Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Sayı: 4, 81 - 97, 09.01.2026
https://doi.org/10.26650/JODA.1806624

Öz

Kaynakça

  • Adadi, A. (2021). A survey on data‐efficient algorithms in big data era. Journal of Big Data, 8(1), 24. https://doi.org/10.1186/s40537-021-00419-9 google scholar
  • Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-93. https://doi.org/10.1016/j.bdr.2015.04.001 google scholar
  • Arnberger, A., Haider, W., & Brandenburg, C. (2005). Evaluating visitor-monitoring techniques: A comparison of counting and video observation data. Environmental Management, 36(2), 317-327. https://doi.org/10.1007/s00267-004-8201-6 google scholar
  • Arrowsmith, C., Zanon, D., & Chhetri, P. (2005). Monitoring visitor patterns of use in natural tourist destinations. Taking tourism to the limits, 33-52. google scholar
  • Balnaves, M., & Caputi, P. (2001). Introduction to quantitative research methods: An investigative approach. google scholar
  • Barrena-Herrán, M., Modrego-Monforte, I., & Grijalba, O. (2025). Revealing Spatiotemporal Urban Activity Patterns: A Machine Learning Study Using Google Popular Times. ISPRS International Journal of Geo-Information, 14(6), 221. https://doi.org/10.3390/ijgi1406221 google scholar
  • Bitgood, S. (2006). An analysis of visitor circulation: Movement patterns and the general value principle. Curator: The Museum Journal, 49(4), 463-475. https://doi.org/10.1111/j.2151-6952.2006.tb00237.x google scholar
  • Bolón-Canedo, V., Morán-Fernández, L., Cancela, B., & Alonso-Betanzos, A. (2024). A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing, 599, 128096. https://doi.org/10.1016/j.neucom.2024.128096 google scholar
  • Camilleri, M. A. (2017). The tourism industry: An overview. Travel marketing, tourism economics and the airline product: An introduction to theory and practice, 3-27. https://doi.org/10.1007/978-3-319-49849-2_1 google scholar
  • Castiglione, M., Cantelmo, G., Cipriani, E., & Nigro, M. (2024). From trip purpose to space-time flexibility: a study using floating car data and google popular times. Transportmetrica B: Transport Dynamics, 13(1). https://doi.org/10.1080/21680566.2024.2440596 google scholar
  • Cessford, G., & Muhar, A. (2003). Monitoring options for visitor numbers in national parks and natural areas. Journal for nature conservation, 11(4), 240-250. https://doi.org/10.1078/1617-1381-00055 google scholar
  • Chen, S. X., Wang, X. K., Zhang, H. Y., Wang, J. Q., & Peng, J. J. (2021). Customer purchase forecasting for online tourism: A data-driven method with multiplex behavior data. Tourism Management, 87, 104357. https://doi.org/10.1016/j.tourman.2021.104357 google scholar
  • Cleere, H. (2011). The 1972 UNESCO world heritage convention. Heritage & Society, 4(2), 173-186. https://doi.org/10.1179/hso.2011.4.2.173 google scholar
  • Djedouboum, A. C., Abba Ari, A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2018). Big data collection in large-scale wireless sensor networks. Sensors, 18(12), 4474. https://doi.org/10.3390/s18124474 google scholar
  • Eagles, P. F., McCool, S. F., & Haynes, C. D. (2002). Sustainable tourism in protected areas: Guidelines for planning and management (No. 8). Iucn. google scholar
  • Etzion, D., & Aragon-Correa, J. A. (2016). Big data, management, and sustainability: Strategic opportunities ahead. Organization & Environment, 29(2), 147-155. https://doi.org/10.1177/108602661665043 google scholar
  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National science review, 1(2), 293-314. https://doi.org/10.1093/nsr/nwt032 google scholar
  • Fletcher, R., Johnson, I., Bruce, E., & Khun-Neay, K. (2007). Living with heritage: site monitoring and heritage values in Greater Angkor and the Angkor World Heritage Site, Cambodia. World Archaeology, 39(3), 385–405. https://doi.org/10.1080/00438240701465001 google scholar
  • Fuchs, M., Eberle, T., & Höpken, W. (2021). Using Google Maps Data for Tourism Real-Time Monitoring and Analytics: The case of Cultural Tourism, Sweden. In 28th ENTER Conference e-Tourism-Development Opportunities and Challenges in an Unpredictable World, January 19-22, 2021. google scholar
  • Fuchs, M., Eberle, T., & Höpken, W. (2025). Google Maps data for tourism real-time monitoring and analytics: The case of cultural tourism, Sweden. In Geography, Planning and Tourism 2025 (pp. 146–167). Edward Elgar Publishing. https://doi.org/10.4337/9781035300136.00014 google scholar
  • Furht, B., & Villanustre, F. (2016). Introduction to big data. In Big data technologies and applications (pp. 3-11). Cham: Springer International Publishing. google scholar
  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 google scholar
  • Garrigós-Simón, F., Sanz-Blas, S., Narangajavana, Y., & Buzova, D. (2021). The nexus between big data and sustainability: an analysis of current trends and developments. Sustainability, 13(12), 6632. https://doi.org/10.3390/su13126632 google scholar
  • Ghanad, A. (2023). An overview of quantitative research methods. International journal of multidisciplinary research and analysis, 6(08), 3794-3803. google scholar
  • Google. (n.d.). Popular times, wait times, and visit duration. Google Business Profile Help. Retrieved February 17, 2025, from https://support.google.com/business/answer/6263531 google scholar
  • Goulding, P., & Pomfret, G. (2022). Managing temporal variation at visitor attractions. In Managing visitor attractions (pp. 213-233). Routledge. google scholar
  • Gravetter, F. J., Wallnau, L. B., Forzano, L. A. B., & Witnauer, J. E. (2021). Essentials of statistics for the behavioral sciences (p. 648). Boston, MA, USA: Cengage. google scholar
  • Gribaudo, M., Iacono, M., & Levis, A. H. (2018). An IoT-based monitoring approach for cultural heritage sites: The Matera case. Concurrency and Computation: Practice and Experience, 30(24), e4793. https://doi.org/10.1002/cpe.4793 google scholar
  • Guerard, G., Gabot, Q., & Djebali, S. (2024). Tourism profile measure for data-driven tourism segmentation. International Journal of Machine Learning and Cybernetics, 1-26. https://doi.org/10.1007/s13042-024-02145-z google scholar
  • Gullino, P., Beccaro, G. L., & Larcher, F. (2015). Assessing and monitoring the sustainability in rural World Heritage Sites. Sustainability, 7(10), 14186–14210. https://doi.org/10.3390/su71014186 google scholar
  • Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (Eds.). (2000). Understanding robust and exploratory data analysis. John Wiley & Sons. google scholar
  • Kuflik, T., Boger, Z., & Zancanaro, M. (2012). Analysis and prediction of museum visitors’ behavioral pattern types. In Ubiquitous display environments (pp. 161-176). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27663-7_10 google scholar
  • Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1. google scholar
  • Mahdi, A. J., Tettamanti, T., & Esztergár-Kiss, D. (2023). Modeling the time spent at points of interest based on Google Popular Times. IEEE Access, 11, 120345–120358. google scholar
  • Marr, B. (2016). Big data in practice: how 45 successful companies used big data analytics to deliver extraordinary results. John Wiley & Sons. google scholar
  • Mckercher, B., & Lau, G. (2008). Movement patterns of tourists within a destination. Tourism Geographies: An International Journal of Tourism Space, Place and Environment, 10(3), 355e374. https://doi.org/10.1080/14616680802236352 google scholar
  • Miah, S. J., Vu, H., & Gammack, J. (2019). A big-data analytics method for capturing visitor activities and flows: The case of an island country. Information Technology and Management, 20(4), 203-221. https://doi.org/10.1007/s10799-019-00303-2 google scholar
  • Milea, E. C., Necula, M., & Roşu, M. (2022). On the Potential of Google’s ‘Popular Times’ Data in Epidemiology. Fostering Recovery Through Metaverse Business Modelling, 845-856. https://doi.org/10.24789788367405072-079 google scholar
  • Muhar, A., Arnberger, A., & Brandenburg, C. (2002). Methods for visitor monitoring in recreational and protected areas: An overview. Monitoring and Management of Visitor Flows in Recreational and Protected Areas. Institut for Landscape Architecture & Landscape Management Bodenkultur University Vienna, 2001, 1-6. google scholar
  • Nag, A., & Mishra, S. (2024). Sustainable competitive advantage in heritage tourism: Leveraging cultural legacy in a data-driven world. In Review of technologies and disruptive business strategies (Vol. 3, pp. 137-162). Emerald Publishing Limited. https://doi.org/10.1108/S2754-586520240000003008 google scholar
  • National Palaces Administration. (n.d.). Beylerbeyi Palace. https://www.millisaraylar.gov.tr/Lokasyon/4/Beylerbeyi-Sarayi google scholar
  • Norouzi, R., Baziyad, H., Aknondzadeh Noghabi, E., & Albadvi, A. (2022). Developing Tourism Users’ Profiles with Data‐Driven Explicit Information. Mathematical Problems in Engineering, 2022(1), 6536908. https://doi.org/10.1155/2022/6536908 google scholar
  • Orellana, D., Bregt, A. K., Ligtenberg, A., & Wachowicz, M. (2012). Exploring visitor movement patterns in natural recreational areas. Tourism Management, 33(3), 672-682. https://doi.org/10.1016/j.tourman.2011.07.010 google scholar
  • Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University-Computer and Information Sciences, 30(4), 431-448. https://doi.org/10.1016/j.jksuci.2017.06.001 google scholar
  • Patton, M. Q. (2002). Qualitative research and evaluation methods 3rd. ed. Sage publications. google scholar
  • Perer, A., & Shneiderman, B. (2008). Integrating statistics and visualization: case studies of gaining clarity during exploratory data analysis. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 265-274). google scholar
  • Phillips, H. (2015). The capacity to adapt to climate change at heritage sites—The development of a conceptual framework. Environmental Science & Policy, 47, 118-125. https://doi.org/10.1016/j.envsci.2014.11.003 google scholar
  • Prasetyani, M., Isnanto, R. R., & Widodo, C. E. (2023). Analyzing road users’ behavior: A data mining approach using Google Maps Popular Time and web scraping for rest area visitation patterns on highways and toll roads. Procedia Computer Science, 225, 1582–1591. https://doi.org/10.1016/j.procs.2023.10.173 google scholar
  • Reif, J., & Schmucker, D. (2020). Exploring new ways of visitor tracking using big data sources: Opportunities and limits of passive mobile data for tourism. Journal of Destination Marketing & Management, 18, 100481. https://doi.org/10.1016/j.jdmm.2020.100481 google scholar
  • Santiago-Iglesias, E., Carpio-Pinedo, J., Sun, W., & García-Palomares, J. C. (2023). Frozen city: Analysing the disruption and resilience of urban activities during a heavy snowfall event using Google Popular Times. Urban Climate, 51, 101644. https://doi.org/10.1016/j.uclim.2023.101644 google scholar
  • Shi, C., Li, Q., Lu, S., & Yang, X. (2021). Exploring temporal intra-urban travel patterns: An online car-hailing trajectory data perspective. Remote Sensing, 13(9), 1825. google scholar
  • Smith, L. (2006). Uses of heritage. Routledge. google scholar
  • Solomon, P., & Draine, J. (2010). An overview of quantitative research methods. The handbook of social work methods, 26-32. google scholar
  • Strohmaier, R., Sprung, G., Nischelwitzer, A., & Schadenbauer, S. (2015). Using visitor-flow visualization to improve visitor experience in museums and exhibitions. Museums and the Web (MW2015). google scholar
  • Timothy, D. J., & Boyd, S. W. (2003). Heritage tourism. google scholar
  • Tukey, J. W. (1977). Exploratory data analysis. Reading/Addison-Wesley. google scholar
  • UNESCO. (1972). Convention concerning the protection of the world cultural and natural heritage. Paris: UNESCO. Retrieved from https://whc.unesco.org/en/conventiontext google scholar
  • Vongvanich, T., Sun, W., & Schmocker, J. D. (2023). Explaining and predicting station demand patterns using google popular times data. Data Science for Transportation, 5(2), 10. https://doi.org/10.1007/s42421-023-00072-z google scholar
  • Yang, Y., & Stienmetz, J. L. (2018). Big data and tourism planning. Information Technology & Tourism, 20(1), 189-190. https://doi.org/10.1007/s40558-018-0127-6 google scholar
  • Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An analysis of visitors' behavior in the Louvre Museum: A study using Bluetooth data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. https://doi.org/10.1068/b130047p google scholar
  • Zancanaro, M., Kuflik, T., Boger, Z., Goren-Bar, D., & Goldwasser, D. (2007). Analyzing museum visitors’ behavior patterns. In International Conference on User Modeling (pp. 238-246). Berlin, Heidelberg: Springer Berlin Heidelberg. google scholar
  • Zhou, W., Chen, F., & Guo, H. (2015). Differential radar interferometry for structural and ground deformation monitoring: A new tool for the conservation and sustainability of cultural heritage sites. Sustainability, 7(2), 1712-1729. https://doi.org/10.3390/su7021712 google scholar
  • Zong, Z., & Guan, Y. (2025). AI-driven intelligent data analytics and predictive analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. Journal of the knowledge economy, 16(1), 864-903. https://doi.org/10.1007/s13132-024-02001-z google scholar

A Simplified Approach to Big Data Applications in Tourism: Monitoring Weekly Visitor Patterns of a Heritage Site Using Google Popular Times

Yıl 2025, Sayı: 4, 81 - 97, 09.01.2026
https://doi.org/10.26650/JODA.1806624

Öz

This study introduces a simplified big data application approach to monitor weekly visitor patterns in the example of heritage sites using semi-structured data. A descriptive research design was adopted by employing exploratory data analysis on hourly visitor intensity data retrieved from Google’s Popular Times feature to monitor weekly visitor patterns in the case of Beylerbeyi Palace, Istanbul. Data were collected between March and April 2025. Visitor patterns were identified through systematic graphical analysis and validated by quantitative indicators, including measures of central tendency and slope values of intensity curves. The results revealed six distinct visitor patterns that included weekday low peak, weekend high peak, morning low intensity, afternoon high intensity, positive slope, and negative slope, capturing both daily and weekly levels. Instead of employing complex analysis, by applying a novel approach to a single heritage site as a pilot study, it provides preliminary evidence that semi-structured big data can be effectively used to monitor visitor patterns in a cost-efficient and replicable way and emphasises the practical usefulness of a simple, digitally supported method for tracking visitor activity. Future studies could expand this preliminary approach to multiple sites or integrate it with AI-based analytical tools to improve pattern identification and support visitor flow prediction or management strategies.

Kaynakça

  • Adadi, A. (2021). A survey on data‐efficient algorithms in big data era. Journal of Big Data, 8(1), 24. https://doi.org/10.1186/s40537-021-00419-9 google scholar
  • Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-93. https://doi.org/10.1016/j.bdr.2015.04.001 google scholar
  • Arnberger, A., Haider, W., & Brandenburg, C. (2005). Evaluating visitor-monitoring techniques: A comparison of counting and video observation data. Environmental Management, 36(2), 317-327. https://doi.org/10.1007/s00267-004-8201-6 google scholar
  • Arrowsmith, C., Zanon, D., & Chhetri, P. (2005). Monitoring visitor patterns of use in natural tourist destinations. Taking tourism to the limits, 33-52. google scholar
  • Balnaves, M., & Caputi, P. (2001). Introduction to quantitative research methods: An investigative approach. google scholar
  • Barrena-Herrán, M., Modrego-Monforte, I., & Grijalba, O. (2025). Revealing Spatiotemporal Urban Activity Patterns: A Machine Learning Study Using Google Popular Times. ISPRS International Journal of Geo-Information, 14(6), 221. https://doi.org/10.3390/ijgi1406221 google scholar
  • Bitgood, S. (2006). An analysis of visitor circulation: Movement patterns and the general value principle. Curator: The Museum Journal, 49(4), 463-475. https://doi.org/10.1111/j.2151-6952.2006.tb00237.x google scholar
  • Bolón-Canedo, V., Morán-Fernández, L., Cancela, B., & Alonso-Betanzos, A. (2024). A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing, 599, 128096. https://doi.org/10.1016/j.neucom.2024.128096 google scholar
  • Camilleri, M. A. (2017). The tourism industry: An overview. Travel marketing, tourism economics and the airline product: An introduction to theory and practice, 3-27. https://doi.org/10.1007/978-3-319-49849-2_1 google scholar
  • Castiglione, M., Cantelmo, G., Cipriani, E., & Nigro, M. (2024). From trip purpose to space-time flexibility: a study using floating car data and google popular times. Transportmetrica B: Transport Dynamics, 13(1). https://doi.org/10.1080/21680566.2024.2440596 google scholar
  • Cessford, G., & Muhar, A. (2003). Monitoring options for visitor numbers in national parks and natural areas. Journal for nature conservation, 11(4), 240-250. https://doi.org/10.1078/1617-1381-00055 google scholar
  • Chen, S. X., Wang, X. K., Zhang, H. Y., Wang, J. Q., & Peng, J. J. (2021). Customer purchase forecasting for online tourism: A data-driven method with multiplex behavior data. Tourism Management, 87, 104357. https://doi.org/10.1016/j.tourman.2021.104357 google scholar
  • Cleere, H. (2011). The 1972 UNESCO world heritage convention. Heritage & Society, 4(2), 173-186. https://doi.org/10.1179/hso.2011.4.2.173 google scholar
  • Djedouboum, A. C., Abba Ari, A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2018). Big data collection in large-scale wireless sensor networks. Sensors, 18(12), 4474. https://doi.org/10.3390/s18124474 google scholar
  • Eagles, P. F., McCool, S. F., & Haynes, C. D. (2002). Sustainable tourism in protected areas: Guidelines for planning and management (No. 8). Iucn. google scholar
  • Etzion, D., & Aragon-Correa, J. A. (2016). Big data, management, and sustainability: Strategic opportunities ahead. Organization & Environment, 29(2), 147-155. https://doi.org/10.1177/108602661665043 google scholar
  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National science review, 1(2), 293-314. https://doi.org/10.1093/nsr/nwt032 google scholar
  • Fletcher, R., Johnson, I., Bruce, E., & Khun-Neay, K. (2007). Living with heritage: site monitoring and heritage values in Greater Angkor and the Angkor World Heritage Site, Cambodia. World Archaeology, 39(3), 385–405. https://doi.org/10.1080/00438240701465001 google scholar
  • Fuchs, M., Eberle, T., & Höpken, W. (2021). Using Google Maps Data for Tourism Real-Time Monitoring and Analytics: The case of Cultural Tourism, Sweden. In 28th ENTER Conference e-Tourism-Development Opportunities and Challenges in an Unpredictable World, January 19-22, 2021. google scholar
  • Fuchs, M., Eberle, T., & Höpken, W. (2025). Google Maps data for tourism real-time monitoring and analytics: The case of cultural tourism, Sweden. In Geography, Planning and Tourism 2025 (pp. 146–167). Edward Elgar Publishing. https://doi.org/10.4337/9781035300136.00014 google scholar
  • Furht, B., & Villanustre, F. (2016). Introduction to big data. In Big data technologies and applications (pp. 3-11). Cham: Springer International Publishing. google scholar
  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 google scholar
  • Garrigós-Simón, F., Sanz-Blas, S., Narangajavana, Y., & Buzova, D. (2021). The nexus between big data and sustainability: an analysis of current trends and developments. Sustainability, 13(12), 6632. https://doi.org/10.3390/su13126632 google scholar
  • Ghanad, A. (2023). An overview of quantitative research methods. International journal of multidisciplinary research and analysis, 6(08), 3794-3803. google scholar
  • Google. (n.d.). Popular times, wait times, and visit duration. Google Business Profile Help. Retrieved February 17, 2025, from https://support.google.com/business/answer/6263531 google scholar
  • Goulding, P., & Pomfret, G. (2022). Managing temporal variation at visitor attractions. In Managing visitor attractions (pp. 213-233). Routledge. google scholar
  • Gravetter, F. J., Wallnau, L. B., Forzano, L. A. B., & Witnauer, J. E. (2021). Essentials of statistics for the behavioral sciences (p. 648). Boston, MA, USA: Cengage. google scholar
  • Gribaudo, M., Iacono, M., & Levis, A. H. (2018). An IoT-based monitoring approach for cultural heritage sites: The Matera case. Concurrency and Computation: Practice and Experience, 30(24), e4793. https://doi.org/10.1002/cpe.4793 google scholar
  • Guerard, G., Gabot, Q., & Djebali, S. (2024). Tourism profile measure for data-driven tourism segmentation. International Journal of Machine Learning and Cybernetics, 1-26. https://doi.org/10.1007/s13042-024-02145-z google scholar
  • Gullino, P., Beccaro, G. L., & Larcher, F. (2015). Assessing and monitoring the sustainability in rural World Heritage Sites. Sustainability, 7(10), 14186–14210. https://doi.org/10.3390/su71014186 google scholar
  • Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (Eds.). (2000). Understanding robust and exploratory data analysis. John Wiley & Sons. google scholar
  • Kuflik, T., Boger, Z., & Zancanaro, M. (2012). Analysis and prediction of museum visitors’ behavioral pattern types. In Ubiquitous display environments (pp. 161-176). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27663-7_10 google scholar
  • Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1. google scholar
  • Mahdi, A. J., Tettamanti, T., & Esztergár-Kiss, D. (2023). Modeling the time spent at points of interest based on Google Popular Times. IEEE Access, 11, 120345–120358. google scholar
  • Marr, B. (2016). Big data in practice: how 45 successful companies used big data analytics to deliver extraordinary results. John Wiley & Sons. google scholar
  • Mckercher, B., & Lau, G. (2008). Movement patterns of tourists within a destination. Tourism Geographies: An International Journal of Tourism Space, Place and Environment, 10(3), 355e374. https://doi.org/10.1080/14616680802236352 google scholar
  • Miah, S. J., Vu, H., & Gammack, J. (2019). A big-data analytics method for capturing visitor activities and flows: The case of an island country. Information Technology and Management, 20(4), 203-221. https://doi.org/10.1007/s10799-019-00303-2 google scholar
  • Milea, E. C., Necula, M., & Roşu, M. (2022). On the Potential of Google’s ‘Popular Times’ Data in Epidemiology. Fostering Recovery Through Metaverse Business Modelling, 845-856. https://doi.org/10.24789788367405072-079 google scholar
  • Muhar, A., Arnberger, A., & Brandenburg, C. (2002). Methods for visitor monitoring in recreational and protected areas: An overview. Monitoring and Management of Visitor Flows in Recreational and Protected Areas. Institut for Landscape Architecture & Landscape Management Bodenkultur University Vienna, 2001, 1-6. google scholar
  • Nag, A., & Mishra, S. (2024). Sustainable competitive advantage in heritage tourism: Leveraging cultural legacy in a data-driven world. In Review of technologies and disruptive business strategies (Vol. 3, pp. 137-162). Emerald Publishing Limited. https://doi.org/10.1108/S2754-586520240000003008 google scholar
  • National Palaces Administration. (n.d.). Beylerbeyi Palace. https://www.millisaraylar.gov.tr/Lokasyon/4/Beylerbeyi-Sarayi google scholar
  • Norouzi, R., Baziyad, H., Aknondzadeh Noghabi, E., & Albadvi, A. (2022). Developing Tourism Users’ Profiles with Data‐Driven Explicit Information. Mathematical Problems in Engineering, 2022(1), 6536908. https://doi.org/10.1155/2022/6536908 google scholar
  • Orellana, D., Bregt, A. K., Ligtenberg, A., & Wachowicz, M. (2012). Exploring visitor movement patterns in natural recreational areas. Tourism Management, 33(3), 672-682. https://doi.org/10.1016/j.tourman.2011.07.010 google scholar
  • Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University-Computer and Information Sciences, 30(4), 431-448. https://doi.org/10.1016/j.jksuci.2017.06.001 google scholar
  • Patton, M. Q. (2002). Qualitative research and evaluation methods 3rd. ed. Sage publications. google scholar
  • Perer, A., & Shneiderman, B. (2008). Integrating statistics and visualization: case studies of gaining clarity during exploratory data analysis. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 265-274). google scholar
  • Phillips, H. (2015). The capacity to adapt to climate change at heritage sites—The development of a conceptual framework. Environmental Science & Policy, 47, 118-125. https://doi.org/10.1016/j.envsci.2014.11.003 google scholar
  • Prasetyani, M., Isnanto, R. R., & Widodo, C. E. (2023). Analyzing road users’ behavior: A data mining approach using Google Maps Popular Time and web scraping for rest area visitation patterns on highways and toll roads. Procedia Computer Science, 225, 1582–1591. https://doi.org/10.1016/j.procs.2023.10.173 google scholar
  • Reif, J., & Schmucker, D. (2020). Exploring new ways of visitor tracking using big data sources: Opportunities and limits of passive mobile data for tourism. Journal of Destination Marketing & Management, 18, 100481. https://doi.org/10.1016/j.jdmm.2020.100481 google scholar
  • Santiago-Iglesias, E., Carpio-Pinedo, J., Sun, W., & García-Palomares, J. C. (2023). Frozen city: Analysing the disruption and resilience of urban activities during a heavy snowfall event using Google Popular Times. Urban Climate, 51, 101644. https://doi.org/10.1016/j.uclim.2023.101644 google scholar
  • Shi, C., Li, Q., Lu, S., & Yang, X. (2021). Exploring temporal intra-urban travel patterns: An online car-hailing trajectory data perspective. Remote Sensing, 13(9), 1825. google scholar
  • Smith, L. (2006). Uses of heritage. Routledge. google scholar
  • Solomon, P., & Draine, J. (2010). An overview of quantitative research methods. The handbook of social work methods, 26-32. google scholar
  • Strohmaier, R., Sprung, G., Nischelwitzer, A., & Schadenbauer, S. (2015). Using visitor-flow visualization to improve visitor experience in museums and exhibitions. Museums and the Web (MW2015). google scholar
  • Timothy, D. J., & Boyd, S. W. (2003). Heritage tourism. google scholar
  • Tukey, J. W. (1977). Exploratory data analysis. Reading/Addison-Wesley. google scholar
  • UNESCO. (1972). Convention concerning the protection of the world cultural and natural heritage. Paris: UNESCO. Retrieved from https://whc.unesco.org/en/conventiontext google scholar
  • Vongvanich, T., Sun, W., & Schmocker, J. D. (2023). Explaining and predicting station demand patterns using google popular times data. Data Science for Transportation, 5(2), 10. https://doi.org/10.1007/s42421-023-00072-z google scholar
  • Yang, Y., & Stienmetz, J. L. (2018). Big data and tourism planning. Information Technology & Tourism, 20(1), 189-190. https://doi.org/10.1007/s40558-018-0127-6 google scholar
  • Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An analysis of visitors' behavior in the Louvre Museum: A study using Bluetooth data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. https://doi.org/10.1068/b130047p google scholar
  • Zancanaro, M., Kuflik, T., Boger, Z., Goren-Bar, D., & Goldwasser, D. (2007). Analyzing museum visitors’ behavior patterns. In International Conference on User Modeling (pp. 238-246). Berlin, Heidelberg: Springer Berlin Heidelberg. google scholar
  • Zhou, W., Chen, F., & Guo, H. (2015). Differential radar interferometry for structural and ground deformation monitoring: A new tool for the conservation and sustainability of cultural heritage sites. Sustainability, 7(2), 1712-1729. https://doi.org/10.3390/su7021712 google scholar
  • Zong, Z., & Guan, Y. (2025). AI-driven intelligent data analytics and predictive analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. Journal of the knowledge economy, 16(1), 864-903. https://doi.org/10.1007/s13132-024-02001-z google scholar
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veri Yönetimi ve Veri Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Gorkem Yuksel 0009-0005-5904-1063

İsmail Kızılırmak 0000-0001-9141-6420

Gönderilme Tarihi 21 Ekim 2025
Kabul Tarihi 9 Aralık 2025
Yayımlanma Tarihi 9 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Sayı: 4

Kaynak Göster

APA Yuksel, T. G., & Kızılırmak, İ. (2026). A Simplified Approach to Big Data Applications in Tourism: Monitoring Weekly Visitor Patterns of a Heritage Site Using Google Popular Times. Journal of Data Applications, 4, 81-97. https://doi.org/10.26650/JODA.1806624