Araştırma Makalesi
BibTex RIS Kaynak Göster

Nörogelişimsel Geriliği Olan ve Mikrodizin Analizinda Patojenik Kopya Sayısı Değişikliği Saptanan Çocukların Klinik Özellikleri

Yıl 2022, , 151 - 158, 29.12.2022
https://doi.org/10.26650/jchild.2022.1112958

Öz

Amaç: Bu çalışmada, nörogelişimsel geriliği olan ve kromozomal mikrodizin analizinde patojenik kopya sayısı değişikliği saptanan çocukların klinik özelliklerini tanımlamayı amaçladık. Gereç ve Yöntem: Üçüncü basamak bir hastanenin pediatrik genetik ve pediatrik nöroloji polikliniğinde Ağustos 2017-Mart 2021 tarihleri arasında nörogelişimsel gecikme açısından değerlendirilen ve patojenik kopya sayısı değişikliği saptanan 0-18 yaş arası çocuklar retrospektif olarak analiz edildi. Bulgular: Çalışmaya 24 hasta dahil edildi, 15’i (%62,5) kızdı. Ortalama tanı yaşı 47.0±42.0 ay (yaş aralığı: 4-133 ay). Çocukların çoğunda (n=17, %70,8) iyi tanımlanmış OMIM mikrodelesyon/mikroduplikasyon sendromları saptandı. Yirmi dört hastada saptanan 28 kopya sayısı değişikliklerinin 21’i (%75) delesyon, 7’si (%25) duplikasyondu. On beş hastada (%62,5) global gelişme geriliği, 7 hastada (%29.2) zihinsel yetersizlik ve 3 hastada (%12.5) otizm spektrum bozukluğu vardı. Sırasıyla 4 ve 5 çocukta erken doğum öyküsü ve gestasyonel yaşa göre düşük doğum ağırlığı mevcuttu. Nörogörüntüleme 2 çocukta hipoksik-iskemik hasar ve 1 çocukta hipoglisemik sekel ile uyumluydu. Fasiyal dismorfizm 19 (%79.2), hipotoni 14 (%58.3), epilepsi 8 (%33,3), mikrosefali 7 (%29.2), makrosefali 2 (%8.3), görme bozukluğu 3 (%12,5) ve işitme kaybı 2 (%8,3) hastada saptandı. Sonuç: Kromozomal mikrodizin analizi, açıklanamayan nörogelişimsel gecikmesi olan hastalarda değerli bir tanısal araçtır. Perinatal asfiksi ve neonatal hipoglisemiye sekonder beyin hasarı olan çocuklarda bile, eşlik eden dismorfizm ve/veya multisistem tutulumu olan olgularda mikroarray analizi yapılmalıdır.

Destekleyen Kurum

yok

Kaynakça

  • 1. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology 2003;60:367-80. google scholar
  • 2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Publishing, 2013. google scholar
  • 3. American Association of Intellectual and Developmental Disabilities. Definition of Intellectual Disability. Access date: 26 March 2022. Available from: https://www.aaidd.org/intellectual-disability/definition google scholar
  • 4. Moeschler JB, Shevell M, American Academy of Pediatrics Committee on Genetics. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics 2006; 117:2304. google scholar
  • 5. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 2011; 32:419. google scholar
  • 6. Augustyn M, Voigt RG, Patterson MC. Autism spectrum disorder: Terminology, epidemiology, and pathogenesis. In: UpToDate, Post, TM (Ed), UpToDate, Waltham, MA. Access date 04 March 2022. Available from: https://www.uptodate.com google scholar
  • 7. Michelson DJ, Shevell MI, Sherr EH, Moeschler JB, Gropman AL, Ashwal S. Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2011;77:1629-35. google scholar
  • 8. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749-64. google scholar
  • 9. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 2011;13:680-5. google scholar
  • 10. Wayhelova M, Smetana J, Vallova V, Hladilkova E, Filkova H, Hanakova M, et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genomics 2019;12:111. google scholar
  • 11. D’Arrigo S, Gavazzi F, Alfei E, Zuffardi O, Montomoli C, Corso B, et al. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children. J Child Neurol 2016;3:691-9. google scholar
  • 12. Misra S, Peters G, Barnes E, Ardern-Holmes S, Webster R, Troedson C, et al. Yield of comparative genomic hybridization microarray in pediatric neurology practice. Neurol Genet 2019;5:e367. google scholar
  • 13. Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013;17:589-99. google scholar
  • 14. Ronzoni L, Grassi FS, Pezzani L, Tucci A, Baccarin M, Esposito S, et al. 7p22.1 microduplication syndrome: Refinement of the critical region. Eur J Med Genet 2017; 60:114-7. google scholar
  • 15. Atack E, Fairtlough H, Smith K, Balasubramanian M. A novel (paternally inherited) duplication 13q31.3q32.3 in a 12-year-old patient with facial dysmorphism and developmental delay. Mol Syndromol 2014;5:245-50. google scholar
  • 16. Vergult S, Dauber A, Delle Chiaie B, Van Oudenhove E, Simon M, Rihani A, et al. 17q24.2 microdeletions: a new syndromal entity with intellectual disability, truncal obesity, mood swings and hallucinations. Eur J Hum Genet 2012; 20:534-9. google scholar
  • 17. Chung WK, Roberts TP, Sherr EH, Snyder LG, Spiro JE. 16p11.2 deletion syndrome. Curr Opin Genet Dev 2021;68:49-56. google scholar
  • 18. Carter LB, Battaglia A, Cherry A, Manning MA, Ruzhnikov MR, Bird LM, et al. Perinatal distress in 1p36 deletion syndrome can mimic hypoxic ischemic encephalopathy. Am J Med Genet A 2019;179:1543-46. google scholar
  • 19. Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet 2015;8:189-200. google scholar
  • 20. Sim JC, White SM, Lockhart PJ. ARID1B-mediated disorders: Mutations and possible mechanisms. Intractable Rare Dis Res 2015;4:17-23. google scholar
  • 21. Stankiewicz P, Khan TN, Szafranski P, Slattery L, Streff H, Vetrini F, et al. Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet 2017;101:503-515. google scholar
  • 22. Theisen A, Rosenfeld JA, Farrell SA, Harris CJ, Wetzel HH, Torchia BA, et al. aCGH detects partial tetrasomy of 12p in blood from Pallister-Killian syndrome cases without invasive skin biopsy. Am J Med Genet A 2009;149A:914-918. google scholar
  • 23. Rump P, de Leeuw N, van Essen AJ, Verschuuren-Bemelmans CC, Veenstra-Knol HE, Swinkels ME, et al. Central 22q11.2 deletions. Am J Med Genet A 2014;164A:2707-23. google scholar

Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis

Yıl 2022, , 151 - 158, 29.12.2022
https://doi.org/10.26650/jchild.2022.1112958

Öz

Objective: In this study, we report the clinical characteristics of a small cohort of children with neurodevelopmental delay and pathogenic copy number variations (CNV) in chromosomal microarray. Materials and Methods: We retrospectively analyzed children aged 0-18 years with neurodevelopmental delay and a pathogenic CNV in the chromosomal microarray analysis, who had been evaluated in the pediatric genetics and pediatric neurology outpatient clinics of a tertiary hospital between August 2017 and March 2021. Results: Twenty-four patients were included, 15 (62.5%) of them were girls. The mean age at diagnosis was 47.0±42.0 months (age range: 4-133 months). Most of the children (n=17, 70.8%) were diagnosed with welldefined microdeletion/microduplication syndromes. Of 28 CNVs in 24 patients; 21 (75%) were deletions, 7 (25%) were duplications. Fifteen (62.5%) of them had GDD, seven (29.2%) had ID, and three (12.5%) had ASD. A history of preterm birth and small birth weight for gestational age were present in four and five children, respectively. Neuroimaging was compatible with hypoxic-ischemic injury in two children and hypoglycemic sequel in one child. Facial dysmorphism was present in 19 (79.2%), hypotonicity in 14 (58.3%), epilepsy in eight (33.3%), microcephaly in seven (29.2%), macrocephaly in two (8.3%), hearing impairment in two (8.3%), and visual impairment in three (12.5%) children. Conclusion: Chromosomal microarray analysis is a valuable tool in patients with unexplained neurodevelopmental delay. Even in children with brain injury secondary to perinatal asphyxia and neonatal hypoglycemia, microarray analysis should be performed in cases with concomitant dysmorphism and/or multisystem involvement.

Kaynakça

  • 1. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology 2003;60:367-80. google scholar
  • 2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Publishing, 2013. google scholar
  • 3. American Association of Intellectual and Developmental Disabilities. Definition of Intellectual Disability. Access date: 26 March 2022. Available from: https://www.aaidd.org/intellectual-disability/definition google scholar
  • 4. Moeschler JB, Shevell M, American Academy of Pediatrics Committee on Genetics. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics 2006; 117:2304. google scholar
  • 5. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 2011; 32:419. google scholar
  • 6. Augustyn M, Voigt RG, Patterson MC. Autism spectrum disorder: Terminology, epidemiology, and pathogenesis. In: UpToDate, Post, TM (Ed), UpToDate, Waltham, MA. Access date 04 March 2022. Available from: https://www.uptodate.com google scholar
  • 7. Michelson DJ, Shevell MI, Sherr EH, Moeschler JB, Gropman AL, Ashwal S. Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2011;77:1629-35. google scholar
  • 8. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749-64. google scholar
  • 9. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 2011;13:680-5. google scholar
  • 10. Wayhelova M, Smetana J, Vallova V, Hladilkova E, Filkova H, Hanakova M, et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genomics 2019;12:111. google scholar
  • 11. D’Arrigo S, Gavazzi F, Alfei E, Zuffardi O, Montomoli C, Corso B, et al. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children. J Child Neurol 2016;3:691-9. google scholar
  • 12. Misra S, Peters G, Barnes E, Ardern-Holmes S, Webster R, Troedson C, et al. Yield of comparative genomic hybridization microarray in pediatric neurology practice. Neurol Genet 2019;5:e367. google scholar
  • 13. Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013;17:589-99. google scholar
  • 14. Ronzoni L, Grassi FS, Pezzani L, Tucci A, Baccarin M, Esposito S, et al. 7p22.1 microduplication syndrome: Refinement of the critical region. Eur J Med Genet 2017; 60:114-7. google scholar
  • 15. Atack E, Fairtlough H, Smith K, Balasubramanian M. A novel (paternally inherited) duplication 13q31.3q32.3 in a 12-year-old patient with facial dysmorphism and developmental delay. Mol Syndromol 2014;5:245-50. google scholar
  • 16. Vergult S, Dauber A, Delle Chiaie B, Van Oudenhove E, Simon M, Rihani A, et al. 17q24.2 microdeletions: a new syndromal entity with intellectual disability, truncal obesity, mood swings and hallucinations. Eur J Hum Genet 2012; 20:534-9. google scholar
  • 17. Chung WK, Roberts TP, Sherr EH, Snyder LG, Spiro JE. 16p11.2 deletion syndrome. Curr Opin Genet Dev 2021;68:49-56. google scholar
  • 18. Carter LB, Battaglia A, Cherry A, Manning MA, Ruzhnikov MR, Bird LM, et al. Perinatal distress in 1p36 deletion syndrome can mimic hypoxic ischemic encephalopathy. Am J Med Genet A 2019;179:1543-46. google scholar
  • 19. Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet 2015;8:189-200. google scholar
  • 20. Sim JC, White SM, Lockhart PJ. ARID1B-mediated disorders: Mutations and possible mechanisms. Intractable Rare Dis Res 2015;4:17-23. google scholar
  • 21. Stankiewicz P, Khan TN, Szafranski P, Slattery L, Streff H, Vetrini F, et al. Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet 2017;101:503-515. google scholar
  • 22. Theisen A, Rosenfeld JA, Farrell SA, Harris CJ, Wetzel HH, Torchia BA, et al. aCGH detects partial tetrasomy of 12p in blood from Pallister-Killian syndrome cases without invasive skin biopsy. Am J Med Genet A 2009;149A:914-918. google scholar
  • 23. Rump P, de Leeuw N, van Essen AJ, Verschuuren-Bemelmans CC, Veenstra-Knol HE, Swinkels ME, et al. Central 22q11.2 deletions. Am J Med Genet A 2014;164A:2707-23. google scholar
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çocuk Sağlığı ve Hastalıkları
Bölüm Araştırma Makaleleri
Yazarlar

Hülya Maraş Genç 0000-0001-8869-0277

Yasemin Kendir Demirkol 0000-0001-8016-5224

Hande Beklen Bu kişi benim 0000-0001-8445-6192

Büşra Kutlubay 0000-0002-6216-1438

Ozlem Akgun-dogan 0000-0002-8310-4053

Gülhan Sözen 0000-0002-3613-0814

Yayımlanma Tarihi 29 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Maraş Genç, H., Kendir Demirkol, Y., Beklen, H., Kutlubay, B., vd. (2022). Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis. Çocuk Dergisi, 22(3), 151-158. https://doi.org/10.26650/jchild.2022.1112958
AMA Maraş Genç H, Kendir Demirkol Y, Beklen H, Kutlubay B, Akgun-dogan O, Sözen G. Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis. Çocuk Dergisi. Aralık 2022;22(3):151-158. doi:10.26650/jchild.2022.1112958
Chicago Maraş Genç, Hülya, Yasemin Kendir Demirkol, Hande Beklen, Büşra Kutlubay, Ozlem Akgun-dogan, ve Gülhan Sözen. “Clinical Characteristics of Children With Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis”. Çocuk Dergisi 22, sy. 3 (Aralık 2022): 151-58. https://doi.org/10.26650/jchild.2022.1112958.
EndNote Maraş Genç H, Kendir Demirkol Y, Beklen H, Kutlubay B, Akgun-dogan O, Sözen G (01 Aralık 2022) Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis. Çocuk Dergisi 22 3 151–158.
IEEE H. Maraş Genç, Y. Kendir Demirkol, H. Beklen, B. Kutlubay, O. Akgun-dogan, ve G. Sözen, “Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis”, Çocuk Dergisi, c. 22, sy. 3, ss. 151–158, 2022, doi: 10.26650/jchild.2022.1112958.
ISNAD Maraş Genç, Hülya vd. “Clinical Characteristics of Children With Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis”. Çocuk Dergisi 22/3 (Aralık 2022), 151-158. https://doi.org/10.26650/jchild.2022.1112958.
JAMA Maraş Genç H, Kendir Demirkol Y, Beklen H, Kutlubay B, Akgun-dogan O, Sözen G. Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis. Çocuk Dergisi. 2022;22:151–158.
MLA Maraş Genç, Hülya vd. “Clinical Characteristics of Children With Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis”. Çocuk Dergisi, c. 22, sy. 3, 2022, ss. 151-8, doi:10.26650/jchild.2022.1112958.
Vancouver Maraş Genç H, Kendir Demirkol Y, Beklen H, Kutlubay B, Akgun-dogan O, Sözen G. Clinical Characteristics of Children with Neurodevelopmental Delay and Pathogenic Copy Number Variations in Chromosomal Microarray Analysis. Çocuk Dergisi. 2022;22(3):151-8.