Yıl 2021, Cilt 11 , Sayı 3, Sayfalar 405 - 409 2021-05-24

İntramedüller çivi uzunluğunun kırık sahasına etkisi: Sonlu eleman yöntemi ile biyomekanik değerlendirme
Influence of the intramedullary nail length on a fracture site: Biomechanical evaluation with the finite element method

Hakan OFLAZ [1]


Amaç: Femoral şaft kırıklarında yaygın olarak intramedüller kilitli çiviler tercih edilmektedir, ancak çivi tasarımları ve boyutları kırık sahasını ve kemiğin iyileşmesini farklı etkilemektedir. Çivinin uzunluğu ve distaldeki sabitleme vidalarının kırık sahasına uzaklığı dikkat edilmez ise olumsuz yan etkiler gözlemlenebilir. Bu çalışmada, kırık sahası ile distal sabitleme vidaları arasındaki mesafenin iki kırık fragmanı arasındaki etkileri gözlemlenmiştir. Gereç ve Yöntem: Farklı uzunluktaki iki intramedüller çivi karşılaştırılmıştır. Çivilerden biri 301 mm, diğer çivi 251 mm boya sahiptir. Çiviler 1/3 proksimal kırık modeli oluşturulmuş femura bilgisayar destekli tasarım yazılımı desteği ile yerleştirilmiştir. Oluşturulan 3D modeller üzerinde karşılaştırmalı statik analizler yapılmıştır. Bulgular: İki modelin analiz sonrası kırık sahasında gösterdikleri von-Mises gerilmeleri sırasıyla 2.0204e + 009 Pa ve 3.1925e + 007 Pa olarak gözlemlenmiştir. Sonuç olarak distal kilitleme tarafı ile kırık sahası arasındaki mesafe azaldıkça kırık yüzeyindeki gerilimin de azaldığı görülmüştür. Sonuç ve Tartışma: Klinik olarak kırık tarafındaki stresi azaltmak için daha kısa intramedüler çivilerin tercih edilmesi gerektiği sonlu elemanlar analizi ile saptanmıştır. Ayrıca, çivi tercihi yapılırken çap, sabitleme vida açısı ve malzeme özellikleri gibi diğer faktörlere de dikkat edilmelidir.
Introduction: Intramedullar locking nails have been widely preferred in femoral shaft fractures, however, design of the nails cause some problems. If the length of the nail and the distance of the distal locking screws to the fracture site are not considered, negative side effects may be observed. In order to understand the side effect of the distance between fructure gap and the distal locking pin, effect of the nail length were aimed to investigate in this study. Material and Method: Two intramedullary nails with different lengths were compared. One nail was 301 mm and the other nail was 251 mm in length. The nails were inserted into the 1/3 proximal fractured femur with the support of computer aided design (CAD) software. Comparative Static analyses were performed on the 3D models. Results: Different equivalent (von-Mises) stress results were observed on the fructure sides of the two models which were 2.0204e+009 Pa and 3.1925e+007 Pa respectively. Consequently, the stress on the fracture surface decreases as the distance between the distal locking side and the fracture side, decreases. Discussion and Conclusion: Clinically, the shorter nail must be prefered to decrease the stress on the fructure side. Meanwhile, the other factors like diameter, angle of the fixation pin, and material properties should be considered while choosing nails.
  • 1. Jinn L, Son-Jyh Lin, Po-Quang C, Shu-Hua Y. Stress analysis of the distal locking screws for femoral interlocking Nailing. J Orthop Res 2001;19(1):57-63.
  • 2. Brumback RJ. The rationales of interlocking nailing of the femur tibia and humerus. Clin Orthop. 1996;324:292-320.
  • 3. Whittle AP. Fractures of lower extremities. In: Canale ST, ed. Campbell's Operative Orthopaedics 1998;9th ed. St. Louis, MO: Mosby,2042.
  • 4. Winquist R.A, Hansen S.T. Clawson D.K. Closed intramedullary nailing of femoral fractures: A report of five hundred and twenty cases. J Bone Joint Surg Am 1984;66(4):529-539.
  • 5. Bucholz RW, Ross DSE, Lawrence KL. Fatigue fracture of the interlocking nail in the treatment of fractures of the distal part of the femoral shaft. J Bone Joint Surg Am 1987;69(9):1391-9.
  • 6. Wu CC, Shih CH. Biomechanical analysis of the mechanism of interlocking nail failure. Arch Orthop Trauma Surg 1992;111(5):268-72.
  • 7. Lin J, Inoue N, Valdevit A, Hang YS, Hou SM, Chao EYS. Biomechanical comparison of antegrade and retrograde nailing of humeral shaft fractures. Clin Orthop 1998;351:203-13.
  • 8. Tencer A.F., Johnson K.D. Low extremity fixation. In: Biomechanics in orthopedic trauma: Bone fracture and fixation. 1994:Philadelphia: JB Lippincott. 249 p.
  • 9. Internet Biblio Reference “Allesandro Chiarini, The Bel Repository. “http://www.tecno.ior.it/VRLAB/”.
  • 10. Mahar AT, Lee SS, Lalonde FD, Impelluso T, Newton PO. Biomechanical comparison of stainless steel and titanium nails for fixation of simulated femoral fractures. J Pediatr Orthop 2004:24(6):638–41.
  • 11. Mehlman CT, Nemeth NM, Glos DL. Antegrade versus retrograde titanium elastic nail fixation of pediatric distal-third femoral-shaft fractures: a mechanical study. J Orthop Trauma 2006;20(9):608–12.
  • 12. Eveleigh RJ, Miles AW. Measuring the loads carried by intramedullary nails during simulated fracture healing in vitro. J Biomech 1998;31(1):41-41.
  • 13. Erich S, Markus C.M, Martin G., Kurt Z, Reinhold G, Stephan M. P. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech 2001;34(7):849-57.
  • 14. Kuentscher, G. Die Marknagelung von Knochenbruechen. Klinische Wochenschrift 1940;19:200:243.
  • 15. Allen W.C, Piotrowsky G, Burstein A.H, Frankel V.H. Biomechanical principles of intramedullary fixation. Clin Orthop Relat Res 1968;60:13–20.
  • 16. Angel P, Andrew M, Charles N, Peter N, Tom I. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. J Med Eng Phys 2007;30(6):755-60.
Birincil Dil en
Konular Sağlık Bilimleri ve Hizmetleri
Bölüm Orjinal Araştırma
Yazarlar

Orcid: 0000-0003-4366-1901
Yazar: Hakan OFLAZ (Sorumlu Yazar)
Kurum: GEBZE TECHNICAL UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF BIOENGINEERING
Ülke: Turkey


Tarihler

Kabul Tarihi : 18 Mayıs 2021
Yayımlanma Tarihi : 24 Mayıs 2021

AMA Oflaz H . Influence of the intramedullary nail length on a fracture site: Biomechanical evaluation with the finite element method. J Contemp Med. 2021; 11(3): 405-409.