Paraoxonase-1 and Arylesterase Activities in Children with Acute Bronchiolitis
Yıl 2023,
Cilt: 13 Sayı: 6, 1064 - 1070, 30.11.2023
Fatih Akın
,
Abdullah Yazar
,
Esra Türe
,
Ümit Gültekin
,
Ahmet Osman Kılıç
,
Cemile Topçu
,
Dursun Odabaş
,
Alaaddin Yorulmaz
Öz
Abstract
Aim: Acute bronchiolitis is a disease frequently seen in children under two years of age. The paraoxonase 1 (PON1) enzyme functions as an antioxidant. Arylesterase (ARES) is accepted as the indicator of the main protein. The aim of this study is to investigate whether PON1 and ARES activity levels can be used as an indicator of the disease in children with acute
Materials and Methods: Ninety one patients with acute bronchiolitis who atmitted to pediatric emergency unit and 39 age- and sex-matched healthy children were included in the study. Patients were divided into 3 groups as mild, moderate and severe bronchiolitis according to Wang scoring system.
Results: The mean serum PON1 activity levels of all patients with bronchiolitis were 188.05 ± 101.94 U/L, and the mean of the control group was 302.87 ± 170.52 U/L. The mean serum ARES activity levels of all patients with bronchiolitis were 408.44 ± 109.95 kU/L, and the mean of the control group was 785.45 ± 168.45 kU/L. Mean serum PON1 and ARES activity levels were found to be statistically significantly lower in patients with acute bronchiolitis. No statistically significant difference was found among groups according to disease severity.
Conclusion: We found that PON1 and ARES activity levels were lower in patients with acute bronchiolitis than in controls. The results of our study show that low PON 1 and ARES activity levels may play a role in the pathogenesis of acute bronchiolitis and that oxidative stress may have an effect on the development of bronchiolitis.
Destekleyen Kurum
Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Teşekkür
We thank the Scientific Research Projects Coordination Office of Necmettin Erbakan University for financial support to obtain the kits, as a research Project (Project number:171218003).
Kaynakça
- 1. Çokuğraş H, Karadağ B, Dağlı E. Akut bronşiyolit tanı ve tedavi rehberi. Toraks Derg 2002;3:29-35.
- 2. House SA, Ralston SL. Wheezing in infants: Bronchiolitis. In: Kliegman RM, St Geme JW, Blut NJ, et al, editors. Nelson Textbook of Pediatrics. Philadelphia: Elsevier; 2020. p. 2217-20.
- 3. Xu Y, Wang K, Wang Q, Ma Y, Liu X. The Antioxidant Enzyme PON1: A Potential Prognostic Predictor of Acute Ischemic Stroke. Oxid Med Cell Longev 2021:6677111.
- 4. Furlong CE, Marsillach J, Jarvik GP, Costa LG. Paraoxonases-1,-2 and-3: what are their functions? Chem Biol Interact 2016;259:51-62.
- 5. Dundaroz R, Erenberk U, Turel O, Demir AD, Ozkaya E, Erel O. Oxidative and antioxidative status of children with acute bronchiolitis. J Pediatr (Rio J) 2013;89(4):407-11.
- 6. Ozkaya E, Akduman H, Erenberk U, Demir A, Dundaroz MR. Plasma paraoxonase activity and oxidative stress and their relationship to disease severity in children with allergic rhinitis. Am J Rhinol Allergy 2013;27(1):13-7.
- 7. Emin O, Hasan A, Rusen D. Plasma paraoxonase, oxidative status level, and their relationship with asthma control test in children with asthma. Allergol Immunopathol (Madr) 2015;43(4):346-52.
- 8. Selek S, Cosar N, Kocyigit A, et al. PON1 activity and total oxidant status in patients with active pulmonary tuberculosis. Clin Biochem 2008;41(3):140-4.
- 9. Torun E, Gedik AH, Cakir E, Umutoglu T, Gok O, Kilic U. Serum paraoxonase 1 activity and oxidative stress in pediatric patients with pulmonary tuberculosis. Med Princ Pract 2014;23(5):426-31.
- 10. Rumora L, Rajković MG, Kopčinović LM, Pancirov D, Čepelak I, Grubišić TŽ. Paraoxonase 1 activity in patients with chronic obstructive pulmonary disease. COPD 2014;11(5):539-45.
- 11. Cece H, Çakmak A, Yıldız S, et al. Carotid Intima-Media Thickness and Paraoxonase Activity in BetaThalassaemia Major Children. Selcuk Med J 2012;28(1):32-5
- 12. Wang EE, Milner RA, Navas L, Maj H. Observer agreement for respiratory signs and oximetry in infants hospitalized with lower respiratory infections. Am Rev Respir Dis 1992;145(1):106-9.
- 13. Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008;122(3):456-70.
- 14. Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology 2009;14(1):27-38.
- 15. Hull J, Vervaart P, Grimwood K, Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 1997;52(6):557-60.
- 16. Ballard PL, Truog WE, Merrill JD, et al. Plasma biomarkers of oxidative stress: relationship to lung disease and inhaled nitric oxide therapy in premature infants. Pediatrics 2008;121(3):555-61.
- 17. Hosakote YM, Jantzi PD, Esham DL, et al. Viral mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 2011;183(11):1550-60.
- 18. Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhaes CL. Implications of oxidative stress on viral pathogenesis. Arch Virol 2017;162(4):907-17.
- 19. Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem 2007;14(3):339-51.
- 20. Aydin O, Kaynak MO, Sabuncuoglu S, et al. The Effects of COVID-19 on Oxidative Stress and Antioxidant Defense Mechanism in Children. J Pediatr Infect Dis 2022;17(2):112-8.
- 21. Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998;217(1):64-73.
- 22. Beck MA. Nutritionally induced oxidative stress: effect on viral disease. Am J Clin Nutr 2000;71(6 Suppl):1676S-1681S.
- 23. Akaike T, Noguchi Y, Ijiri S, et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996;93(6):2448-53.
- 24. Ng MP, Lee JC, Loke WM, et al. Does influenza A infection increase oxidative damage?. Antioxid Redox Signal 2014;21(7):1025-31.
- 25. Hennet T, Peterhans E, Stocker R. Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J Gen Virol 1992;73(1):39-46.
- 26. Lin X, Wang R, Zou W, et al. The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 2016;8(1):13.
- 27. Mochizuki H, Todokoro M, Arakawa H. RS virus-induced inflammation and the intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 2009;32(4):252-64.
- 28. Moreno‐Solís G, dela Torre‐Aguilar MJ, Torres‐Borrego J, et al. Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J 2017;11(6):839-46
Akut Bronşiyolitli Çocuklarda Paraoksonaz-1 ve Arilesteraz Aktiviteleri
Yıl 2023,
Cilt: 13 Sayı: 6, 1064 - 1070, 30.11.2023
Fatih Akın
,
Abdullah Yazar
,
Esra Türe
,
Ümit Gültekin
,
Ahmet Osman Kılıç
,
Cemile Topçu
,
Dursun Odabaş
,
Alaaddin Yorulmaz
Öz
Öz
Amaç: Akut bronşiolit iki yaş altı çocuklarda sık görülen bir hastalıktır. Paraoksonaz 1 (PON1) enzimi antioksidan görevi gören bir enzimdir. Arilesteraz (ARES) ana proteinin göstergesi olarak kabul edilmektedir. Bu çalışmanın amacı akut solunum yolu enfeksiyonu olan çocuklarda PON1 ve ARES aktivite düzeylerinin hastalık göstergesi olarak kullanılıp kullanılamayacağını araştırmaktır.
Gereç ve Yöntem: Çalışmaya çocuk acil servisine akut bronşiolit nedeniyle başvuran 91 hasta ile yaş ve cinsiyet olarak eşleştirilmiş 39 sağlıklı çocuk dahil edildi. Hastalar Wang skorlama sistemine göre hafif, orta ve şiddetli bronşiolit olarak 3 gruba ayrıldı.
Bulgular: Tüm bronşiyolitli hastaların ortalama serum PON1 aktivite düzeyleri 188,05 ± 101,94 U/L, kontrol grubunun ortalaması 302,87 ± 170,52 U/L idi. Tüm bronşiyolitli hastaların ortalama serum ARES aktivite düzeyleri 408,44 ± 109,95 kU/L, kontrol grubunun ortalaması 785,45 ± 168,45 kU/L idi. Akut bronşiyolitli hastalarda ortalama serum PON1 ve ARES aktivite düzeyleri istatistiksel olarak anlamlı derecede düşük bulundu. Hastalık şiddetine göre gruplar arasında istatistiksel olarak anlamlı fark bulunma
Sonuç: Akut bronşiyolitli hastalarda PON1 ve ARES aktivite düzeylerinin kontrollere göre daha düşük olduğunu bulduk. Çalışmamızın sonuçları, düşük PON 1 ve ARES aktivite düzeylerinin, akut bronşiyolit patogenezinde rol oynayabileceğini ve oksidatif stresin bronşiolit gelişimi üzerine etkisi olabileceğini göstermektedir.
Kaynakça
- 1. Çokuğraş H, Karadağ B, Dağlı E. Akut bronşiyolit tanı ve tedavi rehberi. Toraks Derg 2002;3:29-35.
- 2. House SA, Ralston SL. Wheezing in infants: Bronchiolitis. In: Kliegman RM, St Geme JW, Blut NJ, et al, editors. Nelson Textbook of Pediatrics. Philadelphia: Elsevier; 2020. p. 2217-20.
- 3. Xu Y, Wang K, Wang Q, Ma Y, Liu X. The Antioxidant Enzyme PON1: A Potential Prognostic Predictor of Acute Ischemic Stroke. Oxid Med Cell Longev 2021:6677111.
- 4. Furlong CE, Marsillach J, Jarvik GP, Costa LG. Paraoxonases-1,-2 and-3: what are their functions? Chem Biol Interact 2016;259:51-62.
- 5. Dundaroz R, Erenberk U, Turel O, Demir AD, Ozkaya E, Erel O. Oxidative and antioxidative status of children with acute bronchiolitis. J Pediatr (Rio J) 2013;89(4):407-11.
- 6. Ozkaya E, Akduman H, Erenberk U, Demir A, Dundaroz MR. Plasma paraoxonase activity and oxidative stress and their relationship to disease severity in children with allergic rhinitis. Am J Rhinol Allergy 2013;27(1):13-7.
- 7. Emin O, Hasan A, Rusen D. Plasma paraoxonase, oxidative status level, and their relationship with asthma control test in children with asthma. Allergol Immunopathol (Madr) 2015;43(4):346-52.
- 8. Selek S, Cosar N, Kocyigit A, et al. PON1 activity and total oxidant status in patients with active pulmonary tuberculosis. Clin Biochem 2008;41(3):140-4.
- 9. Torun E, Gedik AH, Cakir E, Umutoglu T, Gok O, Kilic U. Serum paraoxonase 1 activity and oxidative stress in pediatric patients with pulmonary tuberculosis. Med Princ Pract 2014;23(5):426-31.
- 10. Rumora L, Rajković MG, Kopčinović LM, Pancirov D, Čepelak I, Grubišić TŽ. Paraoxonase 1 activity in patients with chronic obstructive pulmonary disease. COPD 2014;11(5):539-45.
- 11. Cece H, Çakmak A, Yıldız S, et al. Carotid Intima-Media Thickness and Paraoxonase Activity in BetaThalassaemia Major Children. Selcuk Med J 2012;28(1):32-5
- 12. Wang EE, Milner RA, Navas L, Maj H. Observer agreement for respiratory signs and oximetry in infants hospitalized with lower respiratory infections. Am Rev Respir Dis 1992;145(1):106-9.
- 13. Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008;122(3):456-70.
- 14. Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology 2009;14(1):27-38.
- 15. Hull J, Vervaart P, Grimwood K, Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 1997;52(6):557-60.
- 16. Ballard PL, Truog WE, Merrill JD, et al. Plasma biomarkers of oxidative stress: relationship to lung disease and inhaled nitric oxide therapy in premature infants. Pediatrics 2008;121(3):555-61.
- 17. Hosakote YM, Jantzi PD, Esham DL, et al. Viral mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 2011;183(11):1550-60.
- 18. Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhaes CL. Implications of oxidative stress on viral pathogenesis. Arch Virol 2017;162(4):907-17.
- 19. Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem 2007;14(3):339-51.
- 20. Aydin O, Kaynak MO, Sabuncuoglu S, et al. The Effects of COVID-19 on Oxidative Stress and Antioxidant Defense Mechanism in Children. J Pediatr Infect Dis 2022;17(2):112-8.
- 21. Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998;217(1):64-73.
- 22. Beck MA. Nutritionally induced oxidative stress: effect on viral disease. Am J Clin Nutr 2000;71(6 Suppl):1676S-1681S.
- 23. Akaike T, Noguchi Y, Ijiri S, et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996;93(6):2448-53.
- 24. Ng MP, Lee JC, Loke WM, et al. Does influenza A infection increase oxidative damage?. Antioxid Redox Signal 2014;21(7):1025-31.
- 25. Hennet T, Peterhans E, Stocker R. Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J Gen Virol 1992;73(1):39-46.
- 26. Lin X, Wang R, Zou W, et al. The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 2016;8(1):13.
- 27. Mochizuki H, Todokoro M, Arakawa H. RS virus-induced inflammation and the intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 2009;32(4):252-64.
- 28. Moreno‐Solís G, dela Torre‐Aguilar MJ, Torres‐Borrego J, et al. Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J 2017;11(6):839-46