Araştırma Makalesi
BibTex RIS Kaynak Göster

A Methodology for Designing Auxetic Metamaterials for Adaptive Systems

Yıl 2025, Cilt: 6 Sayı: 2, 255 - 280, 30.09.2025
https://doi.org/10.53710/jcode.1590521

Öz

To develop sustainable material systems, modern industries must create new, lighter systems using less materials without compromising their performances. Over the past thirty years, researchers from various disciplines have turned metamaterials as alternatives to natural materials. Among these materials, auxetics stand out due to their mechanical properties. Despite the fact that these materials have been experimentally used in architectural projects over the past two decades, design outcomes have predominantly relied on existing auxetic structures, limiting the use of them in architectural design solutions. This research aims to create a novel auxetic material system by focusing on the geometry of auxetic materials and their smart transformations, embedded within the morphological structures of these materials. The methodology of the study consists of four stages, including identifying geometrical parameters of auxetic metamaterials, setting the computational model, digital fabrication, and physical experiments. This study has progressed based on feedback from computational and physical models to evaluate the behavior of the system, which is passively activated by the applied forces. To evaluate the results, physical prototypes were produced for obtaining empirical data. Experiments applied on physical prototypes were conducted on two different materials, including biopolymer polylactic acid and thermoplastic polyurethane. Thus, the auxetic behavior of different materials were observed and compared. In the future, the integration of the proposed system with responsive materials will enable the development of adaptable systems for large-scale architectural applications.

Etik Beyan

The authors declare that no ethical approval was required for the execution of this study.

Teşekkür

This research was conducted within the scope of the Master’s Thesis of Zehra Güloğlu, supervised by Assoc. Prof. Dr. Sevil Yazıcı. We would like to thank Assoc. Prof. Dr. Michael Stefan Bittermann for his support in creating scripts in the C# programming language.

Kaynakça

  • Albag, O. E. (2021). Auxetic materials. In I. Paoletti, M. Nastri (Eds.), Material Balance: A Design Equation (pp. 65-74). Springer. https://doi.org/10.1007/978-3-030-54081-4_6
  • Belanger, Z., McGee, W., & Newell, C. (2018). Slumped Glass: Auxetics and acoustics. In P. Anzalone, M. Del Signore, A. J. Wit (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 244–249). ACADIA. https://doi.org/10.52842/conf.acadia.2018.244
  • Bol, R. J., Xu, Y., & Šavija, B. (2024). Printing path-dependent two-scale models for 3D printed planar auxetics by material extrusion. Additive Manufacturing, 89, Article 104293. https://doi.org/10.1016/j.addma.2024.104293
  • Carneiro, V. H., Meireles, J., & Puga, H. (2013). Auxetic materials — A review. Materials Science-Poland, 31(4), 561–571. https://doi.org/10.2478/s13536-013-0140-6
  • Delikanli, B., & Cagdas, G. (2021). Transdisciplinary Concepts in Computational Design and Reflections on Education. In G. Çağdaş, M. Özkar, L. F. Gül, S. Alaçam, E. Gürer, S. Yazıcı, B. Delikanli, Ö. Çavuş, S. Altun, & G. Kırdar (Eds.), Computational design in architecture, 15th National Symposium (pp.93–104). İstanbul Technical University.
  • Dong, S., & Hu, H. (2023). Sensors based on auxetic materials and structures: A review. Materials, 16(9), 3603. https://doi.org/10.3390/ma16093603
  • Elmrabet, N., & Siegkas, P. (2020). Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polymer Testing, 90, Article 106656. https://doi.org/10.1016/j.polymertesting.2020.106656
  • Ghiasvand, A., Khanigi, A. F., Guerrero, J. W. G., Derazkola, H. A., Tomków, J., Janeczek, A., & Wolski, A. (2023). Investigating the effects of geometrical parameters of Re-Entrant cells of aluminum 7075-T651 auxetic structures on fatigue life. Coatings, 13(2), 405. https://doi.org/10.3390/coatings13020405
  • Glynn, R., Abramovic, V., Overvelde, JTB. (2018). Edge of chaos: Towards intelligent architecture through distributed control systems based on cellular automata. In P. Anzalone, M. Del Signore, A. J. Wit (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 226–231). ACADIA. https://doi.org/10.52842/conf.acadia.2018.226
  • Jalkh, H. (2020). Morpho-active materials: Fabricating auxetic structures with bioinspired behavior. Blucher Design Proceedings, 8(4), 863-869. https://doi.org/10.5151/sigradi2020-117
  • Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052–1063. https://doi.org/10.5897/sre.9000104
  • Louth, H., Reeves, D., Bhooshan, S., Schumacher, P., Koren, B., Menges, A., Sheil, B., Glynn, R., & Skavara, M. (2017). A prefabricated dining pavilion: Using structural skeletons, developable offset meshes and kerf-cut bent sheet materials. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 58–67). UCL Press. https://doi.org/10.2307/j.ctt1n7qkg7.12
  • Lu, C., Hsieh, M., Huang, Z., Zhang, C., Lin, Y., Shen, Q., Chen, F., & Zhang, L. (2022). Architectural design and additive manufacturing of mechanical metamaterials: A review. Engineering, 17, 44–63. https://doi.org/10.1016/j.eng.2021.12.023
  • Martínez, J. (2021). Random auxetic porous materials from parametric growth processes. Computer-Aided Design, 139, Article 103069. https://doi.org/10.1016/j.cad.2021.103069
  • Mesa, O., Stavric, M., Mhatre, S., Grinham, J., Norman, S., Sayegh, A., & Bechthold, M. (2017). Non-linear matters: Auxetic surfaces. In T. Nagakura, S. Tibbits, C. Mueller (Eds.), Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 2017) (pp. 392–403). ACADIA. https://doi.org/10.52842/conf.acadia.2017.392
  • Mirante, L. (2015). Auxetic Structures: Towards Bending-Active Architectural Applications[Master’s thesis, Politecnico di Milano - Polimi]. POLITesi. https://www.politesi.polimi.it/handle/10589/116372
  • Naboni, R., & Mirante, L. (2015). Metamaterial computation and fabrication of auxetic patterns for architecture. Blucher Design Proceedings, 2(3), 129–136. https://doi.org/10.5151/despro-sigradi2015-30268
  • Naboni, R., & Pezzi, S. S. (2016). Embedding auxetic properties in designing active-bending gridshells. Blucher Design Proceedings, 3(1), 720–726. https://doi.org/10.5151/despro-sigradi2016-490
  • Nasiri, S. (2024). Auxetic Grammars: An Application of Shape Grammar Using Shape Machine to Generate Auxetic Metamaterial Geometries for Fabricating Sustainable Kinetic Panels. In Yan, C., Chai, H., Sun, T., Yuan, P.F. (Eds.), Phygital Intelligence. CDRF 2023. Computational Design and Robotic Fabricatio (pp. 114–124). Springer. https://doi.org/10.1007/978-981-99-8405-3_10
  • Oxman, R. (2015). MFD: Material-fabrication-design: A classification of models from prototyping to design. In Proceedings of the International Association for Shell and Spatial Structures Symposium (IASS) Symposium 2015
  • Oner, D., Ezel Çırpı, M., & Çakıcı Alp, N., (2020). Auxetic Davranış ile Mimari Tasarım Deneyimi. In XIV. National Symposium on Digital Design in Architecture (pp. 43–51). Karadeniz Technical University.
  • Ozdemir, E., Kiesewetter, L., Antorveza, K., Cheng, T., Leder, S., Wood, D. & Menges, A. (2022). Towards self-shaping metamaterial shells: A computational design workflow for hybrid additive manufacturing of architectural scale double-curved structures. In Yuan, P.F., Chai, H., Yan, C., Leach, N. (Eds.), Proceedings of the 2021 Digital FUTURES. CDRF 2021 (pp. 275–285). Springer. https://doi.org/10.1007/978-981-16-5983-6_26
  • Papadopoulou, A., Laucks, J., & Tibbits, S. (2017). Auxetic materials in design and architecture. Nature Reviews Materials, 2(12). Article 17078. https://doi.org/10.1038/natrevmats.2017.78
  • Parente, J.M., & Reis, P.N.B. (2024). Fatigue behaviour of 3d printed auxetic materials: An overview. Procedia Structural Integrity, 53, 221–223. https://doi.org/10.1016/j.prostr.2024.01.027
  • Park, D., Lee, J., & Romo, A. (2015). Poisson’s ratio material distributions. In Proceedings of the 20th International Conference of the Association Architectural Design Research in Asia (CAADRIA 2015) (pp. 735–744). CAADRIA. https://doi.org/10.52842/conf.caadria.2015.735
  • Pertigkiozoglou, E. (2019). Pattern mapping. In K. Bieg, D. Briscoe, C. Odom (Eds.), Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 19) (pp. 72–80). ACADIA. https://doi.org/10.52842/conf.acadia.2019.072
  • Qu, J., Lei, Y., Dong, Q., & Wang, H. (2024). Hierarchical design of auxetic metamaterial with peanut-shaped perforations for extreme deformation: Self-similar or not? European Journal of Mechanics -a/Solids, 108, Article 105402. https://doi.org/10.1016/j.euromechsol.2024.105402
  • Ramírez-Revilla, S., Camacho-Valencia, D., Gonzales-Condori, E. G., & Márquez, G. (2022). Evaluation and comparison of the degradability and compressive and tensile properties of 3D printing polymeric materials: PLA, PETG, PC, and ASA. MRS Communications, 13(1), 55– 62. https://doi.org/10.1557/s43579-022-00311-4
  • Themistocleous, T. (2013). Modelling, simulation and verification of pneumatically actuated auxetic systems. In R. Stouffs, P. Janssen, S. Roudavski, B. Tunçer (Eds.), Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) (pp. 395–404). National University of Singapore. https://doi.org/10.52842/conf.caadria.2013.395
  • Tibbits, S. (2017). An introduction to active matter. In S. Tibbits (Ed.), Active Matter (pp. 1–12). The MIT Press. https://doi.org/10.7551/mitpress/11236.003.0003
  • Tish, D., Schork, T., & McGee, W. (2018). Topologically optimized and functionally graded cable nets: New approaches through robotic additive manufacturing. In P. Anzalone, M. Del Signore, A. J. Wit, (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 260–265). ACADIA. https://doi.org/10.52842/conf.acadia.2018.260
  • Tripathi, N. Bag, D. S., Dwivedi, M. (2024). A Review on auxetic polymeric materials: Synthetic methodology, characterization and their applications. Journal of Polymer Materials, 40(3–4), 227–269. https://doi.org/10.32381/jpm.2023.40.3-4.8
  • Uzun, M. (2010). Negative Poisson ratio (auxetic) materials and their applications. Journal of Textiles and Engineers, 17(77), 13-18. https://hdl.handle.net/11424/261175
  • Vivanco, T., Ojeda, J., Yuan, P. (2023). Regression-Based Inductive Reconstruction of Shell Auxetic Structures. In Yuan, P.F., Chai, H., Yan, C., Li, K., Sun, T. (Eds.), Hybrid Intelligence. CDRF 2022. Computational Design and Robotic Fabrication (pp. 488-498). Springer. https://doi.org/10.1007/978-981-19-8637-6_42

Uyarlanabilir Sistemler için Genişleyebilen Metamalzemelerin Tasarımına Yönelik bir Metodoloji

Yıl 2025, Cilt: 6 Sayı: 2, 255 - 280, 30.09.2025
https://doi.org/10.53710/jcode.1590521

Öz

Sürdürülebilir malzeme sistemleri geliştirmek için, modern endüstriler performanslarından ödün vermeden daha az malzeme kullanarak yeni, daha hafif sistemler yaratmalıdır. Son otuz yılda, çeşitli disiplinlerden araştırmacılar doğal malzemelere alternatif olarak metamalzemelere yönelmiştir. Bu malzemeler arasında, mekanik özellikleri nedeniyle esnetildiğinde genişleyebilen(auxetics) malzemeler öne çıkmaktadır. Son yirmi yıl içerisinde bu tür malzemeler, mimari projelerde deneysel olarak kullanılmış olsa da tasarım çıktıları genellikle mevcut yapı tiplerine dayanmaktadır. Bu durum, ilgili malzemelerin mimari tasarım çözümlerindeki kullanımını sınırlandırmaktadır. Bu araştırma, genişleyebilen malzemelerin geometrisi ile bu malzemelerin morfolojik yapıları içinde gömülü olan akıllı dönüşümlerine odaklanarak, yeni bir genişleyebilen malzeme sistemi oluşturmayı amaçlamaktadır. Çalışmanın metodolojisi genişleyebilen metamalzemelerin geometrik parametrelerinin belirlenmesi, hesaplamalı modelin oluşturulması, sayısal üretim ve fiziksel deneyler olmak üzere dört aşamadan oluşmaktadır. Bu çalışma, uygulanan kuvvetle pasif olarak etkinleşen sistemin davranışını değerlendirmek için hesaplamalı ve fiziksel modellerden alınan geri bildirimlere dayalı olarak geliştirilmiştir. Sonuçları değerlendirmek için, ampirik veriler elde etmek üzere fiziksel prototipler üretilmiştir. Fiziksel prototiplerle yapılan deneyler, biyopolimer polilaktik asit ve termoplastik poliüretan olmak üzere iki farklı malzeme üzerinde gerçekleştirilmiştir. Böylece farklı malzemelerin davranışları gözlemlenmiş ve karşılaştırılmıştır. Gelecekte, önerilen sistemin tepkimeli malzemelerle entegrasyonu sayesinde büyük ölçekli mimari uygulamalara yönelik uyarlanabilir sistemlerin geliştirilmesi mümkün olabilecektir.

Kaynakça

  • Albag, O. E. (2021). Auxetic materials. In I. Paoletti, M. Nastri (Eds.), Material Balance: A Design Equation (pp. 65-74). Springer. https://doi.org/10.1007/978-3-030-54081-4_6
  • Belanger, Z., McGee, W., & Newell, C. (2018). Slumped Glass: Auxetics and acoustics. In P. Anzalone, M. Del Signore, A. J. Wit (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 244–249). ACADIA. https://doi.org/10.52842/conf.acadia.2018.244
  • Bol, R. J., Xu, Y., & Šavija, B. (2024). Printing path-dependent two-scale models for 3D printed planar auxetics by material extrusion. Additive Manufacturing, 89, Article 104293. https://doi.org/10.1016/j.addma.2024.104293
  • Carneiro, V. H., Meireles, J., & Puga, H. (2013). Auxetic materials — A review. Materials Science-Poland, 31(4), 561–571. https://doi.org/10.2478/s13536-013-0140-6
  • Delikanli, B., & Cagdas, G. (2021). Transdisciplinary Concepts in Computational Design and Reflections on Education. In G. Çağdaş, M. Özkar, L. F. Gül, S. Alaçam, E. Gürer, S. Yazıcı, B. Delikanli, Ö. Çavuş, S. Altun, & G. Kırdar (Eds.), Computational design in architecture, 15th National Symposium (pp.93–104). İstanbul Technical University.
  • Dong, S., & Hu, H. (2023). Sensors based on auxetic materials and structures: A review. Materials, 16(9), 3603. https://doi.org/10.3390/ma16093603
  • Elmrabet, N., & Siegkas, P. (2020). Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polymer Testing, 90, Article 106656. https://doi.org/10.1016/j.polymertesting.2020.106656
  • Ghiasvand, A., Khanigi, A. F., Guerrero, J. W. G., Derazkola, H. A., Tomków, J., Janeczek, A., & Wolski, A. (2023). Investigating the effects of geometrical parameters of Re-Entrant cells of aluminum 7075-T651 auxetic structures on fatigue life. Coatings, 13(2), 405. https://doi.org/10.3390/coatings13020405
  • Glynn, R., Abramovic, V., Overvelde, JTB. (2018). Edge of chaos: Towards intelligent architecture through distributed control systems based on cellular automata. In P. Anzalone, M. Del Signore, A. J. Wit (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 226–231). ACADIA. https://doi.org/10.52842/conf.acadia.2018.226
  • Jalkh, H. (2020). Morpho-active materials: Fabricating auxetic structures with bioinspired behavior. Blucher Design Proceedings, 8(4), 863-869. https://doi.org/10.5151/sigradi2020-117
  • Liu, Y., & Hu, H. (2010). A review on auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052–1063. https://doi.org/10.5897/sre.9000104
  • Louth, H., Reeves, D., Bhooshan, S., Schumacher, P., Koren, B., Menges, A., Sheil, B., Glynn, R., & Skavara, M. (2017). A prefabricated dining pavilion: Using structural skeletons, developable offset meshes and kerf-cut bent sheet materials. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 58–67). UCL Press. https://doi.org/10.2307/j.ctt1n7qkg7.12
  • Lu, C., Hsieh, M., Huang, Z., Zhang, C., Lin, Y., Shen, Q., Chen, F., & Zhang, L. (2022). Architectural design and additive manufacturing of mechanical metamaterials: A review. Engineering, 17, 44–63. https://doi.org/10.1016/j.eng.2021.12.023
  • Martínez, J. (2021). Random auxetic porous materials from parametric growth processes. Computer-Aided Design, 139, Article 103069. https://doi.org/10.1016/j.cad.2021.103069
  • Mesa, O., Stavric, M., Mhatre, S., Grinham, J., Norman, S., Sayegh, A., & Bechthold, M. (2017). Non-linear matters: Auxetic surfaces. In T. Nagakura, S. Tibbits, C. Mueller (Eds.), Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 2017) (pp. 392–403). ACADIA. https://doi.org/10.52842/conf.acadia.2017.392
  • Mirante, L. (2015). Auxetic Structures: Towards Bending-Active Architectural Applications[Master’s thesis, Politecnico di Milano - Polimi]. POLITesi. https://www.politesi.polimi.it/handle/10589/116372
  • Naboni, R., & Mirante, L. (2015). Metamaterial computation and fabrication of auxetic patterns for architecture. Blucher Design Proceedings, 2(3), 129–136. https://doi.org/10.5151/despro-sigradi2015-30268
  • Naboni, R., & Pezzi, S. S. (2016). Embedding auxetic properties in designing active-bending gridshells. Blucher Design Proceedings, 3(1), 720–726. https://doi.org/10.5151/despro-sigradi2016-490
  • Nasiri, S. (2024). Auxetic Grammars: An Application of Shape Grammar Using Shape Machine to Generate Auxetic Metamaterial Geometries for Fabricating Sustainable Kinetic Panels. In Yan, C., Chai, H., Sun, T., Yuan, P.F. (Eds.), Phygital Intelligence. CDRF 2023. Computational Design and Robotic Fabricatio (pp. 114–124). Springer. https://doi.org/10.1007/978-981-99-8405-3_10
  • Oxman, R. (2015). MFD: Material-fabrication-design: A classification of models from prototyping to design. In Proceedings of the International Association for Shell and Spatial Structures Symposium (IASS) Symposium 2015
  • Oner, D., Ezel Çırpı, M., & Çakıcı Alp, N., (2020). Auxetic Davranış ile Mimari Tasarım Deneyimi. In XIV. National Symposium on Digital Design in Architecture (pp. 43–51). Karadeniz Technical University.
  • Ozdemir, E., Kiesewetter, L., Antorveza, K., Cheng, T., Leder, S., Wood, D. & Menges, A. (2022). Towards self-shaping metamaterial shells: A computational design workflow for hybrid additive manufacturing of architectural scale double-curved structures. In Yuan, P.F., Chai, H., Yan, C., Leach, N. (Eds.), Proceedings of the 2021 Digital FUTURES. CDRF 2021 (pp. 275–285). Springer. https://doi.org/10.1007/978-981-16-5983-6_26
  • Papadopoulou, A., Laucks, J., & Tibbits, S. (2017). Auxetic materials in design and architecture. Nature Reviews Materials, 2(12). Article 17078. https://doi.org/10.1038/natrevmats.2017.78
  • Parente, J.M., & Reis, P.N.B. (2024). Fatigue behaviour of 3d printed auxetic materials: An overview. Procedia Structural Integrity, 53, 221–223. https://doi.org/10.1016/j.prostr.2024.01.027
  • Park, D., Lee, J., & Romo, A. (2015). Poisson’s ratio material distributions. In Proceedings of the 20th International Conference of the Association Architectural Design Research in Asia (CAADRIA 2015) (pp. 735–744). CAADRIA. https://doi.org/10.52842/conf.caadria.2015.735
  • Pertigkiozoglou, E. (2019). Pattern mapping. In K. Bieg, D. Briscoe, C. Odom (Eds.), Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 19) (pp. 72–80). ACADIA. https://doi.org/10.52842/conf.acadia.2019.072
  • Qu, J., Lei, Y., Dong, Q., & Wang, H. (2024). Hierarchical design of auxetic metamaterial with peanut-shaped perforations for extreme deformation: Self-similar or not? European Journal of Mechanics -a/Solids, 108, Article 105402. https://doi.org/10.1016/j.euromechsol.2024.105402
  • Ramírez-Revilla, S., Camacho-Valencia, D., Gonzales-Condori, E. G., & Márquez, G. (2022). Evaluation and comparison of the degradability and compressive and tensile properties of 3D printing polymeric materials: PLA, PETG, PC, and ASA. MRS Communications, 13(1), 55– 62. https://doi.org/10.1557/s43579-022-00311-4
  • Themistocleous, T. (2013). Modelling, simulation and verification of pneumatically actuated auxetic systems. In R. Stouffs, P. Janssen, S. Roudavski, B. Tunçer (Eds.), Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) (pp. 395–404). National University of Singapore. https://doi.org/10.52842/conf.caadria.2013.395
  • Tibbits, S. (2017). An introduction to active matter. In S. Tibbits (Ed.), Active Matter (pp. 1–12). The MIT Press. https://doi.org/10.7551/mitpress/11236.003.0003
  • Tish, D., Schork, T., & McGee, W. (2018). Topologically optimized and functionally graded cable nets: New approaches through robotic additive manufacturing. In P. Anzalone, M. Del Signore, A. J. Wit, (Eds.), Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA 18) (pp. 260–265). ACADIA. https://doi.org/10.52842/conf.acadia.2018.260
  • Tripathi, N. Bag, D. S., Dwivedi, M. (2024). A Review on auxetic polymeric materials: Synthetic methodology, characterization and their applications. Journal of Polymer Materials, 40(3–4), 227–269. https://doi.org/10.32381/jpm.2023.40.3-4.8
  • Uzun, M. (2010). Negative Poisson ratio (auxetic) materials and their applications. Journal of Textiles and Engineers, 17(77), 13-18. https://hdl.handle.net/11424/261175
  • Vivanco, T., Ojeda, J., Yuan, P. (2023). Regression-Based Inductive Reconstruction of Shell Auxetic Structures. In Yuan, P.F., Chai, H., Yan, C., Li, K., Sun, T. (Eds.), Hybrid Intelligence. CDRF 2022. Computational Design and Robotic Fabrication (pp. 488-498). Springer. https://doi.org/10.1007/978-981-19-8637-6_42
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlıkta Malzeme ve Teknoloji
Bölüm Araştırma Makaleleri
Yazarlar

Zehra Güloğlu 0009-0008-2313-8789

Sevil Yazıcı 0000-0002-0664-4494

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 24 Kasım 2024
Kabul Tarihi 16 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Güloğlu, Z., & Yazıcı, S. (2025). A Methodology for Designing Auxetic Metamaterials for Adaptive Systems. Journal of Computational Design, 6(2), 255-280. https://doi.org/10.53710/jcode.1590521

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.