Araştırma Makalesi
BibTex RIS Kaynak Göster

Digitalization of Craft Knowledge in Architecture: Translations and Transfers

Yıl 2024, Cilt: 5 Sayı: 2, 163 - 182, 30.09.2024
https://doi.org/10.53710/jcode.1505957

Öz

Ongoing discussions about the circular economy and the rise of maker culture, driven by the widespread use of computer-aided design and manufacturing technologies, have sparked increased interest in crafts among designers and architects. The craft ethos, which includes designing, making, transforming, and repairing using existing and locally available resources, fosters innovative and sustainable design practices. However, there is a recognized need for new methods to adapt the labor-intensive, manual, and iterative processes of traditional crafts for industrial applications. In response, efforts are underway to document and record both tangible and intangible cultural assets and to integrate craft knowledge into contemporary design processes. These efforts are transforming design by incorporating insights and techniques from traditional crafts into new design domains.
In architecture, new methods are suggested to preserve and transfer the personal and local know-how that has developed over many years. Data sets to train generative artificial intelligence poses various challenges for intuitive processes such as crafts, where tacit knowledge is produced and transferred through the master-apprentice relationship. Thus, to implement craft knowledge to architectural design, this knowledge must be codified and formalized, that is, defined with parameters and rules. Craft processes are parameterized and digitized through translations and transfers of knowledge types such as embedded, explicit, implicit and tacit related to medium and craftsman. In this new ground called digital craft, it is aimed to create a hybrid design and production process based on learning-by-doing by combining computational design methods with the human factor. Therefore, all types of data, algorithms, tools and techniques used and simulated are defined as parts of the digital craftsman's making process as well as physical outcomes produced in physical making processes. Parametrization and digitization of craft knowledge enables open-source materials to be distributed and preserved through digital platforms called virtual guilds.
Creating new digital techniques and therefore mediums for digital craft processes is a new research area that needs to be examined by architects and designers. It has been observed that literature studies on the translations and transfer of knowledge types between digital and physical mediums in architecture are overlooked in terms of categorization of related studies. This article aims to reveal the possibilities of using these knowledge cycles in the digital craft processes within architectural design. The literature review shows that digital craft studies in architecture were carried out under three categories. These are the digitalization of craft knowledge in digital heritage studies, decodifying traditional craft processes to generate digital models and hybridizing the making process by integrating the human factor into the fabrication processes. The potentials and limitations encountered in digital craft processes will be discussed as final remarks.

Kaynakça

  • Adamson, G. (2007). Thinking through craft. Berg.
  • Agromayor, R., Anand, N., Müller, J.-D., Pini, M., & Nord, L. O. (2021). A Unified Geometry Parametrization Method for Turbomachinery Blades. Computer-Aided Design, 133, 102987. https://doi.org/10.1016/j.cad.2020.102987
  • Alaçam, S., Güzelci, O. Z., Gürer, E., & Bacınoğlu, S. Z. (2017). Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics. International Journal of Architectural Computing, 15(4), 285–303. https://doi.org/10.1177/1478077117735019
  • Bechthold, M. (2016). Ceramic prototypes-design, computation, and digital fabrication. Informes de La Construcción, 68(544), e167.
  • Bonanni, L., & Parkes, A. (2010). Virtual Guilds: Collective Intelligence and the Future of Craft. The Journal of Modern Craft, 3(2), 179–190. https://doi.org/10.2752/174967810X12774789403564
  • Burry, M. C., Burry, J., & Faulí, J. (2001). Sagrada Família Rosassa: Global Computer-aided Dialogue between Designer and Craftsperson (Overcoming Differences in Age, Time and Distance). 76–86. https://doi.org/10.52842/conf.acadia.2001.076
  • Carpo, M., & Kohler, M. (2017). Mario Carpo in Conversation with Matthias Kohler. In F. Gramazio, M. Kohler, & S. Langenberg (Eds.), Fabricate 2014: Negotiating Design & Making (Vol. 2). UCL Press.
  • Chittenden, T. (2021). A digital distraction? The role of digital tools and distributed intelligence in woodblock printmaking practice. Digital Creativity, 32(3), 165–187.
  • Clement, K., Lai, J., Obuchi, Y., Sato, J., Lopez, D., & Charbel, H. (2018). Emancipating Architecture: From Fixed Systems of Control to Participatory Structures. In H. Bier (Ed.), Robotic Building (pp. 53–78). Springer International Publishing. https://doi.org/10.1007/978-3-319-70866-9_3
  • Colakoğlu, M. B. (2005). Design by Grammar: An Interpretation and Generation of Vernacular Hayat Houses in Contemporary Context. Environment and Planning B: Planning and Design, 32(1), 141–149. https://doi.org/10.1068/b3096
  • Culver, R., Koerner, J., & Sarafian, J. (2016). Fabric Forms: The Robotic Positioning of Fabric Formwork. In D. Reinhardt, R. Saunders, & J. Burry (Eds.), Robotic Fabrication in Architecture, Art and Design 2016 (pp. 106–121). Springer International Publishing. https://doi.org/10.1007/978-3-319-26378-6_8
  • Duarte, J. P. (2005). Towards the mass customization of housing: The grammar of Siza’s houses at Malagueira. Environment and Planning B: Planning and Design, 32(3), 347–380.
  • Eraut, M. (2004). Transfer of knowledge between education and workplace settings. In Workplace Learning in Context. Routledge.
  • Fallacara, G. (2006). Digital stereotomy and topological transformations: Reasoning about shape building. Proceedings of the Second International Congress on Construction History, 1, 1075–1092.
  • Fallacara, G., Barberio, M., & Colella, M. (2019). Topological interlocking blocks for architecture: From flat to curved morphologies. In Architectured Materials in Nature and Engineering (pp. 423–445). Springer.
  • Gerger, M. & Unal, F. (2022). Enformasyon Teknolojileri Aracılığı ile Mimarlıkla İlişkili Zanaatların Korunması. 3. Turizmde Mimarlık ve Kültürel Miras Kongresi (pp. 8-9). 978-605-9554-70-1.
  • Gramazio, F., Kohler, M., & Willmann, J. (2014). The Robotic Touch: How Robots Change Architecture. Park Books.
  • Gribbin, J., Aftab, M., Young, R., & Park, S. (2016). Double-loop reflective practice as an approach to understanding knowledge and experience. DRS 2016 International Conference: Future–Focused Thinking, 8, 3181–3198.
  • Gürsoy, B., & Özkar, M. (2015). Visualizing making: Shapes, materials, and actions. Design Studies, 41, 29–50. https://doi.org/10.1016/j.destud.2015.08.007
  • Hamzaoglu, B., & Özkar, M. (2023). Rule-based Milling of Medieval Stone Patterns. Nexus Network Journal, 25(4), 945–960. https://doi.org/10.1007/s00004-023-00726-z INSPIRE. (2024). https://inspireturkiye.com/tr/anasayfa/
  • Jorgensen, T. (2019). Tools for tooling: Digital fabrication technology as the innovation enabler. Arts, 8(1), 9.
  • Karakul, Ö. (2011). An Integrated Approach to Conservation Based on the Interrelations of Tangible and Intangible Cultural Properties. METU JOURNAL OF THE FACULTY OF ARCHITECTURE, 105–125. https://doi.org/10.4305/METU.JFA.2011.2.5
  • Katterfeldt, E. (2014). Maker culture, digital tools and exploration support for FabLabs. FabLab: Of Machines, Makers and Inventors, 139–147.
  • Kendir B., E. (2015). Learning from the Construction Site: An Epistemological Investigation of Stonemasons and Architects in Action. [Doctoral dissertation]. RMIT University.
  • Khabazi, Z., & Budig, M. (2016). Cellular Concrete Casting Using Digital Moulds. Proceedings of the 34th eCAADe Conference, 1, 83–92.
  • Kim, S., Im, D., Lee, J., & Choi, H. (2019). Utility of Digital Technologies for the Sustainability of Intangible Cultural Heritage (ICH) in Korea. Sustainability, 11(21), Article 21. https://doi.org/10.3390/su11216117
  • Knight, T., Sass, L., Griffith, K., & Kamath, A. V. (2008). Visual-Physical Grammars. SIGraDi 2008-Proceedings of the 12th Iberoamerican Congress of Digital Graphics.
  • Loh, P., Burry, J., & Wagenfeld, M. (2016). Reconsidering Pye’s theory of making through digital craft practice: A theoretical framework towards continuous designing. Craft Research, 7(2), 187–206. https://doi.org/10.1386/crre.7.2.187_1
  • Lopez, D., Charbel, H., Obuchi, Y., Sato, J., Igarashi, T., Takami, Y., & Kiuchi, T. (2016). Human Touch in Digital Fabrication. Proceedings of The 36th Annual Conference of the Association for Computer-Aided Design in Architecture, 383–393.
  • MacLachlan, L., & Jowers, I. (2016). Exploration of multi-material surfaces as weighted shapes. Graphical Models, 83, 28–36. https://doi.org/10.1016/j.gmod.2015.07.002
  • Made@Eu. (n.d.). Retrieved 4 October 2021, from http://madeat.eu/
  • McCullough, M. (1996). Abstracting craft: The practiced digital hand. MIT Press.
  • Muslimin, R. (2010). Parametric Fabrication for Traditional Ceramics Proceedings of SIGRADI 2010, 222-228. Niedderer, D. K. (2009). Sustainability of the Crafts as a Discipline? Making Futures. The Crafts in the Context of Emerging Global Sustainability Agendas (Proceedings), 1, 165–174.
  • Oxman, N. (2007). Digital Craft Fabrication Based Design in the Age of Digital Production. Workshop Proceedings for Ubicomp 2007: International Conference on Ubiquitous Computing, 534–538.
  • Oral, H. (2023). The digital tool development by formalizing the making with manual clay extruder. Computer-Aided Design and Applications, 20(2), 213-224.
  • Özgan, S. Y., & Özkar, M. (2017). A Thirteenth-Century Dodecahedron in Central Anatolia: Geometric Patterns and Polyhedral Geometry. Nexus Network Journal, 19(2), 455–471. https://doi.org/10.1007/s00004-017-0341-0
  • Peek, N., & Moyer, I. (2017). Popfab: A Case for Portable Digital Fabrication. Proceedings of the Tenth International Conference on Tangible, Embedded, and Embodied Interaction - TEI ’17, 325–329. https://doi.org/10.1145/3024969.3025009
  • Polanyi, M. (1966). The logic of tacit inference. Philosophy, 41(155), 1–18.
  • Porreca, R., Geropanta, V., Abril, K., & Giordanelli, D. (2020). GAMING AS A DISEMBODIED EXPERIENCE OF THE CITY: FROM ASSASSIN’S CREED TO ‘SMART LEARNER’. 117–130. https://doi.org/10.2423/i22394303v10n2p117
  • Projects—IAGF. (n.d.). Retrieved 24 June 2024, from https://iagf.at/en/projekte/
  • Pye, D. (1968). The nature and art of workmanship. University Press Cambridge.
  • Sabiescu, A., Woolley, M., Cummings, C., & Prins, J. (2015). Online maker communities: Craft and engagement with cultural heritage. Conference Communities and Technologies, Limerick, 27-30 June.
  • Sancak, N., Uzun, F., Turhan, K., Saraoğlu Yumni, H. K., & Özer, D. G. (2023). Photogrammetric Model Optimization in Digitalization of Architectural Heritage: Yedikule Fortress. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 1403–1410. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1403-2023
  • Sangiorgio, V., Parisi, F., Fieni, F., & Parisi, N. (2022). The New Boundaries of 3D-Printed Clay Bricks Design: Printability of Complex Internal Geometries. Sustainability (Switzerland), 14(2). Scopus. https://doi.org/10.3390/su14020598
  • Sass, L. (2006). A Wood Frame Grammar: A Generative System for Digital Fabrication. International Journal of Architectural Computing, 4(1), 51–67. https://doi.org/10.1260/147807706777008920
  • Sass, L. (2008). A physical design grammar: A production system for layered manufacturing machines. Automation in Construction, 17(6), 691–704. https://doi.org/10.1016/j.autcon.2007.12.003
  • Schinagl, W., & Schnider, A. (2020). Artificial Intelligence and Digital Repository of Crafts Knowledge for Robotic Creation of 3d-Objects. In H. Bichler-Ripfel, F. Kragulj, & Institut für angewandte Gewerbeforschung (Eds.), Building future competences. Vol. 2/2 (Vol. 2, pp. 163–173). Facultas.
  • Sennett, R. (2008). The craftsman. Yale University Press.
  • Stiny, G. (1980). Kindergarten grammars: Designing with Froebel’s building gifts. Environment and Planning B: Planning and Design, 7(4), 409–462. https://doi.org/10.1068/b070409
  • Stiny, G. (2015). The Critic as Artist: Oscar Wilde’s Prolegomena to Shape Grammars. Nexus Network Journal, 17(3), 723–758. https://doi.org/10.1007/s00004-015-0274-4
  • Stiny, G., & Mitchell, W. J. (1978). The Palladian grammar. Environment and Planning B: Planning and Design, 5(1), 5–18. https://doi.org/10.1068/b050005
  • Thoring, K., & Mueller, R. M. (2012). Knowledge Transfer in Design Education: A Framework of Criteria for Design Exercises. International Conference On Engineering And Product Design Education.20
  • Warburton, A. (2016). Innovation through craft: Opportunities for growth. 49.
  • Woolley, M. (2011). Beyond control: Rethinking industry and craft dynamics. Craft Research, 2(1), 11–36. https://doi.org/10.1386/crre.2.11_1
  • Zabulis, X., Meghini, C., Dubois, A., Doulgeraki, P., Partarakis, N., Adami, I., Karuzaki, E., Carre, A.-L., Patsiouras, N., Kaplanidi, D., Metilli, D., Bartalesi, V., Ringas, C., Tasiopoulou, E., & Stefanidi, Z. (2022). Digitisation of Traditional Craft Processes. Journal on Computing and Cultural Heritage, 15(3), 53:1-53:24. https://doi.org/10.1145/3494675

Mimarlıkta Zanaat Bilgisinin Dijitalleştirilmesi: Çevrimler ve Aktarımlar

Yıl 2024, Cilt: 5 Sayı: 2, 163 - 182, 30.09.2024
https://doi.org/10.53710/jcode.1505957

Öz

Bilgisayar destekli tasarım ve üretim araçlarına olan erişimin artmasıyla birlikte sonuç ürünün deneysel ve yinelemeli yapım süreçleri sonunda ortaya çıktığı zanaat üretimi, mimarların ve tasarımcıların ilgisini çekmiştir. Tasarım ve yapım ortamının potansiyelini yaratıcı şekilde kullanma olarak tanımlanan dijital zanaatta ise, sadece fiziksel değil dijital nesne, veri ve algoritmalar da dijital zanaatkarın geliştirip kollektif şekilde paylaştığı ürünler haline gelmiştir. Bu güncel zeminde, yeni dijital ortamlar kurgulamak günümüz mimar ve tasarımcıları için araştırılması gereken yeni bir alan olarak karşımıza çıkmaktadır. Mimarlıkta dijital ve fiziksel ortamlar arasındaki bilgi türlerinin çevrimi ve aktarımına ilişkin literatür çalışmalarının, ilgili çalışmaların sınıflandırılması açısından sınırlı olduğu izlenmiştir. Bu makale kapsamında, mimarlıktaki yapım süreçlerinde işlenen bilgi türleri arasındaki çevrimlerin dijital zanaat bağlamında kullanım olanaklarının ortaya konulması amaçlanmaktadır. Bu makalenin özgün katkısı olarak; dijital miras çalışmaları, geleneksel zanaat yapım süreçlerinin çözümlenmesi ve hibrit yapım ortamları geliştirilmesi mimarlığın zanaat ile temasta olduğu noktalar olarak belirlenmiş ve örnekler üzerinden açıklanmıştır. Makalenin sonuç bölümde ise mimarlıkta yapım bilgisinin parametrik hale getirilmesi ve dijitalleştirilmesi konusundaki potansiyeller ve kısıtlar tartışılmıştır.

Kaynakça

  • Adamson, G. (2007). Thinking through craft. Berg.
  • Agromayor, R., Anand, N., Müller, J.-D., Pini, M., & Nord, L. O. (2021). A Unified Geometry Parametrization Method for Turbomachinery Blades. Computer-Aided Design, 133, 102987. https://doi.org/10.1016/j.cad.2020.102987
  • Alaçam, S., Güzelci, O. Z., Gürer, E., & Bacınoğlu, S. Z. (2017). Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics. International Journal of Architectural Computing, 15(4), 285–303. https://doi.org/10.1177/1478077117735019
  • Bechthold, M. (2016). Ceramic prototypes-design, computation, and digital fabrication. Informes de La Construcción, 68(544), e167.
  • Bonanni, L., & Parkes, A. (2010). Virtual Guilds: Collective Intelligence and the Future of Craft. The Journal of Modern Craft, 3(2), 179–190. https://doi.org/10.2752/174967810X12774789403564
  • Burry, M. C., Burry, J., & Faulí, J. (2001). Sagrada Família Rosassa: Global Computer-aided Dialogue between Designer and Craftsperson (Overcoming Differences in Age, Time and Distance). 76–86. https://doi.org/10.52842/conf.acadia.2001.076
  • Carpo, M., & Kohler, M. (2017). Mario Carpo in Conversation with Matthias Kohler. In F. Gramazio, M. Kohler, & S. Langenberg (Eds.), Fabricate 2014: Negotiating Design & Making (Vol. 2). UCL Press.
  • Chittenden, T. (2021). A digital distraction? The role of digital tools and distributed intelligence in woodblock printmaking practice. Digital Creativity, 32(3), 165–187.
  • Clement, K., Lai, J., Obuchi, Y., Sato, J., Lopez, D., & Charbel, H. (2018). Emancipating Architecture: From Fixed Systems of Control to Participatory Structures. In H. Bier (Ed.), Robotic Building (pp. 53–78). Springer International Publishing. https://doi.org/10.1007/978-3-319-70866-9_3
  • Colakoğlu, M. B. (2005). Design by Grammar: An Interpretation and Generation of Vernacular Hayat Houses in Contemporary Context. Environment and Planning B: Planning and Design, 32(1), 141–149. https://doi.org/10.1068/b3096
  • Culver, R., Koerner, J., & Sarafian, J. (2016). Fabric Forms: The Robotic Positioning of Fabric Formwork. In D. Reinhardt, R. Saunders, & J. Burry (Eds.), Robotic Fabrication in Architecture, Art and Design 2016 (pp. 106–121). Springer International Publishing. https://doi.org/10.1007/978-3-319-26378-6_8
  • Duarte, J. P. (2005). Towards the mass customization of housing: The grammar of Siza’s houses at Malagueira. Environment and Planning B: Planning and Design, 32(3), 347–380.
  • Eraut, M. (2004). Transfer of knowledge between education and workplace settings. In Workplace Learning in Context. Routledge.
  • Fallacara, G. (2006). Digital stereotomy and topological transformations: Reasoning about shape building. Proceedings of the Second International Congress on Construction History, 1, 1075–1092.
  • Fallacara, G., Barberio, M., & Colella, M. (2019). Topological interlocking blocks for architecture: From flat to curved morphologies. In Architectured Materials in Nature and Engineering (pp. 423–445). Springer.
  • Gerger, M. & Unal, F. (2022). Enformasyon Teknolojileri Aracılığı ile Mimarlıkla İlişkili Zanaatların Korunması. 3. Turizmde Mimarlık ve Kültürel Miras Kongresi (pp. 8-9). 978-605-9554-70-1.
  • Gramazio, F., Kohler, M., & Willmann, J. (2014). The Robotic Touch: How Robots Change Architecture. Park Books.
  • Gribbin, J., Aftab, M., Young, R., & Park, S. (2016). Double-loop reflective practice as an approach to understanding knowledge and experience. DRS 2016 International Conference: Future–Focused Thinking, 8, 3181–3198.
  • Gürsoy, B., & Özkar, M. (2015). Visualizing making: Shapes, materials, and actions. Design Studies, 41, 29–50. https://doi.org/10.1016/j.destud.2015.08.007
  • Hamzaoglu, B., & Özkar, M. (2023). Rule-based Milling of Medieval Stone Patterns. Nexus Network Journal, 25(4), 945–960. https://doi.org/10.1007/s00004-023-00726-z INSPIRE. (2024). https://inspireturkiye.com/tr/anasayfa/
  • Jorgensen, T. (2019). Tools for tooling: Digital fabrication technology as the innovation enabler. Arts, 8(1), 9.
  • Karakul, Ö. (2011). An Integrated Approach to Conservation Based on the Interrelations of Tangible and Intangible Cultural Properties. METU JOURNAL OF THE FACULTY OF ARCHITECTURE, 105–125. https://doi.org/10.4305/METU.JFA.2011.2.5
  • Katterfeldt, E. (2014). Maker culture, digital tools and exploration support for FabLabs. FabLab: Of Machines, Makers and Inventors, 139–147.
  • Kendir B., E. (2015). Learning from the Construction Site: An Epistemological Investigation of Stonemasons and Architects in Action. [Doctoral dissertation]. RMIT University.
  • Khabazi, Z., & Budig, M. (2016). Cellular Concrete Casting Using Digital Moulds. Proceedings of the 34th eCAADe Conference, 1, 83–92.
  • Kim, S., Im, D., Lee, J., & Choi, H. (2019). Utility of Digital Technologies for the Sustainability of Intangible Cultural Heritage (ICH) in Korea. Sustainability, 11(21), Article 21. https://doi.org/10.3390/su11216117
  • Knight, T., Sass, L., Griffith, K., & Kamath, A. V. (2008). Visual-Physical Grammars. SIGraDi 2008-Proceedings of the 12th Iberoamerican Congress of Digital Graphics.
  • Loh, P., Burry, J., & Wagenfeld, M. (2016). Reconsidering Pye’s theory of making through digital craft practice: A theoretical framework towards continuous designing. Craft Research, 7(2), 187–206. https://doi.org/10.1386/crre.7.2.187_1
  • Lopez, D., Charbel, H., Obuchi, Y., Sato, J., Igarashi, T., Takami, Y., & Kiuchi, T. (2016). Human Touch in Digital Fabrication. Proceedings of The 36th Annual Conference of the Association for Computer-Aided Design in Architecture, 383–393.
  • MacLachlan, L., & Jowers, I. (2016). Exploration of multi-material surfaces as weighted shapes. Graphical Models, 83, 28–36. https://doi.org/10.1016/j.gmod.2015.07.002
  • Made@Eu. (n.d.). Retrieved 4 October 2021, from http://madeat.eu/
  • McCullough, M. (1996). Abstracting craft: The practiced digital hand. MIT Press.
  • Muslimin, R. (2010). Parametric Fabrication for Traditional Ceramics Proceedings of SIGRADI 2010, 222-228. Niedderer, D. K. (2009). Sustainability of the Crafts as a Discipline? Making Futures. The Crafts in the Context of Emerging Global Sustainability Agendas (Proceedings), 1, 165–174.
  • Oxman, N. (2007). Digital Craft Fabrication Based Design in the Age of Digital Production. Workshop Proceedings for Ubicomp 2007: International Conference on Ubiquitous Computing, 534–538.
  • Oral, H. (2023). The digital tool development by formalizing the making with manual clay extruder. Computer-Aided Design and Applications, 20(2), 213-224.
  • Özgan, S. Y., & Özkar, M. (2017). A Thirteenth-Century Dodecahedron in Central Anatolia: Geometric Patterns and Polyhedral Geometry. Nexus Network Journal, 19(2), 455–471. https://doi.org/10.1007/s00004-017-0341-0
  • Peek, N., & Moyer, I. (2017). Popfab: A Case for Portable Digital Fabrication. Proceedings of the Tenth International Conference on Tangible, Embedded, and Embodied Interaction - TEI ’17, 325–329. https://doi.org/10.1145/3024969.3025009
  • Polanyi, M. (1966). The logic of tacit inference. Philosophy, 41(155), 1–18.
  • Porreca, R., Geropanta, V., Abril, K., & Giordanelli, D. (2020). GAMING AS A DISEMBODIED EXPERIENCE OF THE CITY: FROM ASSASSIN’S CREED TO ‘SMART LEARNER’. 117–130. https://doi.org/10.2423/i22394303v10n2p117
  • Projects—IAGF. (n.d.). Retrieved 24 June 2024, from https://iagf.at/en/projekte/
  • Pye, D. (1968). The nature and art of workmanship. University Press Cambridge.
  • Sabiescu, A., Woolley, M., Cummings, C., & Prins, J. (2015). Online maker communities: Craft and engagement with cultural heritage. Conference Communities and Technologies, Limerick, 27-30 June.
  • Sancak, N., Uzun, F., Turhan, K., Saraoğlu Yumni, H. K., & Özer, D. G. (2023). Photogrammetric Model Optimization in Digitalization of Architectural Heritage: Yedikule Fortress. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 1403–1410. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1403-2023
  • Sangiorgio, V., Parisi, F., Fieni, F., & Parisi, N. (2022). The New Boundaries of 3D-Printed Clay Bricks Design: Printability of Complex Internal Geometries. Sustainability (Switzerland), 14(2). Scopus. https://doi.org/10.3390/su14020598
  • Sass, L. (2006). A Wood Frame Grammar: A Generative System for Digital Fabrication. International Journal of Architectural Computing, 4(1), 51–67. https://doi.org/10.1260/147807706777008920
  • Sass, L. (2008). A physical design grammar: A production system for layered manufacturing machines. Automation in Construction, 17(6), 691–704. https://doi.org/10.1016/j.autcon.2007.12.003
  • Schinagl, W., & Schnider, A. (2020). Artificial Intelligence and Digital Repository of Crafts Knowledge for Robotic Creation of 3d-Objects. In H. Bichler-Ripfel, F. Kragulj, & Institut für angewandte Gewerbeforschung (Eds.), Building future competences. Vol. 2/2 (Vol. 2, pp. 163–173). Facultas.
  • Sennett, R. (2008). The craftsman. Yale University Press.
  • Stiny, G. (1980). Kindergarten grammars: Designing with Froebel’s building gifts. Environment and Planning B: Planning and Design, 7(4), 409–462. https://doi.org/10.1068/b070409
  • Stiny, G. (2015). The Critic as Artist: Oscar Wilde’s Prolegomena to Shape Grammars. Nexus Network Journal, 17(3), 723–758. https://doi.org/10.1007/s00004-015-0274-4
  • Stiny, G., & Mitchell, W. J. (1978). The Palladian grammar. Environment and Planning B: Planning and Design, 5(1), 5–18. https://doi.org/10.1068/b050005
  • Thoring, K., & Mueller, R. M. (2012). Knowledge Transfer in Design Education: A Framework of Criteria for Design Exercises. International Conference On Engineering And Product Design Education.20
  • Warburton, A. (2016). Innovation through craft: Opportunities for growth. 49.
  • Woolley, M. (2011). Beyond control: Rethinking industry and craft dynamics. Craft Research, 2(1), 11–36. https://doi.org/10.1386/crre.2.11_1
  • Zabulis, X., Meghini, C., Dubois, A., Doulgeraki, P., Partarakis, N., Adami, I., Karuzaki, E., Carre, A.-L., Patsiouras, N., Kaplanidi, D., Metilli, D., Bartalesi, V., Ringas, C., Tasiopoulou, E., & Stefanidi, Z. (2022). Digitisation of Traditional Craft Processes. Journal on Computing and Cultural Heritage, 15(3), 53:1-53:24. https://doi.org/10.1145/3494675
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Destekli Tasarım, Kodlama, Bilgi Teorisi ve Sıkıştırma, Mimarlıkta Malzeme ve Teknoloji
Bölüm Araştırma Makaleleri
Yazarlar

Hülya Oral Karakoç 0000-0003-2598-8169

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 27 Haziran 2024
Kabul Tarihi 7 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Oral Karakoç, H. (2024). Mimarlıkta Zanaat Bilgisinin Dijitalleştirilmesi: Çevrimler ve Aktarımlar. Journal of Computational Design, 5(2), 163-182. https://doi.org/10.53710/jcode.1505957

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.