Yıl 2020, Cilt 10 , Sayı 4, Sayfalar 487 - 492 2020-12-30

Umbilical Cord Unmeasured Anions and Tissue Acid Levels According to Stewart’s Method in Term Newborn Infants and the Impact of Delivery Mode on these parameters

Deniz ANUK-İNCE [1] , Ayşe ECEVİT [2] , Servet ÖZKİRAZ [3] , Abdullah KURT [4] , Hande GÜLCAN [5] , Aylin TARCAN [6]

Aim: To determine the reference values of strong ion difference (SID), effective SID (SIDe), unmeasured anions (UMA), tissue acids (TA), lactate and Chloride-Sodium (Cl-Na) ratio of umbilical cord blood, and to evaluate the impact of delivery mode on these parameters. Methods: This prospective study was performed on healthy term newborn infants that had normal progress throughout the first and second stages of labor during normal spontaneous delivery (NSD) and cesarean section (C/S). Immediately after birth, 1ml and 2 ml of umbilical venous cord blood samples were obtained for blood gas analysis and blood chemistry respectively. The Cl-Na ratio, anion gap (AG), albumin corrected AG (AGCorr), SID, SIDe, UMA and TA were calculated in NSD and C/S groups.. Results: A total of 181 healthy newborn infants were included the study. Fifty-one infants were delivered by NSD and 130 infants by C/S. The pH and PCO2 values were similar in both groups. The mode of delivery had a significant impact on the umbilical cord AG, AGCorr, SID, lactate, UMA, and TA levels. All these values were significantly higher in NSD than C/S group. Conclusion: Umbilical cord blood gas analysis is a common practice to evaluate fetal status at delivery. The calculation of blood gas parameters in perinatal problems according to Stewart’s method may lead further understanding how perinatal conditions of the mother influence the fetus and newborn infant.
infants, umbilical cord, unmeasured anions, tissue acids, Stewart’s method
  • References 1. Durward A, Murdoch I. Understanding acid-base balance. Current Paediatrics 2003;13:513-9.
  • 2. Durward A, Skellett S, Mayer A, Taylor D, Tibby SM, Murdoch IA. The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intens Care Med 2001;27:828-35.
  • 3. Gomez H, Kellum JA. Understanding Acid Base Disorders. Crit Care Clin 2015;31(4):849-60.
  • 4. Kellum JA. Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney 1998;66:81-6.
  • 5. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl Stewart method predict mortality better than base excess. anion gap. and lactate in patients in the pediatric intensive care unit. Crit Care Med 1999;27:1577-81.
  • 6. Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart and base ecess methods. Can J Anesth 2009;56:247-56.
  • 7. Moviat M, Terpstra AM, Ruitenbeek W, Kluijtmans LA, Pickkers P, van der Hoeven JG. Contribution of various metabolites to the ‘’unmeasured’’ anions in critically ill patients with metabolic acidosis. Crit Care Med 2008;36:752-8.
  • 8. Moviat M, van Haren F, van der Hoeven H. Conventional or physiochemical approach in intensive care unit patients with metabolic acidosis. Crit Care. 2003;7:41-5.
  • 9. Murray DM, Olhsson V, Fraser JI. Defining acidosis in postoperative cardiac patients using Stewart's method of strong ion difference. Pediatr Crit Care Med 2004;5:240-5.
  • 10. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983;61:1444-61.
  • 11. Fencl V, Leith DE. Stewart’s quantitative acid–base chemistry: applications in biology and medicine. Respir Physiol 1993;91:1-16.
  • 12. Figge J, Mydosh T, Fencle V. Serum proteins and acid-base equilibria: a follow up. J Lab Clin Med 1992;120:713-9.
  • 13. ACOG Committee on Obstetric Practice. ACOG Committee Opinion No. 348. November 2006: umbilical cord blood gas and acid-base analysis. Obstet Gynecol. 2006;108:1319-22.
  • 14. Goldaber KG, Gilstrap LC 3rd, Leveno KJ, et al. Pathologic fetal acidemia. Obstet Gynecol 1991;78:1103-7.
  • 15. Cohen Y,Nimord A, Ascher-Landsberg J, et al. Reference values for strong ion difference-A novel tool for fetal metabolic assessment. Eur J Obstet Gynecol Reprod Biol 2009;145:145-8.
  • 16. Morris CG, Low J. Metabolic acidosis in the critically ill:Part 1. Classification and pathophysiology. Anaesthesia 2008;63:294-301.
  • 17. Khoshnow Q,Mongelli M. Cord blood lactate and pH values at term and perinatal outcome: A Retrospective Cohort Study. Webmed Central Obstetrics and Gynaecology 2010:1(9):WMC00694.
  • 18. Reynolds F, Seed PT. Anaesthesia for caesarean section and neonatal acid–base status: a meta-analysis. Anaesthesia 2005;60:636-53.
  • 19. Durward A, Tibby SM, Skellet S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med 2005;6:281-5.
  • 20. Aschner JL, Poland RL. Sodium bicarbonate: basically useless therapy. Pediatrics. 2008;122:831-5.
  • 21. Nagaoka D, Nassar AP, Maciel AT, et al. The use of sodium–chloride difference and chloride–sodium ratio as strong ion difference surrogates in the evaluation of metabolic acidosis in critically ill patients. J Crit Care 2010;55:525-31.
  • 22. Kurt A, Ecevit A, Ozkiraz S, et al. The use of chloride-sodium ratio in the evaluation of metabolic acidosis in critically ill neonates. Eur J Pediatr 2012; 171(6):963-9.
  • 23. Barrington KJ. Low blood pressure in extremely preterm infants: does treatment affect outcome? Arch Dis Child Fetal Neonatal Ed 2011;96:316-7.
  • 24. Dempsey EM, Al Hazzani F, Barrington KJ. Permissive hypotension in the extremely low birthweight infant with signs of good perfusion. Arch Dis Child Fetal Neonatal Ed 2009;94:241-4.
  • 25. Whyte RK, Kirpalani H, Asztalos EV, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009;123:207-13.
  • 26. Johnson JW, Riley W. Cord blood gas studies: a survey. Clin Obstet Gynecol 1993;36:99-101.
  • 27. Thorp JA, Rushing RS. Umbilical cord blood gas analysis. Obstet Gynecol Clin North Am 1999;26:695-709.
Birincil Dil en
Konular Sağlık Bilimleri ve Hizmetleri
Bölüm Orjinal Araştırma

Orcid: 0000-0002-4369-2110
Yazar: Deniz ANUK-İNCE (Sorumlu Yazar)
Kurum: Baskent University Faculty of Medicine, Department of Pediatrics
Ülke: Turkey

Orcid: 0000-0002-2232-8117
Yazar: Ayşe ECEVİT
Kurum: Baskent University Faculty of Medicine, Department of Pediatrics
Ülke: Turkey

Orcid: 0000-0002-0531-6157
Yazar: Servet ÖZKİRAZ
Kurum: Gaziantel Medical Park Hospital
Ülke: Turkey

Orcid: 0000-0002-4430-444X
Yazar: Abdullah KURT
Kurum: Ankara Yıldırım Beyazıt University, Department of Pediatrics
Ülke: Turkey

Orcid: 0000-0001-5451-4240
Yazar: Hande GÜLCAN
Kurum: Baskent University Faculty of Medicine, Department of Pediatrics
Ülke: Turkey

Orcid: 0000-0001-9559-4996
Yazar: Aylin TARCAN
Kurum: Lösante Children's and Adult Hospital
Ülke: Turkey

Destekleyen Kurum Baskent University
Proje Numarası KA11/64

Kabul Tarihi : 13 Eylül 2020
Yayımlanma Tarihi : 30 Aralık 2020

AMA Anuk-i̇nce D , Ecevi̇t A , Özki̇raz S , Kurt A , Gülcan H , Tarcan A . Umbilical Cord Unmeasured Anions and Tissue Acid Levels According to Stewart’s Method in Term Newborn Infants and the Impact of Delivery Mode on these parameters. J Contemp Med. 2020; 10(4): 487-492.