Araştırma Makalesi
BibTex RIS Kaynak Göster

Kurtboğaz ile Hesaplamalı Tasarım: Birleştirici Tasarım Algoritması ile Ahşap Yapıların Üretimi

Yıl 2024, , 235 - 258, 30.09.2024
https://doi.org/10.53710/jcode.1514063

Öz

Bu makale, geleneksel ahşap geçme yapım yöntemi olan Kurtboğaz’ın form bulma kapasitesini araştırmakta ve bu yöntemi korumak ve çağdaş mimariye entegre etmek amacıyla hesaplamalı tasarım teknikleri aracılığıyla yeni mimari formlar ve olasılıklar keşfetmeyi hedeflemektedir. Çalışma, tasarımcı tarafından belirlenen hareket kurallarına ve Kurtboğaz'ın basit montaj kurallarına dayalı olarak farklı yapılar oluşturan ve rastgele kural uygulaması yoluyla öngörülemeyen formlar ortaya çıkaran Birleştirici Tasarım Algoritmasını sunar. Ayrıca bu çalışma, bir tür makine öğrenimi olan pekiştirmeli öğrenmenin bu tasarım sürecini teorik bir çerçevede nasıl iyileştirebileceğini araştırmaktadır. Kurtboğaz’ın modüler ve yeniden yapılandırılabilir özellikleri Kurtboğaz’ın form bulma kapasitesini incelemek için güçlü bir temel sağlamaktadır. Birleştirici Tasarım algoritması geleneksel mimariyi hesaplamalı tasarım ile yorumlamak suretiyle Kurtboğaz’ın basit yapım-montaj kuralları üzerinden sayısız kombinasyon oluşturma potansiyelini gösterir. Birleştirici Tasarım Algoritması, rastgele kural uygulamasını mümkün kılarak çeşitli biçimlerin oluşmasını sağlamaktadır. Ancak, Birleştirici Tasarım Algoritması’nın rastgele birleştirme nedeniyle uygulanmasında çarpışma önleme, yapısal bütünlük, sınır tespiti ve yapısal parametrelerin optimizasyonu gibi çeşitli zorluklarla karşılaşılabilir. Bu zorlukların üstesinden gelmek için, bu çalışma Birleştirici Tasarım Algoritması çerçevesine Pekiştirmeli Öğrenme’nin (PÖ) teorik entegrasyonunu önermektedir. PÖ’nün entegrasyonu, algoritmanın form bulma sürecini uyarlamalı olarak öğrenmesini ve optimize etmesini sağlayarak, Kurtboğaz yönteminin performansını ve uygulanabilirliğini çağdaş mimari pratikler bağlamında artırabilir. Sonuç olarak çalışma Kurtboğaz’ın algoritmik kural tabanlı bir mantık içerisinde form bulma yeteneğini onun temel özelliklerini keşfederek incelemekte ve PÖ ile desteklenen bir tasarım süreci geliştirmektedir.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Adel, A., Thoma, A., Helmreich, M. & Gramazio, F. (2018). Design of Robotically Fabricated Timber Frame Structures, In Ed.: Anzalone, Phillip, Del Signore, Marcella John Wit, Andrew, Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (pp. 394-403), Universidad Iberoamericana, Mexico City.
  • Akbaş, G. (2015). Geleneksel Yapım Teknikleri ve Mekan İlişkisi: Uzungöl ve Taşkıran Örnekleri. (Master’s Thesis, Atılım University).
  • Akbaş, G. (2019). Vernaküler Mimaride Süreklilik ve Kurtboğaz Tekniği İlişkisi. In Erçetin, A., Aydemir, D. (Eds. ), Geleceğin Dünyasinda Bilimsel ve Mesleki Çalışmalar 2019: Mimarlik ve Tasarım, (1-10). Ekin Basım Yayın Dağıtım.
  • Akbaş, G., Özcan, Z. (2018). Yapım tekniği farklılıklarının mekana yansıması: Uzungöl ve Taşkıran örneği. ATA Planlama Ve Tasarım Dergisi, 2(2), 47-58. https://dergipark.org.tr/tr/pub/ataplanlamavetasarim/issue/41536/471228
  • Bianconi, F., Filippucci, M. (2019). Digital Wood Design, Lecture Notes in Civil Engineering 24, Springer Nature. https://doi.org/10.1007/978-3-030-03676-8_51
  • Creangă, E., Ciotoiu, I., Gheorghiu, D., Nash, G. (2010). Vernacular architecture as a model for contemporary design. WIT Transactions on Ecology and the Environment, 128, 157-71. https://www.researchgate.net/publication/271438016_Vernacular_architecture_as_a_model_for_contemporary_design
  • Golden, EM. (2017). Building from tradition: local materials and methods in contemporary architecture. London and New York. Routledge.
  • Hebbert, J. (2013, September 17). NOC Python Grasshopper: 01 [Video]. YouTube. https://www.youtube.com/watch?v=Kyi_K85Gsm4
  • Hebbert, J. (2013, September 17). NOC Python Grasshopper: 02 [Video]. YouTube. https://www.youtube.com/watch?v=FnBKISoPRAE&t=11s
  • Hua, H., Hovestadt, L. & Li, B. (2022). Reconfigurable Modular System of Prefabricated Timber Grids. Computer-Aided Design, Volume 146, May 2022, 2-13. https://doi.org/10.1016/j.cad.2022.103230.
  • Huang, CH. (2021, March). Reinforcement Learning for Architectural Design-Build: Opportunity of Machine Learning in a Material-informed Circular Design Strategy. In Proceedings of the CAADRIA [Volume. 1]. pp: 171-180.
  • Juergen, G. (2000). Swiss Sound Pavilion. zumthor.bjorkan. Retrieved 2024, June 6. https://zumthor.bjorkan.no/project/pavilion/
  • Kuma, Kengo & Imperadori, Marco & Clozza, Marco & Hirano, Toshiki & Vanossi, Andrea & Brunone, Federica. (2019). KODAMA: A Polyhedron Sculpture in the Forest at Arte Sella: Innovative Techniques of Representation in Architectural Design. http://dx.doi.org/10.1007/978-3-030-03676-8_51
  • Kitagawara, Atsushi & Imperadori, Marco & Kuwabara, Ryosuke & Brunone, Federica & Matsukawa, Mayuko. (2019). Wooden Byobu. From Architectural Façade to Sculpture: Innovative Techniques of Representation in Architectural Design. http://dx.doi.org/10.1007/978-3-030-03676-8_52
  • Lye, J., Andrasek, A. (2021). Machine Learning Combinatorial Frameworks for Architecture. International Journal of Innovation and Economic Development, 7(2), 20-29. https://doi.org/10.18775/ijied.1849-7551-7020.2015.72.2002.
  • Monoceros. (2021). Monoceros. Retrieved September 2, 2024, from https://monoceros.sub.digital/
  • Morby, A. (2015, October 20). Kengo kuma installs climbable wooden pavilion in Paris park. Dezeen. Retrieved 2024, June 6, https://www.dezeen.com/2015/10/20/kengo-kuma-installs-climbable-wooden-yure-pavilion-jardins-des-tuileries-paris-fiac/
  • Nagy, D. (2014, March 2). Python scripting in Grasshopper – Scripting form (2/2) [Video]. YouTube. https://www.youtube.com/watch?v=Za5qPUeb0Mo
  • Österlund, T. & Wikar, M. (2019). Freeform Timber Structures: Digital Design and Fabrication. In Ed.: Hudert, M., Pfeiffer, S. In Rethinking Wood Future Dimensions of Timber Assembly. Birkhäuser, pp. 133-150.
  • Ottenhaus, L. M., Yan, Z., Brandner, R., Leardini, P., Fink, G., & Jockwer, R. (2023). Design for adaptability, disassembly and reuse: A review of reversible timber connection systems. Construction and Building Materials, 400 (2023), 2-16. https://doi.org/10.1016/j.conbuildmat.2023.132823
  • Orhan, F., Çavuş, A. (2019). Artvin ilindeki geleneksel kırsal mesken mimarisine bir örnek: ahşap yığma evler. 1st İstanbul International Geography Congress Proceedings. Istanbul University Press. https://doi.org/10.26650/PB/PS12.2019.002.042
  • Özgüner, O. (2018). Köyde mimari doğu karadeniz. İstanbul. Dergah Yayınları.
  • Plethora Project. (2013, May 22). PYTHON in Grasshopper 02: Recursive aggregation [Video]. YouTube. https://www.youtube.com/watch?v=3Z4YVCOk02k
  • Retsin, G. (2019). Discrete architecture in the age of automation. In G. Retsin (Ed.), Discrete: Reappraising the digital in architecture. Architectural Design, 89(2), 7-13. John Wiley & Sons.
  • Rossi, A., & Tessmann, O. (2017). Designing with digital materials: A computational framework for discrete assembly design. In P. Janssen, P. Loh, A. Raonic, & M. A. Schnabel (Eds.), Protocols, flows and glitches: Proceedings of the 22nd Conference of The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Hong Kong.
  • Sözen, M., Eruzun, C. (1992). Anadolu’da ev ve insan. İstanbul. Emlak Bankası & Creative Yayıncılık.
  • Tuna, C. (2008). Orta Karedeniz Bölgesi Sahil Kesiminde Geleneksel Mimari. Arkeoloji ve Sanat Yayınları.
  • Wang, D., Snooks, R. (2021). Artificial intuitions of generative design: an approach based on reinforcement learning. In Proceedings of the 2020 DigitalFUTURES: The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020). pp: 189-198. Springer Singapore.
  • Wibranek, B., Liu, Y., Funk, N., Belousov, B., Peters, J., Tessmann, O. (2021). Reinforcement learning for sequential assembly of SL-blocks-self-interlocking combinatorial design based on machine learning. In Proceedings of the 39th eCAADe Conference [Volume. 1] (pp: 27-36).
  • Xu, Q., Teixeira, F. F., & Shafiei, M. (2023). Frameworks in flexible timber design systems combining mortise-tenon joints and discrete timber blocks. In W. Dokonal, U. Hirschberg, & G. Wurzer (Eds.), Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, Volume 1 – Digital Design Reconsidered (pp. 283-292), Graz University of Technology. https://doi.org/10.52842/conf.ecaade.2023.1.283

Computational Design with Kurtboğaz: The Generation of Timber Structures with an Aggregative Design Algorithm

Yıl 2024, , 235 - 258, 30.09.2024
https://doi.org/10.53710/jcode.1514063

Öz

This paper investigates the form-finding capacity of the traditional timber-joint construction method, Kurtboğaz, aiming to explore new architectural forms and possibilities through computational design techniques to preserve vernacular construction methods and integrate them into contemporary architecture. It presents an Aggregative Design Algorithm (ADA) that creates different structures based on designer rules and simple assembly rules of Kurtboğaz, leading to unique emergent forms through random rule application. The paper also explores how reinforcement learning, a type of machine learning, can improve this design process through a theoretical framework. The study tries to use a rule-based generative algorithm to explore the modular and reconfigurable characteristics of the Kurtboğaz. The ADA enables random rule application, leading to diverse forms. However, several challenges may be encountered during the application of ADA because of its random aggregation, such as collision avoidance, structural integrity, boundary detection, and the optimization of structural parameters. The study suggests using Reinforcement Learning (RL) in the ADA framework to address these problems. Incorporating RL is anticipated to enable the algorithm to adaptively learn and optimize the form-finding process, enhancing the performance and applicability of the Kurtboğaz method in contemporary architectural practice. In the future, with this generative process described by the study, designs that create spatial differences with the help of walls, floors, and rooms on a human scale can be realized. The study also plans to explore the synergy between craftsmanship and digital fabrication in the future

Proje Numarası

-

Kaynakça

  • Adel, A., Thoma, A., Helmreich, M. & Gramazio, F. (2018). Design of Robotically Fabricated Timber Frame Structures, In Ed.: Anzalone, Phillip, Del Signore, Marcella John Wit, Andrew, Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (pp. 394-403), Universidad Iberoamericana, Mexico City.
  • Akbaş, G. (2015). Geleneksel Yapım Teknikleri ve Mekan İlişkisi: Uzungöl ve Taşkıran Örnekleri. (Master’s Thesis, Atılım University).
  • Akbaş, G. (2019). Vernaküler Mimaride Süreklilik ve Kurtboğaz Tekniği İlişkisi. In Erçetin, A., Aydemir, D. (Eds. ), Geleceğin Dünyasinda Bilimsel ve Mesleki Çalışmalar 2019: Mimarlik ve Tasarım, (1-10). Ekin Basım Yayın Dağıtım.
  • Akbaş, G., Özcan, Z. (2018). Yapım tekniği farklılıklarının mekana yansıması: Uzungöl ve Taşkıran örneği. ATA Planlama Ve Tasarım Dergisi, 2(2), 47-58. https://dergipark.org.tr/tr/pub/ataplanlamavetasarim/issue/41536/471228
  • Bianconi, F., Filippucci, M. (2019). Digital Wood Design, Lecture Notes in Civil Engineering 24, Springer Nature. https://doi.org/10.1007/978-3-030-03676-8_51
  • Creangă, E., Ciotoiu, I., Gheorghiu, D., Nash, G. (2010). Vernacular architecture as a model for contemporary design. WIT Transactions on Ecology and the Environment, 128, 157-71. https://www.researchgate.net/publication/271438016_Vernacular_architecture_as_a_model_for_contemporary_design
  • Golden, EM. (2017). Building from tradition: local materials and methods in contemporary architecture. London and New York. Routledge.
  • Hebbert, J. (2013, September 17). NOC Python Grasshopper: 01 [Video]. YouTube. https://www.youtube.com/watch?v=Kyi_K85Gsm4
  • Hebbert, J. (2013, September 17). NOC Python Grasshopper: 02 [Video]. YouTube. https://www.youtube.com/watch?v=FnBKISoPRAE&t=11s
  • Hua, H., Hovestadt, L. & Li, B. (2022). Reconfigurable Modular System of Prefabricated Timber Grids. Computer-Aided Design, Volume 146, May 2022, 2-13. https://doi.org/10.1016/j.cad.2022.103230.
  • Huang, CH. (2021, March). Reinforcement Learning for Architectural Design-Build: Opportunity of Machine Learning in a Material-informed Circular Design Strategy. In Proceedings of the CAADRIA [Volume. 1]. pp: 171-180.
  • Juergen, G. (2000). Swiss Sound Pavilion. zumthor.bjorkan. Retrieved 2024, June 6. https://zumthor.bjorkan.no/project/pavilion/
  • Kuma, Kengo & Imperadori, Marco & Clozza, Marco & Hirano, Toshiki & Vanossi, Andrea & Brunone, Federica. (2019). KODAMA: A Polyhedron Sculpture in the Forest at Arte Sella: Innovative Techniques of Representation in Architectural Design. http://dx.doi.org/10.1007/978-3-030-03676-8_51
  • Kitagawara, Atsushi & Imperadori, Marco & Kuwabara, Ryosuke & Brunone, Federica & Matsukawa, Mayuko. (2019). Wooden Byobu. From Architectural Façade to Sculpture: Innovative Techniques of Representation in Architectural Design. http://dx.doi.org/10.1007/978-3-030-03676-8_52
  • Lye, J., Andrasek, A. (2021). Machine Learning Combinatorial Frameworks for Architecture. International Journal of Innovation and Economic Development, 7(2), 20-29. https://doi.org/10.18775/ijied.1849-7551-7020.2015.72.2002.
  • Monoceros. (2021). Monoceros. Retrieved September 2, 2024, from https://monoceros.sub.digital/
  • Morby, A. (2015, October 20). Kengo kuma installs climbable wooden pavilion in Paris park. Dezeen. Retrieved 2024, June 6, https://www.dezeen.com/2015/10/20/kengo-kuma-installs-climbable-wooden-yure-pavilion-jardins-des-tuileries-paris-fiac/
  • Nagy, D. (2014, March 2). Python scripting in Grasshopper – Scripting form (2/2) [Video]. YouTube. https://www.youtube.com/watch?v=Za5qPUeb0Mo
  • Österlund, T. & Wikar, M. (2019). Freeform Timber Structures: Digital Design and Fabrication. In Ed.: Hudert, M., Pfeiffer, S. In Rethinking Wood Future Dimensions of Timber Assembly. Birkhäuser, pp. 133-150.
  • Ottenhaus, L. M., Yan, Z., Brandner, R., Leardini, P., Fink, G., & Jockwer, R. (2023). Design for adaptability, disassembly and reuse: A review of reversible timber connection systems. Construction and Building Materials, 400 (2023), 2-16. https://doi.org/10.1016/j.conbuildmat.2023.132823
  • Orhan, F., Çavuş, A. (2019). Artvin ilindeki geleneksel kırsal mesken mimarisine bir örnek: ahşap yığma evler. 1st İstanbul International Geography Congress Proceedings. Istanbul University Press. https://doi.org/10.26650/PB/PS12.2019.002.042
  • Özgüner, O. (2018). Köyde mimari doğu karadeniz. İstanbul. Dergah Yayınları.
  • Plethora Project. (2013, May 22). PYTHON in Grasshopper 02: Recursive aggregation [Video]. YouTube. https://www.youtube.com/watch?v=3Z4YVCOk02k
  • Retsin, G. (2019). Discrete architecture in the age of automation. In G. Retsin (Ed.), Discrete: Reappraising the digital in architecture. Architectural Design, 89(2), 7-13. John Wiley & Sons.
  • Rossi, A., & Tessmann, O. (2017). Designing with digital materials: A computational framework for discrete assembly design. In P. Janssen, P. Loh, A. Raonic, & M. A. Schnabel (Eds.), Protocols, flows and glitches: Proceedings of the 22nd Conference of The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). Hong Kong.
  • Sözen, M., Eruzun, C. (1992). Anadolu’da ev ve insan. İstanbul. Emlak Bankası & Creative Yayıncılık.
  • Tuna, C. (2008). Orta Karedeniz Bölgesi Sahil Kesiminde Geleneksel Mimari. Arkeoloji ve Sanat Yayınları.
  • Wang, D., Snooks, R. (2021). Artificial intuitions of generative design: an approach based on reinforcement learning. In Proceedings of the 2020 DigitalFUTURES: The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020). pp: 189-198. Springer Singapore.
  • Wibranek, B., Liu, Y., Funk, N., Belousov, B., Peters, J., Tessmann, O. (2021). Reinforcement learning for sequential assembly of SL-blocks-self-interlocking combinatorial design based on machine learning. In Proceedings of the 39th eCAADe Conference [Volume. 1] (pp: 27-36).
  • Xu, Q., Teixeira, F. F., & Shafiei, M. (2023). Frameworks in flexible timber design systems combining mortise-tenon joints and discrete timber blocks. In W. Dokonal, U. Hirschberg, & G. Wurzer (Eds.), Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe, Volume 1 – Digital Design Reconsidered (pp. 283-292), Graz University of Technology. https://doi.org/10.52842/conf.ecaade.2023.1.283
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimari Bilgi İşlem ve Görselleştirme Yöntemleri
Bölüm Araştırma Makaleleri
Yazarlar

İlay Beylun Ertan 0000-0002-0823-4106

Pınar Çalışır Adem

Proje Numarası -
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 10 Temmuz 2024
Kabul Tarihi 16 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ertan, İ. B., & Çalışır Adem, P. (2024). Computational Design with Kurtboğaz: The Generation of Timber Structures with an Aggregative Design Algorithm. Journal of Computational Design, 5(2), 235-258. https://doi.org/10.53710/jcode.1514063

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.