Usage of Magnetic Resonance Imaging-Based Texture Analysis Features in Discrimination of Benign and Malignant Sinonasal Tumors
Yıl 2024,
Cilt: 14 Sayı: 6, 305 - 308, 30.11.2024
Seyit Erol
,
Halil İbrahim Duran
,
Ozan Berk Gül
,
Abidin Kılınçer
,
Emine Uysal
,
Mehmet Sedat Durmaz
,
Omer Erdur
,
Hakan Cebeci
Öz
Aim: The objective of this study was to differentiate between benign and malignant sinonasal tumors using magnetic resonance imaging (MRI)-based texture analysis features.
Materials and Method: Histopathologically proven benign or malignant sinonasal tumor patients were included in the study from MRI examinations performed between January 2013 and December 2020. Inclusion criteria included a tumor size of at least 1 cm and preoperative magnetic resonance imaging with axial T1W, axial fat-suppressed T2W, and axial T1W postcontrast sequences. After the images were transferred to a dedicated workstation, texture analysis calculations were performed. Differences between benign and malignant groups were compared.
Results: The mean age of 37 patients (8 female, 29 male) included in the study was 50.8 ± 21.9 years. In our study, we found no statistically significant difference between malignant and benign sinonasal tumors in nine tissue analysis parameters obtained by MRI.
Conclusion: MRI-based texture analysis needs identical MRI protocols for evaluating tumors. MRI-based texture analysis is not a useful diagnostic tool to discriminate between benign and malignant sinonasal tumors when specific pathologic types are not selected and scanning protocols are not identical.
Kaynakça
- 1. Truong T, Perez-Ordoñez B. Selected epithelial sinonasal neoplasms: an update. Diagnostic Histopathology 2019.
- 2. Guizani MA, Jrad M, Benjelloun GT, et al., editors. Sinonasal neoplasms: key points of the report2019: European Congress of Radiology 2019.
- 3. Pirimoğlu B, Sade R. Paranazal sinüs görüntülemede 320-sıralı multidedektör bilgisayarlı tomografi kullanarak düşük doz ve yüksek kalitede görüntü elde edebilir miyiz? Van Tıp Dergisi;25:22-27.
- 4. Peker A, Peker E, Erden İ. Benign ve malign sinonazal kitlelerin ayrımında difüzyon MR görüntüleme. Dicle Tıp Dergisi 2014;41:522-525.
- 5. Fujima N, Homma A, Harada T, et al. The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 2019;19:5.
- 6. Dang M, Lysack J, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. American Journal of Neuroradiology 2015;36:166-170.
- 7. Gencturk M, Ozturk K, Caicedo-Granados E, et al. Application of diffusion-weighted MR imaging with ADC measurement for distinguishing between the histopathological types of sinonasal neoplasms. Clinical imaging 2019;55:76-82.
- 8. Agarwal M, Policeni B, editors. Sinonasal Neoplasms. Seminars in roentgenology; 2019.
- 9. Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights into imaging 2012;3:573-589.
- 10. Choi JY. Radiomics and deep learning in clinical imaging: what should we do? : Springer; 2018.
- 11. Fruehwald-Pallamar J, Hesselink J, Mafee M, et al., editors. Texture-based analysis of 100 MR examinations of head and neck tumors–is it possible to discriminate between benign and malignant masses in a multicenter trial? RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; 2016: © Georg Thieme Verlag KG.
- 12. Jansen JF, Lu Y, Gupta G, et al. Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. World journal of radiology 2016;8:90.
- 13. Ramkumar S, Ranjbar S, Ning S, et al. MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma. American Journal of Neuroradiology 2017;38:1019-1025.
- 14. Fruehwald‐Pallamar J, Czerny C, Holzer‐Fruehwald L, et al. Texture‐based and diffusion‐weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR in biomedicine 2013;26:1372-1379.
Benign ve Malign Sinonazal Tümörlerin Ayırımında Manyetik Rezonans Görüntüleme Tabanlı Doku Analizi Özelliklerinin Kullanımı
Yıl 2024,
Cilt: 14 Sayı: 6, 305 - 308, 30.11.2024
Seyit Erol
,
Halil İbrahim Duran
,
Ozan Berk Gül
,
Abidin Kılınçer
,
Emine Uysal
,
Mehmet Sedat Durmaz
,
Omer Erdur
,
Hakan Cebeci
Öz
Amaç: Bu çalışmanın amacı, manyetik rezonans görüntüleme (MRG) tabanlı doku analizi özelliklerini kullanarak benign ve malign sinonazal tümörleri ayırt etmektir.
Gereç ve Yöntemler: Ocak 2013 ile Aralık 2020 tarihleri arasında çekilmiş MRG incelemelerinden histopatolojik olarak kanıtlanmış benign ya da malign sinonazal tümor hastaları çalışmaya dahil edildi. Dahil edilme kriterleri 1 cm’den büyük tumor boyutu ve MR görüntülerinde T1 aksiyal, T2 aksiyal ve kontrastlı T1 aksiyal sekansların bulunmasıdır. Görüntüler iş istasyonuna aktarıldıktan sonra doku analizi hesaplamaları yapıldı. Benign ve malign gruplar arasındaki farklılıklar karşılaştırıldı.
Bulgular: Çalışmaya dahil edilen 37 hastanın ortalama yaşı 50,8±21,9 (8 kadın, 29 erkek). Çalışmamızda MRI ile elde edilen dokuz doku analiz parametresi malign ve benign sinonazal tümörler arasında istatistiksel olarak farklılık bulmadık.
Sonuç: MRG tabanlı doku analizi ile tümörlerin değerlendirilmesinde çekim protokollerinin aynı olması gerekmektedir. Spesifik patolojik tipler seçilmediğinde ve çekim protokolleri aynı olmadığında sinonazal tümörlerde benign ve malign ayrımında MRG tabanlı doku analizi yararlı değildir.
Kaynakça
- 1. Truong T, Perez-Ordoñez B. Selected epithelial sinonasal neoplasms: an update. Diagnostic Histopathology 2019.
- 2. Guizani MA, Jrad M, Benjelloun GT, et al., editors. Sinonasal neoplasms: key points of the report2019: European Congress of Radiology 2019.
- 3. Pirimoğlu B, Sade R. Paranazal sinüs görüntülemede 320-sıralı multidedektör bilgisayarlı tomografi kullanarak düşük doz ve yüksek kalitede görüntü elde edebilir miyiz? Van Tıp Dergisi;25:22-27.
- 4. Peker A, Peker E, Erden İ. Benign ve malign sinonazal kitlelerin ayrımında difüzyon MR görüntüleme. Dicle Tıp Dergisi 2014;41:522-525.
- 5. Fujima N, Homma A, Harada T, et al. The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies. Cancer Imaging 2019;19:5.
- 6. Dang M, Lysack J, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. American Journal of Neuroradiology 2015;36:166-170.
- 7. Gencturk M, Ozturk K, Caicedo-Granados E, et al. Application of diffusion-weighted MR imaging with ADC measurement for distinguishing between the histopathological types of sinonasal neoplasms. Clinical imaging 2019;55:76-82.
- 8. Agarwal M, Policeni B, editors. Sinonasal Neoplasms. Seminars in roentgenology; 2019.
- 9. Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights into imaging 2012;3:573-589.
- 10. Choi JY. Radiomics and deep learning in clinical imaging: what should we do? : Springer; 2018.
- 11. Fruehwald-Pallamar J, Hesselink J, Mafee M, et al., editors. Texture-based analysis of 100 MR examinations of head and neck tumors–is it possible to discriminate between benign and malignant masses in a multicenter trial? RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; 2016: © Georg Thieme Verlag KG.
- 12. Jansen JF, Lu Y, Gupta G, et al. Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. World journal of radiology 2016;8:90.
- 13. Ramkumar S, Ranjbar S, Ning S, et al. MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma. American Journal of Neuroradiology 2017;38:1019-1025.
- 14. Fruehwald‐Pallamar J, Czerny C, Holzer‐Fruehwald L, et al. Texture‐based and diffusion‐weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR in biomedicine 2013;26:1372-1379.