. The birth of monoclonal antibodies. Nat Immunol 2016;17:S13. [CrossRef]
  • 6. Levine HL, Cooney BR. The Development of Therapeutic Monoclonal Antibody Products. Needham, MA: Insight Pharma Reports; 2018. p.1–10.
  • 7. Vigeral P, Chkoff N, Chatenoud L, et al. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation 1986;41:730–733. [CrossRef]
  • 8. Nicholson LB. The immune system. Essays Biochem 2016;60:275– 301. [CrossRef]
  • 9. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019;8:55. [CrossRef]
  • 10. Wang Q, Chen Y, Park J, et al. Design and Production of Bispecific Antibodies. Antibodies 2019;8:43. [CrossRef]
  • 11. Tomita M, Tsumoto K. Hybridoma technologies for antibody production. Immunotherapy 2011;3:371–380. [CrossRef]
  • 12. Baron D, Peters JH, Gieseler RKH, et al. Production of Hybridomas. In: Peters JH, Baumgarten H, editors. Monoclonal Antibodies. 1992. p.137–222.
  • 13. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009;157:220–233. [CrossRef]
  • 14. Lu RM, Hwang YC., Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020;27:1. [CrossRef]
  • 15. Yamashita M, Katakura Y, Shirahata S. Recent advances in the generation of human monoclonal antibody. Cytotechnology 2007;55:55–60. [CrossRef]
  • 16. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs 2010;2:256–265. [CrossRef]
  • 17. Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-Tac to Zenapax. Methods 2005;36:69–83. [CrossRef]
  • 18. Williams DG, Matthews DJ, Jones T. Humanising Antibodies by CDR Grafting. In: Kontermann R, Dübel S, editors. Antibody Engineering. Springer Protocols Handbooks; 2010. [CrossRef]
  • 19. Studnicka GM, Soares S, Better M, Williams RE, Nadell R, Horwitz AH. Human-engineered monoclonal antibodies retain full specific binding activity by preserving non-CDR complementaritymodulating residues. Protein Eng 1994;7:805–814. [CrossRef]
  • 20. Safdari Y, Farajnia S, Asgharzadeh M, Khalili M. Antibody humanization methods - a review and update. Biotechnol Genet Eng Rev 2013;29:175–186. [CrossRef]
  • 21. Hwang WY, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005;36:35–42. [CrossRef]
  • 22. Roguska MA, Pedersen JT, Keddy CA, et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Nat Acad Sci U S A 1994;91:969–973. [CrossRef]
  • 23. Lazar GA, Desjarlais JR, Jacinto J, Karki S, Hammond PW. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 2007;44:1986–1998. [CrossRef]
  • 24. Ahmadzadeh V, Farajnia S, Feizi MAH, Nejad MAK. Antibody Humanization Methods for Development of Therapeutic Applications. Monoclon Antib Immunodiagn Immunother 2014;33:67–73. [CrossRef]
  • 25. Lonberg N, Taylor LD, Harding FA, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994;368:856–859. [CrossRef]
  • 26. Mendez MJ, Green LL, Corvalan JR, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 1997;15:146–156. [CrossRef]
  • 27. Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994;7:13–21. [CrossRef]
  • 28. Mompó SM, González-Fernández Á. Human Monoclonal Antibodies, Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice. Methods in Molecular Biology, Vol 1060. Totowa, NJ: Humana Press; 2014. p.245–276. [CrossRef]
  • 29. Calvo E, Rowinsky EK. Clinical experience with monoclonal antibodies to epidermal growth factor receptor. Curr Oncol Rep 2005;7:96–103. [CrossRef]
  • 30. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, et al. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 2004:173:4699– 4707. [CrossRef]
  • 31. Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003;171:6251–6259. [CrossRef]
  • 32. Kostenuik PJ, Nguyen HQ, McCabe J, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/ human) RANKL. J Bone Miner Res 2009;24:182–195. [CrossRef]
  • 33. Zou X, Lan G, Osborn MJ, Brüggemann M. The Generation of Transgenic Mice Expressing Human Antibody Repertoires. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin, Heidelberg: Springer Protocols Handbooks; 2010. p.235–254. [CrossRef]
  • 34. Brüggemann M, Osborn MJ, Ma B, et al. Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz) 2015;63:101– 108. [CrossRef]
  • 35. Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015;23:111–133. [CrossRef]
  • 36. Tomizuka K, Yoshida H, Uejima H, et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 1997;16:133–143. [CrossRef]
  • 37. Duvall M, Bradley N, Fiorini RN. A novel platform to produce human monoclonal antibodies: The next generation of therapeutic human monoclonal antibodies discovery. mAbs 2011;3:203–208. [CrossRef]
  • 38. Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. mAbs 2016;8:1177– 1194. [CrossRef]
  • 39. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discovery 2010;9:767–774. [CrossRef]
  • 40. Rajput R, Khanna M, Pradhan HK. Phage-Display Technology for the Production of Recombinant Monoclonal Antibodies. Mater Meth 2014;4:873. [CrossRef] J Basic Clin Health Sci 2020; 4:197-204 Sanlav G et al. A review 204
  • 41. Rodi D, Makowski L. Phage-display technology –finding a needle in a vast molecular haystack. Curr Opin Biotechnol 1999;10:87–93. [CrossRef]
  • 42. Willats WGT. Phage display: practicalities and prospects. Plant Mol Biol 2002;50:837–854. [CrossRef]
  • 43. Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi- Lomedasht F. An overview of the application of phage display technique in immunological studies. Asian Pacific J Tropic Biomed 2017;7:599–602. [CrossRef]
  • 44. Dübel S, Stoevesandt O, Taussig MJ, Hust M. Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 2010;28:333–339. [CrossRef]
  • 45. Schwimmer LJ, Huang B, Giang H, et al. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods 2013;391:60–71. [CrossRef]
  • 46. Lu R, Hwang Y, Liu I, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020;27:1. [CrossRef]
  • 47. Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005;23:344–348. [CrossRef]
  • 48. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc 2006;1:755–768. [CrossRef]
Yıl 2020, Cilt: 4 Sayı: 3, 197 - 204, 01.09.2020

Öz

Kaynakça

  • 1. Liu JKH. The history of monoclonal antibody development-Progress, remaining challenges and future innovations. Ann Med Surg 2014;3:113–116. [CrossRef]
  • 2. Payne WJ, Marshall DL, Shockley RK, Martin WJ. Clinical laboratory applications of monoclonal antibodies. Clin Microbiol Rev 1988;1:313–329. [CrossRef
  • 3. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs 2015;7:9–14. [CrossRef]
  • 4. Walker N. Innovation at the Heart of Biopharmaceutical Industry Growth. Am Pharma Rev 2016. https://www. americanpharmaceuticalreview.com/Featured-Articles/187354- Innovation-at-the-Heart-of-Biopharmaceutical-Industry-Growth/
  • 5. Leavy O. The birth of monoclonal antibodies. Nat Immunol 2016;17:S13. [CrossRef]
  • 6. Levine HL, Cooney BR. The Development of Therapeutic Monoclonal Antibody Products. Needham, MA: Insight Pharma Reports; 2018. p.1–10.
  • 7. Vigeral P, Chkoff N, Chatenoud L, et al. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation 1986;41:730–733. [CrossRef]
  • 8. Nicholson LB. The immune system. Essays Biochem 2016;60:275– 301. [CrossRef]
  • 9. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019;8:55. [CrossRef]
  • 10. Wang Q, Chen Y, Park J, et al. Design and Production of Bispecific Antibodies. Antibodies 2019;8:43. [CrossRef]
  • 11. Tomita M, Tsumoto K. Hybridoma technologies for antibody production. Immunotherapy 2011;3:371–380. [CrossRef]
  • 12. Baron D, Peters JH, Gieseler RKH, et al. Production of Hybridomas. In: Peters JH, Baumgarten H, editors. Monoclonal Antibodies. 1992. p.137–222.
  • 13. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009;157:220–233. [CrossRef]
  • 14. Lu RM, Hwang YC., Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020;27:1. [CrossRef]
  • 15. Yamashita M, Katakura Y, Shirahata S. Recent advances in the generation of human monoclonal antibody. Cytotechnology 2007;55:55–60. [CrossRef]
  • 16. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs 2010;2:256–265. [CrossRef]
  • 17. Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-Tac to Zenapax. Methods 2005;36:69–83. [CrossRef]
  • 18. Williams DG, Matthews DJ, Jones T. Humanising Antibodies by CDR Grafting. In: Kontermann R, Dübel S, editors. Antibody Engineering. Springer Protocols Handbooks; 2010. [CrossRef]
  • 19. Studnicka GM, Soares S, Better M, Williams RE, Nadell R, Horwitz AH. Human-engineered monoclonal antibodies retain full specific binding activity by preserving non-CDR complementaritymodulating residues. Protein Eng 1994;7:805–814. [CrossRef]
  • 20. Safdari Y, Farajnia S, Asgharzadeh M, Khalili M. Antibody humanization methods - a review and update. Biotechnol Genet Eng Rev 2013;29:175–186. [CrossRef]
  • 21. Hwang WY, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005;36:35–42. [CrossRef]
  • 22. Roguska MA, Pedersen JT, Keddy CA, et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Nat Acad Sci U S A 1994;91:969–973. [CrossRef]
  • 23. Lazar GA, Desjarlais JR, Jacinto J, Karki S, Hammond PW. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 2007;44:1986–1998. [CrossRef]
  • 24. Ahmadzadeh V, Farajnia S, Feizi MAH, Nejad MAK. Antibody Humanization Methods for Development of Therapeutic Applications. Monoclon Antib Immunodiagn Immunother 2014;33:67–73. [CrossRef]
  • 25. Lonberg N, Taylor LD, Harding FA, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994;368:856–859. [CrossRef]
  • 26. Mendez MJ, Green LL, Corvalan JR, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 1997;15:146–156. [CrossRef]
  • 27. Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994;7:13–21. [CrossRef]
  • 28. Mompó SM, González-Fernández Á. Human Monoclonal Antibodies, Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice. Methods in Molecular Biology, Vol 1060. Totowa, NJ: Humana Press; 2014. p.245–276. [CrossRef]
  • 29. Calvo E, Rowinsky EK. Clinical experience with monoclonal antibodies to epidermal growth factor receptor. Curr Oncol Rep 2005;7:96–103. [CrossRef]
  • 30. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, et al. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 2004:173:4699– 4707. [CrossRef]
  • 31. Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003;171:6251–6259. [CrossRef]
  • 32. Kostenuik PJ, Nguyen HQ, McCabe J, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/ human) RANKL. J Bone Miner Res 2009;24:182–195. [CrossRef]
  • 33. Zou X, Lan G, Osborn MJ, Brüggemann M. The Generation of Transgenic Mice Expressing Human Antibody Repertoires. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin, Heidelberg: Springer Protocols Handbooks; 2010. p.235–254. [CrossRef]
  • 34. Brüggemann M, Osborn MJ, Ma B, et al. Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz) 2015;63:101– 108. [CrossRef]
  • 35. Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015;23:111–133. [CrossRef]
  • 36. Tomizuka K, Yoshida H, Uejima H, et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 1997;16:133–143. [CrossRef]
  • 37. Duvall M, Bradley N, Fiorini RN. A novel platform to produce human monoclonal antibodies: The next generation of therapeutic human monoclonal antibodies discovery. mAbs 2011;3:203–208. [CrossRef]
  • 38. Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. mAbs 2016;8:1177– 1194. [CrossRef]
  • 39. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discovery 2010;9:767–774. [CrossRef]
  • 40. Rajput R, Khanna M, Pradhan HK. Phage-Display Technology for the Production of Recombinant Monoclonal Antibodies. Mater Meth 2014;4:873. [CrossRef] J Basic Clin Health Sci 2020; 4:197-204 Sanlav G et al. A review 204
  • 41. Rodi D, Makowski L. Phage-display technology –finding a needle in a vast molecular haystack. Curr Opin Biotechnol 1999;10:87–93. [CrossRef]
  • 42. Willats WGT. Phage display: practicalities and prospects. Plant Mol Biol 2002;50:837–854. [CrossRef]
  • 43. Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi- Lomedasht F. An overview of the application of phage display technique in immunological studies. Asian Pacific J Tropic Biomed 2017;7:599–602. [CrossRef]
  • 44. Dübel S, Stoevesandt O, Taussig MJ, Hust M. Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 2010;28:333–339. [CrossRef]
  • 45. Schwimmer LJ, Huang B, Giang H, et al. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods 2013;391:60–71. [CrossRef]
  • 46. Lu R, Hwang Y, Liu I, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020;27:1. [CrossRef]
  • 47. Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005;23:344–348. [CrossRef]
  • 48. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc 2006;1:755–768. [CrossRef]
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Reviews
Yazarlar

Gamze Sanlav Bu kişi benim

Ömer Bekçioğlu Bu kişi benim

Yasemin Başbınar Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 4 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 3

Kaynak Göster

APA Sanlav, G., Bekçioğlu, Ö., & Başbınar, Y. (2020). A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies. Journal of Basic and Clinical Health Sciences, 4(3), 197-204.
AMA Sanlav G, Bekçioğlu Ö, Başbınar Y. A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies. JBACHS. Eylül 2020;4(3):197-204.
Chicago Sanlav, Gamze, Ömer Bekçioğlu, ve Yasemin Başbınar. “A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies”. Journal of Basic and Clinical Health Sciences 4, sy. 3 (Eylül 2020): 197-204.
EndNote Sanlav G, Bekçioğlu Ö, Başbınar Y (01 Eylül 2020) A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies. Journal of Basic and Clinical Health Sciences 4 3 197–204.
IEEE G. Sanlav, Ö. Bekçioğlu, ve Y. Başbınar, “A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies”, JBACHS, c. 4, sy. 3, ss. 197–204, 2020.
ISNAD Sanlav, Gamze vd. “A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies”. Journal of Basic and Clinical Health Sciences 4/3 (Eylül 2020), 197-204.
JAMA Sanlav G, Bekçioğlu Ö, Başbınar Y. A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies. JBACHS. 2020;4:197–204.
MLA Sanlav, Gamze vd. “A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies”. Journal of Basic and Clinical Health Sciences, c. 4, sy. 3, 2020, ss. 197-04.
Vancouver Sanlav G, Bekçioğlu Ö, Başbınar Y. A Review on The Development, Production Strategies, and Utilization of Monoclonal Antibodies. JBACHS. 2020;4(3):197-204.