Yıl 2021, Cilt 11 , Sayı 2, Sayfalar 254 - 261 2021-03-25

The effect of Telomere Lengthening on Genetic Diseases

Marko BOJKOVİC [1] , Sathees CHANDRA [2]

Abstract Telomeres are a characteristic of chromosomes that have increasingly large significance in research. They are studied in various diseases to discover potential treatment strategies. Their most vital characteristic is their length because the length can be used to describe different characteristics about the cell, such as its age. The length of telomeres can also be used as a potential way to treat disease. This review article’s purpose is to explore how te-lomeres can be potentially used as a method to treat genetic diseases such as trisomy 21 and cancer.
Telomere, telomere shortening, telomere homeostasis, Down syndrome, Carcinoma, Hepatocellular
  • 1. Albizua, I et al. “Association between telomere length and chromosome 21 nondisjunc-tion in the oocyte.” Human genetics vol. 134,11-12 (2015): 1263-70. doi:10.1007/s00439-015-1603-0
  • 2. Honig L.S., Kang M.S., Schupf N., Lee J.H., and Mayeux R. (2012). Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 69, 1332–1339 3. Temple V., Jozsvai E., Konstantareas M.M., and Hewitt T.A. (2001). Alzheimer dementia in Down's syndrome: the relevance of cognitive ability. J Intellect Disabil Res 45, 47–55
  • 4. Gruszecka A, Kopczyński P, Cudziło D, et al. Telomere shortening in Down syndrome pa-tients--when does it start? DNA and Cell Biology. 2015 Jun;34(6):412-417. DOI: 10.1089/dna.2014.2746.
  • 5. Révész D., Milaneschi Y., Verhoeven J.E., and Penninx B.W.J.H. (2014). Telomere length as a marker of cellular ageing is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab 99, 4607–4615
  • 6. Nakamura K.I., Ishikawa N., Izumiyama N., Aida J., Kuroiwa M., Hiraishi N., et al. (2014). Telomere lengths at birth in trisomies 18 and 21 measured by Q-FISH. Gene 533, 199–207
  • 7. Li, Chen, et al. Genome-wide Association Analysis in Humans Links Nucleotide Metabo-lism to Leukocyte Telomere Length
  • 8. R.C. Allsopp, H. Vaziri, C. Patterson, S. Goldstein, E.V. Younglai, A.B. Futcher, C.W. Greider, C.B. Harley Telomere length predicts replicative capacity of human fibroblasts Proc. Natl. Acad. Sci. USA, 89 (1992), pp. 10114-10118
  • 9. T. de Lange Shelterin-Mediated Telomere Protection Annu. Rev. Genet., 52 (2018), pp. 223-247
  • 10. E.H. Blackburn, K. Collins Telomerase: an RNP enzyme synthesizes DNA Cold Spring Harb. Perspect. Biol., 3 (2011), p. a003558
  • 11. O.T. Njajou, R.M. Cawthon, C.M. Damcott, S.H. Wu, S. Ott, M.J. Garant, E.H. Blackburn, B.D. Mitchell, A.R. Shuldiner, W.C. Hsueh Telomere length is paternally inherited and is associated with parental lifespan Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 12135-12139
  • 12. L. Broer, V. Codd, D.R. Nyholt, J. Deelen, M. Mangino, G. Willemsen, E. Albrecht, N. Amin, M. Beekman, E.J. de Geus, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect Eur. J. Hum. Genet., 21 (2013), pp. 1163-1168
  • 13.R.M. Cawthon: Telomere measurement by quantitative PCR Nucleic Acids Res., 30 (2002), p. e47
  • 14.R.M. Cawthon Telomere length measurement by a novel monochrome multiplex quanti-tative PCR method Nucleic Acids Res., 37 (2009) e21–e21
  • 15. Freeman SB, Allen EG, Oxford-Wright CL, Tinker SW, Druschel C, Hobbs CA, O'Leary LA, Romitti PA, Royle MH, Torfs CP, Sherman SL. The National Down Syndrome Project: design and implementation. Public Health Rep. 2007;122(1):62–72.
  • 16. Sherman SL, Allen EG, Bean LH, Freeman SB. Epidemiology of Down syndrome. Ment Retard Dev Disabil Res Rev. 2007;13(3):221–7.
  • 17. Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y, Shen J, Saker D, May KM, Avramopoulos D, Petersen MB, Hallberg A, Mikkelsen M, Hassold TJ, Sherman SL. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet. 1996;14(4):400–5.
  • 18. Lamb NE, Sherman SL, Hassold TJ. Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet.Genome Res. 2005;111(3-4):250–255.
  • 19. Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet. Mar 14. 2008;4(3):e1000033.
  • 20. Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJ, Chowdhury R, Begum F, Marazita M, Cheung V, Feingold E, Sherman SL. Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet. 2012;131(7):1039–46.
  • 21. Warburton D. Biological aging and the etiology of aneuploidy. Cytogenet Genome Res. 2005;111:266–272.
  • 22. Goldberg AD, Banaszynski LA, Noh KM et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010;140:678–691.
  • 23. Horn S, Figl A, Rachakonda PS et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013;339:959–961
  • 24. Huang FW, Hodis E, Xu MJ et al. Highly recurrent TERT promoter mutations in human melanoma. Science 2013;339:957–959.
  • 25. Lee, J., Jeng, Y., Liau, J. et al. Alternative lengthening of telomeres and loss of ATRX are frequent events in pleomorphic and dedifferentiated liposarcomas. Mod Pathol 28, 1064–1073 (2015). https://doi.org/10.1038/modpathol.2015.67
  • 26. Jiao Y, Shi C, Edil BH et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011;331:1199–1203.
  • 27. Heaphy CM, de Wilde RF, Jiao Y et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333:425.
  • 28. Drane P, Ouararhni K, Depaux A et al. The death-associated protein DAXX is a novel his-tone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010;24:1253–1265.
  • 29. Goldberg AD, Banaszynski LA, Noh KM et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010;140:678–691.
  • 30. Wong LH, McGhie JD, Sim M et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 2010;20:351–360.
  • 31. Marechal, Damien et al. “Dosage of the Abcg1-U2af1 region modifies locomotor and cognitive deficits observed in the Tc1 mouse model of Down syndrome.” PloS one vol. 10,2 e0115302. 23 Feb. 2015, doi:10.1371/journal.pone.0115302
  • 32. Gribble SM, Wiseman FK, Clayton S, Prigmore E, Langley E, et al. (2013) Massively Paral-lel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome. Plos One 8 10.1371/journal.pone.0082806
  • 33. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, et al. (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309: 2033–2037.
  • 34. Galante M, Jani H, Vanes L, Daniel H, Fisher EMC, et al. (2009) Impairments in motor co-ordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome. Human Molecular Genetics 18: 1449–1463. 10.1093/hmg/ddp055
  • 35. Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EMC, et al. (2008) Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn Mem 15: 492–500. 10.1101/lm.969608
  • 36. Lopes Pereira P, Magnol L, Sahún I, Brault V, Duchon A, et al. (2009) A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial ge-netic code of down syndrome. Hum Mol Genet 18: 4756–4769. 10.1093/hmg/ddp438
  • 37. Gribble SM, Wiseman FK, Clayton S, Prigmore E, Langley E, et al. (2013) Massively Paral-lel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome. Plos One 8 10.1371/journal.pone.0082806
  • 38. Sahún I, Marechal D, Lopes Pereira P, Nalesso V, Gruart A, et al. (2014) Cognition and Hippocampal Plasticity in the Mouse Is Altered by Monosomy of a Genomic Region Impli-cated in Down Syndrome. Genetics.
  • 39. Rustay NR, Wahlsten D, Crabbe JC (2003) Influence of task parameters on rotarod per-formance and sensitivity to ethanol in mice. Behavioural Brain Research 141: 237–249
  • 40. Jia, Pingping et al. “DNA excision repair at telomeres.” DNA repair vol. 36 (2015): 137-145. doi:10.1016/j.dnarep.2015.09.017
  • 41. von Zglinicki T. Oxidative stress shortens telomeres. Trends in biochemical sciences. 2002;27:339–344.
  • 42. Saretzki G, Von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Annals of the New York Academy of Sciences. 2002;959:24–29.
  • 43. Vallabhaneni H, Zhou F, Maul RW, Sarkar J, Yin J, Lei M, Harrington L, Gearhart PJ, Liu Y. Defective repair of uracil causes telomere defects in mouse hematopoietic cells. The Jour-nal of biological chemistry. 2015;290:5502–5511.
  • 44. An N, Fleming AM, White HS, Burrows CJ. Nanopore Detection of 8-Oxoguanine in the Human Telomere Repeat Sequence. ACS nano. 2015
  • 45. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS letters. 1999;453:365–368.
  • 46. Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, de Souza-Pinto NC, Liu Y. Char-acterization of oxidative guanine damage and repair in mammalian telomeres. PLoS genet-ics. 2010;6:e1000951.
  • 47. Opresko PL, Fan J, Danzy S, Wilson DM, 3rd, Bohr VA. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic acids research. 2005;33:1230–1239.
  • 48. Rhee DB, Ghosh A, Lu J, Bohr VA, Liu Y. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA repair. 2011;10:34–44.
  • 49. McKinnon PJ. DNA repair deficiency and neurological disease. Nature reviews. Neuro-science. 2009;10:100–112.
  • 50. Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical reviews. 2006;106:253–276.
  • 51. Sugasawa K. Regulation of damage recognition in mammalian global genomic nucleo-tide excision repair. Mutation research. 2010;685:29–37.
  • 52. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature reviews. Molecular cell biology. 2014;15:465–481.
  • 53. de Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13:768–785.
  • 54. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:258–262.
  • 55. Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA Dam-age and refractory to repair. PLoS genetics. 2010;6:e1000926.
  • 56. Parikh D, Fouquerel E, Murphy CT, Wang H, Opresko PL. Telomeres are partly shielded from UV-induced damage and proficient for photoproduct-removal by nucleotide excision repair. Nature Communications. (In press)
  • 57. Cordonnier AM, Fuchs RP. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutation research. 1999;435:111–119.
  • 58. Pope-Varsalona H, Liu FJ, Guzik L, Opresko PL. Polymerase eta suppresses telomere de-fects induced by DNA damaging agents. Nucleic acids research. 2014;42:13096–13109.
  • 59. Bak ST, Sakellariou D, Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet. 2014;5:287.
  • 60. Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–399.
  • 61. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Bio. 2006;7:335–346.
  • 62. Jean M, Pelletier J, Hilpert M, Belzile F, Kunze R. Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol Gen Genet. 1999;262:633–642.
  • 63. Peltomaki P. Lynch syndrome genes. Fam Cancer. 2005;4:227–232.
  • 64. Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon can-cer. Hum Mol Genet. 2001;10:735–740.
  • 65. Segui N, Pineda M, Guino E, Borras E, Navarro M, Bellido F, Moreno V, Lazaro C, Blanco I, Capella G, Valle L. Telomere length and genetic anticipation in Lynch syndrome. PloS one. 2013;8:e61286.
  • 66. Rampazzo E, Bertorelle R, Serra L, Terrin L, Candiotto C, Pucciarelli S, Del Bianco P, Nitti D, De Rossi A. Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer. 2010;102:1300–1305.
  • 67. Mendez-Bermudez A, Royle NJ. Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells. Human mutation. 2011;32:939–946.
  • 68. Campbell MR, Wang Y, Andrew SE, Liu Y. Msh2 deficiency leads to chromosomal ab-normalities, centrosome amplification, and telomere capping defect. Oncogene. 2006;25:2531–2536.
  • 69. Li GM. New insights and challenges in mismatch repair: getting over the chromatin hurdle. DNA repair. 2014;19:48–54.
  • 70. Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelation-ship between genetics and epigenetics. Carcinogenesis. 2008;29:673–680.
  • 71. Ellegren H. Microsatellites: simple sequences with complex evolution. Nature reviews. Genetics. 2004;5:435–445.
  • 72. Song N, Li Z, Qin N, Howell CR, Wilson CL, Easton J, et al. Shortened Leukocyte Telomere Length Associates with an Increased Prevalence of Chronic Health Conditions among Sur-vivors of Childhood Cancer: A Report from the St. Jude Lifetime Cohort. Clin Cancer Res. 2020. Epub 2020/01/24. doi: 10.1158/1078-0432.CCR-19-2503. PubMed PMID: 31969337.
  • 73. Walsh, Kyle M. “Telomere Attrition in Childhood Cancer Survivors.” Clinical Cancer Re-search, 2020, doi:10.1158/1078-0432.ccr-20-0380.
  • 74. Walsh KM, Whitehead TP, de Smith AJ, Smirnov IV, Park M, Endicott AA, et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis. 2016;37(6):576-82. Epub 2016/05/22. doi: 10.1093/carcin/bgw037. PubMed PMID: 27207662; PubMed Central PMCID: PMCPMC4876988.
  • 75. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–2576.
  • 76. Park JW, Chen M, Colombo M. et al. Global patterns of hepatocellular carcinoma man-agement from diagnosis to death: the BRIDGE Study. Liver Int. 2015;35(9):2155–2166.
  • 77. Ding XX, Zhu QG, Zhang SM. et al. Precision medicine for hepatocellular carcinoma: driv-er mutations and targeted therapy. Oncotarget. 2017;8(33):55715–55730.
  • 78. Choi, Sung Hoon et al. “HKR3 regulates cell cycle through the inhibition of hTERT in hepatocellular carcinoma cell lines.” Journal of Cancer vol. 11,9 2442-2452. 10 Feb. 2020, doi:10.7150/jca.39380
  • 79. Shen Y, Xi F, Li H. et al. Telomerase reverse transcriptase suppression inhibits cell pro-liferation and promotes cell apoptosis in hepatocellular cancer. IUBMB Life. 2018;70(7):642–648.
Birincil Dil en
Konular Sağlık Bilimleri ve Hizmetleri
Bölüm Derleme

Orcid: 0000-0002-0886-6795
Yazar: Marko BOJKOVİC
Kurum: Barry University
Ülke: United States

Orcid: 0000-0002-0702-8925
Yazar: Sathees CHANDRA (Sorumlu Yazar)
Kurum: Barry University
Ülke: United States


Kabul Tarihi : 31 Ocak 2021
Yayımlanma Tarihi : 25 Mart 2021

AMA Bojkovic M , Chandra S . The effect of Telomere Lengthening on Genetic Diseases. J Contemp Med. 2021; 11(2): 254-261.