Derleme
BibTex RIS Kaynak Göster

İklim Değişikliğinin Yarasalar Üzerine Olası Etkileri

Yıl 2022, Cilt: 4 Sayı: 2, 174 - 198, 05.09.2022
https://doi.org/10.53472/jenas.1149503

Öz

Çağımızın en önemli çevre sorunları arasında yer alan iklim değişikliği, türler, komüniteler ve ekosistemler üzerinde önemli olumsuz etkiler oluşturmaktadır. Dünyada geniş yayılış gösteren ve ekosistemlerin işleyişinde önemli rollere sahip olan yarasalar, iklim değişikliğinden önemli ölçüde etkilenecek canlılar arasındadır. Bu çalışmada, iklim değişikliğinin yarasalar üzerindeki olası etkileri, dünyanın farklı biyom ve coğrafyalarında gerçekleştirilen gözlemsel, deneysel ve modelleme odaklı çalışmaların derlenerek ortaya konmuştur. Bu çalışmalarda, yarasa türlerinin alansal yayılımı, bolluğu, fizyolojisi, fenolojisi, habitatları, diğer türlerle olan etkileşimleri, yiyecek arama aktivitesi ve patojen yayma etkinliği üzerine iklim değişikliğinin etkileri olduğuna ilişkin bulgular elde edilmiştir. Mevcut veriler, yarasa popülasyonlarının iklim değişikliğine karşı verdiği tepkilerin karmaşık olduğunu ve türe özgü tepkiler nedeniyle genelleme yapmanın zor olduğunu göstermektedir. Bu derleme çalışması, yarasaların iklim değişikliğine verdiği ve vereceği tepkiler hakkında sahip olduğumuz bilgilerin sınırlı olduğunu göstermiştir. Farklı biyocoğrafi bölgelerde yayılım gösteren ve farklı iklimsel gereksinimleri olan yarasaların iklim değişikliğine tepkilerinin özellikle tür seviyesinde daha çok araştırılması gerekmektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

121Z307

Teşekkür

Bu çalışma 121Z307 nolu "İklimsel Parametrelerin Myotis myotis'in (Büyük farekulaklı yarasa) Aktivite Örüntüsü ve Beslenme İlişkisi Üzerine Etkileri" isimli TÜBİTAK projesi kapsamında gerçekleştirilmiştir. Mina Cansu Karaer Yükseköğretim Kurulu'nun 100/2000 öncelikli alan doktora bursu ile desteklenmiştir.

Kaynakça

  • Adams, R. A., 2010. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology, 91(8), 2437-2445.
  • Adams, R. A., 2018. Dark side of climate change: Species‐specific responses and first indications of disruption in spring altitudinal migration in myotis bats. Journal of Zoology, 304(4), 268-275.
  • Aguiar, L. M., Bernard, E., Ribeiro, V., Machado, R. B., & Jones, G., 2016. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5, 22-33.
  • Albayrak, İ., 1990. The bats of Eastern Anatolia and their distribution (Mammalia: Chiroptera). Turkish Journal of Zoology, 14, 214-228.
  • Albayrak, I., 1993. The bats of Western Turkey and their distribution (Mammalia: Chiroptera). Turkish Journal of Zoology, 17, 237-257.
  • Albayrak, İ., 2000. Bats, hand-winged mammals. Yeşil Atlas, Journal of Geography and Discovery, Doğan Burda Rizzoli Magazine Publishing and Marketing Inc., Istanbul. 3, 69- 73.
  • Albayrak, İ., Aşan, N., & Yorulmaz, T., 2008. The natural history of the Egyptian fruit bat, Rousettus aegyptiacus, in Turkey (Mammalia: Chiroptera). Turkish Journal of Zoology, 32(1), 11-18.
  • Altringham, J. D., 2011. Bats: from evolution to conservation. Oxford University Press.
  • Angerbjörn, A., Hersteinsson, P., Lidén, K., & Nelson, E., 1994. Dietary variation in arctic foxes (Alopex lagopus)-an analysis of stable carbon isotopes. Oecologia, 99(3), 226-232.
  • Arlettaz R, Godat S& Meyer H., 2000 Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93, 55–60.
  • Avena, C. V., Parfrey, L. W., Leff, J. W., Archer, H. M., Frick, W. F., Langwig, K. E., ... & McKenzie, V. J., 2016. Deconstructing the bat skin microbiome: influences of the host and the environment. Frontiers in Microbiology, 7, 1753.
  • Bai, Y., Urushadze, L., Osikowicz, L., McKee, C., Kuzmin, I., Kandaurov, A., Babuadze, G., Natradze I, Imnadze P., Kosoy, M. 2017. Molecular survey of bacterial zoonotic agents in bats from the country of Georgia (Caucasus). PLoS One, 12(1), e0171175.
  • Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S., Shouche, Y. S., 2016. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Scientific reports, 6(1), 1-13.
  • Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., ... & Ferrer, E. A., 2011. Has the Earth’s sixth mass extinction already arrived?. Nature, 471(7336), 51-57.
  • Beever, E. A., Hall, L. E., Varner, J., Loosen, A. E., Dunham, J. B., Gahl, M. K., Smith F.A., Lawler, J. J. 2017. Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 15(6), 299-308.
  • Benda, P., Horácek, I., 1998. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part I. Review of Distribution and Taxonomy of Bats in Turkey. Acta Soc. Zool. Bohem. 62, 255- 313.
  • Beyer, R. M., Manica, A., & Mora, C., 2021. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 767, 145413.
  • Bilgin, R., Karataş, A., Çoraman, E., Pandurski, I., Papadatou, E., & Morales, J. C., 2006. Molecular taxonomy and phylogeography of Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae), in the Eurasian transition. Biological Journal of the Linnaean Society, 87(4), 577-582.
  • Bilgin, R., Karataş, A., Çoraman, E. M. R. A. H., & Morales, J. C., 2008. The mitochondrial and nuclear genetic structure of Myotis capaccinii (Chiroptera: Vespertilionidae) in the Eurasian transition, and its taxonomic implications. Zoologica Scripta, 37(3), 253-262.
  • Bilgin, R., Keşişoğlu, A., & Rebelo, H., 2012. Distribution patterns of bats in the Eastern Mediterranean Region through a climate change perspective. Acta Chiropterologica, 14(2), 425-437.
  • Bilgin, R., Gürün, K., Rebelo, H., Puechmaille, S. J., Maracı, Ö., Presetnik, P., ... & Juste, J., 2016. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe?. Molecular Phylogenetics and Evolution, 99, 323-336.
  • Boonman, A. M., Boonman, M., Bretschneider, F., & van de Grind, W. A., 1998. Prey detection in trawling insectivorous bats: duckweed affects hunting behaviour in Daubenton's bat, Myotis daubentonii. Behavioral Ecology and Sociobiology, 44(2), 99-107.
  • Bradshaw, W. E., & Holzapfel, C. M., 2006. Evolutionary response to rapid climate change. Science, 312(5779), 1477-1478. Brook, C. E., & Dobson, A. P., 2015. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172-180.
  • Browning, E., Barlow, K. E., Burns, F., Hawkins, C., & Boughey, K., 2021. Drivers of European bat population change: a review reveals evidence gaps. Mammal Review, 51(3), 353-368.
  • Burles, D. W., Brigham, R. M., Ring, R. A., & Reimchen, T. E., 2009. Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Canadian Journal of Zoology, 87(2), 132-138.
  • Çağlar, M., 1965. Chiroptera fauna of Turkey. İstanbul Üniv. Fen Fak. Mec. Seri B 30, 125-134.
  • Cappelli, M. P., Blakey, R. V., Taylor, D., Flanders, J., Badeen, T., Butts, S., ... & Rebelo, H., 2021. Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere. Global Ecology and Conservation, 28, e01608.
  • Carr, A., Weatherall, A., & Jones, G., 2020. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. Forest Ecology and Management, 457, 117682.
  • Chalkowski, K., Lepczyk, C. A., & Zohdy, S., 2018. Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends in Parasitology, 34(8), 655-663.
  • Ciechanowski, M., Zając, T., Biłas, A., & Dunajski, R., 2007. Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Canadian Journal of Zoology, 85(12), 1249-1263.
  • Clements, W. H., & Kotalik, C., 2016. Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Freshwater Science, 35(1), 126-138.
  • COST (2019) Climate change and bats: from science to conservation. COST Action No: COSTCA18107. https://www.cost.eu/cost-action/climate-change-and-bats-from-science-to-conservation/
  • Costa, W. F., Ribeiro, M., Saraiva, A. M., Imperatriz-Fonseca, V. L., & Giannini, T. C., 2018. Bat diversity in Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 218, 200-210.
  • Cyranoski, D., 2020. The biggest mystery: what it will take to trace the coronavirus source. Nature, doi: 10.1038/d41586-020-01541-z.
  • Çoraman, E., Dietz, C., Hempel, E., Ghazaryan, A., Levin, E., Presetnik, P., ... & Mayer, F., 2019. Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mt DNA introgressions in secondary contacts. Journal of Biogeography, 46(2), 343-354.
  • Çoraman, E., Dundarova, H., Dietz, C., & Mayer, F., 2020. Patterns of mtDNA introgression suggest population replacement in Palaearctic whiskered bat species. Royal Society Open Science, 7(6), 191805.
  • Damien, M., & Tougeron, K., 2019. Prey–predator phenological mismatch under climate change. Current opinion in insect science, 35, 60-68.
  • Danford, C.G., Alston, E.R., 1877. On the Mammals of Asia Minor Part I. Proc. Zool. Soc. Lond. 1877, 270-282.
  • Doria, G., 1887. The bats found so far in Liguria. Ann. Mus. Civ. Stor. Natur. Genoa, S. 2 4 (1886), 385-474.
  • Fenolio, D. B., Graening, G. O., Collier, B. A., & Stout, J. F., 2006. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proceedings of the Royal Society B: Biological Sciences, 273(1585), 439-443.
  • Fenton, M. B., & Simmons, N. B., 2015. Bats. University of Chicago Press.
  • Fuller, A., Mitchell, D., Maloney, S. K., & Hetem, R. S., 2016. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Climate Change Responses, 3(1), 1-19.
  • Furman, A., Çoraman, E., Bilgin, R., Karataş, A., 2009. Molecular Ecology and Phylogeography of the Bent-Wing Bat Complex (Miniopterus schreibersii) (Chiroptera: Vespertilionidae) in Asia Minor and Adjacent Regions. Zoologica Scripta. 38 (2), 129-141.
  • Gannon, M. R., Bovard, B. N., Butchkoski, C. M., Reeder, D. M., Turner, G. G., & Whidden, H. P., 2016. The value of bats: Keystone species in the Keystone State. Conservation and Ecology of Pennsylvania’s Bats, 5-31.
  • Gerbáčová, K., Maliničová, L., Kisková, J., Maslišová, V., Uhrin, M., & Pristaš, P., 2020. The faecal microbiome of building-dwelling insectivorous bats (Myotis myotis and Rhinolophus hipposideros) also contains antibiotic-resistant bacterial representatives. Current Microbiology, 77(9), 2333-2344.
  • Gonsalves, L., Bicknell, B., Law, B., Webb, C., & Monamy, V., 2013. Mosquito consumption by insectivorous bats: does size matter ? . PloS one, 8(10), e77183.
  • Gu, G., & Adler, R. F., 2015. Spatial patterns of global precipitation change and variability during 1901–2010. Journal of Climate, 28(11), 4431-4453.
  • Haest, B., Stepanian, P. M., Wainwright, C. E., Liechti, F., & Bauer, S., 2021. Climatic drivers of (changes in) bat migration phenology at Bracken Cave (USA). Global Change Biology, 27(4), 768-780.
  • Haile, W. A., 2020. Impact of climate change on animal production and expansion of animal disease: a review on Ethiopia perspective. Am. J. Pure Appl. Sci, 2(3), 64-76.
  • Hanssen, S. A., Moe, B., Bårdsen, B. J., Hanssen, F., & Gabrielsen, G. W., 2013. A natural antipredation experiment: predator control and reduced sea ice increases colony size in a long‐lived duck. Ecology and evolution, 3(10), 3554-3564.
  • Hayes, M. A., & Piaggio, A. J., 2018. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One, 13(2), e0192887.
  • Hellmann, J. J., Nadelhoffer, K. J., Iverson, L. R., Ziska, L. H., Matthews, S. N., Myers, P., ... & Peters, M. P., 2010. Climate change impacts on terrestrial ecosystems in metropolitan Chicago and its surrounding, multi-state region. Journal of Great Lakes Research, 36, 74-85.
  • Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S., 2021. Future phytoplankton diversity in a changing climate. Nature communications, 12(1), 1-8..
  • Hetem, R. S., Fuller, A., Maloney, S. K., & Mitchell, D., 2014. Responses of large mammals to climate change. Temperature, 1(2), 115-127.
  • Hoffmann, A. A., & Sgrò, C. M., 2011. Climate change and evolutionary adaptation. Nature, 470(7335), 479-485.
  • Horta, M. A., Ledesma, L. A., Moura, W. C., & Lemos, E. R. S., 2022. From dogs to bats: Concerns regarding vampire bat-borne rabies in Brazil. PLOS Neglected Tropical Diseases, 16(3), e0010160.
  • Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent?. Trends in ecology & evolution, 15(2), 56-61.
  • Humphries, M. M., Thomas, D. W., & Speakman, J. R., 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418(6895), 313-316.
  • Hutson, A. M., & Mickleburgh, S. P. (Eds.)., 2001. Microchiropteran bats: global status survey and conservation action plan (Vol. 56). IUCN.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  • Jones, G., & Rebelo, H., 2013. Responses of bats to climate change: learning from the past and predicting the future. In Bat evolution, ecology, and conservation (pp. 457-478). Springer, New York, NY.
  • Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R., & Racey, P. A., 2009. Carpe noctem: the importance of bats as bioindicators. Endangered species research, 8(1-2), 93-115.
  • Jones, K. E., 2001. Chiroptera (Bats). e LS.
  • Kahmann, H., Çağlar, M., 1960. Contributions to Turkey's mammalian science. I- Bat from the Hatay countryside. İstanbul Üniv. Fen Fak. Mec. Seri B 25, 1-21.
  • Karataş, A., & Sachanowicz, K., 2008. Noteworthy bat records from Upper Mesopotamia, Turkey (Chiroptera). Lynx (Praha), 39, 103-108.
  • Kasso, M., Balakrishnan, M., 2013. Ecological and economic importance of bats (Order Chiroptera). International Scholarly Research Notices, 2013.
  • Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y., 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the national Academy of Sciences, 112(11), 3241-3246.
  • Kelt, D. A., Van Vuren, D. H., 2001. The ecology and macroecology of mammalian home range area. The American Naturalist, 157(6), 637-645.
  • Kerth, G., 2008. Animal sociality: bat colonies are founded by relatives. Current Biology, 18(17), R740-R742.
  • Kerth, G., 2008. Causes and consequences of sociality in bats. Bioscience, 58(8), 737-746.
  • Knutti, R., Rogelj, J., Sedláček, J., & Fischer, E. M. 2016. A scientific critique of the two-degree climate change target. Nature Geoscience, 9(1), 13-18.
  • Kunz T.H. , Lumsden L.F. , Fenton M.B. (2003). Bat ecology, University of Chicago Press, Chicago, Illinois.
  • Lacetera, N., 2019. Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26-31.
  • Lambert, C. T., Hall, L. K., Larsen, R. T., Knight, R. N., & McMillan, B. R., 2018. Temporal partitioning and the effects of climate change on two ecologically similar desert bats. Journal of Mammalogy, 99(6), 1486-1494.
  • Laws, A. N., 2017. Climate change effects on predator–prey interactions. Current Opinion in Insect Science, 23, 28-34.
  • Lučan, R. K., Weiser, M., & Hanák, V., 2013. Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat. Journal of Zoology, 290(2), 151-159.
  • Luo, J., Koselj, K., Zsebők, S., Siemers, B. M., & Goerlitz, H. R., 2014. Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats. Journal of the Royal Society Interface, 11(91), 20130961.
  • Marcogliese, D. J., 2001. Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79(8), 1331-1352.
  • Martin, G., Yanez-Arenas, C., Chen, C., Plowright, R. K., Webb, R. J., & Skerratt, L. F., 2018. Climate change could increase the geographic extent of Hendra virus spillover risk. EcoHealth, 15(3), 509-525.
  • McGinty, N., Barton, A. D., Record, N. R., Finkel, Z. V., Johns, D. G., Stock, C. A., & Irwin, A. J., 2021. Anthropogenic climate change impacts on copepod trait biogeography. Global Change Biology, 27(7), 1431-1442.
  • McHenry, J., Welch, H., Lester, S. E., & Saba, V., 2019. Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 25(12), 4208-4221.
  • McKee, C. D., Bai, Y., Webb, C. T., & Kosoy, M. Y., 2021. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infection, Genetics and Evolution, 89, 104719.
  • Mecklenburg, S., Drusch, M., Kaleschke, L., Rodriguez-Fernandez, N., Reul, N., Kerr, Y., ... & Kornberg, M., 2016. ESA's Soil Moisture and Ocean Salinity mission: From science to operational applications. Remote Sensing of Environment, 180, 3-18.
  • Milligan, S. R., Holt, W. V., & Lloyd, R., 2009. Impacts of climate change and environmental factors on reproduction and development in wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3313-3319.
  • Misra, P. K., Gautam, N. K., & Elangovan V., 2019. Bat guano: a rich source of macro and microelements essential for plant growth. Annals of Plant and Soil Research, 21(1), 82-86.
  • Mistry, S., & Moreno-Valdez, A., 2009. COS 85-2: Climate change, vampire bats, and rabies: modeling range shifts on the US-Mexico border. In Conference Proceedings of the 94th Ecological Society of America.
  • Mühldorfer, K., 2013. Bats and bacterial pathogens: a review. Zoonoses and Public Health, 60(1), 93-103.
  • Mühldorfer, K., Speck, S., & Wibbelt, G., 2011. Diseases in free-ranging bats from Germany. BMC Veterinary Research, 7(1), 1-11.
  • Nabi, G., Siddique, R., Ali, A., & Khan, S., 2020. Preventing bat-born viral outbreaks in future using ecological interventions. Environmental research, 185, 109460.
  • Netherer S& Schopf A. 2010 Potential effects of climate change on insect herbivores in European forests: general aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259, 831–838.
  • Owen‐Smith N., Mason, D. R., & Ogutu, J. O., 2005. Correlates of survival rates for 10 African ungulate populations: density, rainfall and predation. Journal of Animal Ecology, 74(4), 774-788.
  • Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., ... & Williams, S. E., 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.
  • Post, E., 2013. Ecology of climate change. In Ecology of Climate Change. Princeton University Press.
  • Preisser, E. L., Bolnick, D. I., & Benard, M. F., 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology, 86(2), 501-509.
  • Pryde, M. A., O’Donnell, C. F., & Barker, R. J., 2005. Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biological conservation, 126(2), 175-185.
  • Radchuk, V., Reed, T., Teplitsky, C., Van De Pol, M., Charmantier, A., Hassall, C., ... & Kramer-Schadt, S., 2019. Adaptive responses of animals to climate change are most likely insufficient. Nature communications, 10(1), 1-14.
  • Rebelo, H., Tarroso, P., & Jones, G., 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2), 561-576.
  • Roth, J. D., 2002. Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice. Oecologia, 133(1), 70-77.
  • Rushing, C. S., Royle, J. A., Ziolkowski, D. J., & Pardieck, K. L., 2020. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proceedings of the National Academy of Sciences, 117(23), 12897-12903.
  • Şadoğlu, P., 1953. Nutrition of fruit eating bats. Biology. 3, 12-17.
  • Satunin, K., 1913. About the zoogeographic borders of the Caucasus region. Preliminary notification. Damn. Kcukar. Mus. Tiflis. 7, 56-106.
  • Schindler, D. E., & Hilborn, R. (2015). Prediction, precaution, and policy under global change. Science, 347(6225), 953-954.
  • Sherwin, H. A., Montgomery, W. I., & Lundy, M. G., 2013. The impact and implications of climate change for bats. Mammal Review, 43(3), 171-182.
  • Shi, Z., 2010. Bat and virus. Protein & Cell, 1(2), 109-114.
  • Sibly, R. M., & Atkinson, D., 1994. How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 486-493.
  • Siemers B.M., & Schnitzler H.U., 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429, 657–661.
  • Simmonds, M. P., & Isaac, S. J., 2007. The impacts of climate change on marine mammals: early signs of significant problems. Oryx, 41(1), 19-26.
  • Simmons, N. B., 2005. An Eocene big bang for bats. Science, 307(5709), 527-528.
  • Smeraldo, S., Bosso, L., Salinas‐Ramos, V. B., Ancillotto, L., Sánchez‐Cordero, V., Gazaryan, S., & Russo, D., 2021. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Review, 51(4), 571-584.
  • Stawski, C., & Geiser, F., 2012. Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change?. PLoS One, 7(7), e40278.
  • Sueur, J., Krause, B., & Farina, A., 2019. Climate change is breaking Earth’s beat. Trends in Ecology & Evolution, 34(11), 971-973.
  • Thomas, C. D., Hill, J. K., Anderson, B. J., Bailey, S., Beale, C. M., Bradbury, R. B., ... & Yardley, T. (2011). A framework for assessing threats and benefits to species responding to climate change. Methods in Ecology and Evolution, 2(2), 125-142.
  • Tougeron, K., Damien, M., Le Lann, C., Brodeur, J., & van Baaren, J., 2018. Rapid responses of winter aphid-parasitoid communities to climate warming. Frontiers in Ecology and Evolution, 6, 173.
  • Ürker, O., & Yorulmaz, T., 2020. Köyceğiz-Dalyan Özel Çevre Koruma Bölgesi’ndeki Anadolu sığla ormanlarında yarasa (Chiroptera) aktivitesinin belirlenmesi. Ormancılık Araştırma Dergisi, 7(1), 88-103.
  • Van Asch, M., Van Tienderen, P. H., Holleman, L. J., & Visser, M. E., 2007. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Global Change Biology, 13(8), 1596-1604.
  • Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C., 2012. Phenotypic plasticity alone cannot explain climate‐induced change in avian migration timing. Ecology and Evolution, 2(10), 2430-2437.
  • Veikkolainen, V., Vesterinen, E. J., Lilley, T. M., & Pulliainen, A. T., 2014. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerging Infectious Diseases, 20(6), 960.
  • Voigt, C. C., & Lewanzik, D., 2011. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proceedings of the Royal Society B: Biological Sciences, 278(1716), 2311-2317.
  • Wang, J., Gao, W., Wang, L., Metzner, W., Ma, J., & Feng, J., 2010. Seasonal variation in prey abundance influences habitat use by greater horseshoe bats (Rhinolophus ferrumequinum) in a temperate deciduous forest. Canadian Journal of Zoology, 88(3), 315-323.
  • Wang, L. F., & Anderson, D. E., 2019. Viruses in bats and potential spillover to animals and humans. Current Opinion in Virology, 34, 79-89.
  • Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M., 2020. Shared morphological consequences of global warming in North American migratory birds. Ecology Letters, 23(2), 316-325.
  • Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., ... & Whyte, K. P., 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782.
  • Welbergen, J. A., Klose, S. M., Markus, N., & Eby, P., 2008. Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 419-425.
  • Whitmarsh, L., 2008. Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. Journal of Risk Research, 11(3), 351-374.
  • Williams, J. E., & Blois, J. L., 2018. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts?. Journal of Biogeography, 45(9), 2175-2189.
  • Willis, C. K., 2017. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integrative and Comparative Biology, 57(6), 1214-1224.
  • Wingenter, O. W., Haase, K. B., Zeigler, M., Blake, D. R., Rowland, F. S., Sive, B. C., ... & Riebesell, U., 2007. Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophysical Research Letters, 34(5).
  • Wu, J., 2016. Detection and attribution of the effects of climate change on bat distributions over the last 50 years. Climatic Change, 134(4), 681-696.
  • Xu, Y., Poosakkannu, A., Suominen, K., Laine, V., Lilley, T., Pulliainen, A., & Lehikoinen, A., 2022. Climate-driven dynamics of pathogenic microbial taxa in birds and bats. Research Square, doi: 10.21203/rs.3.rs-1362343/v1.
  • Yorulmaz, T., Arslan, N., 2020. Current status of the bats in Turkey with their ecogeographic distributions a recommendations for national conservation status (Mammalia: Chiroptera). Fresenius Environ. Bull. 29 (8), 6691–6706.
  • Yorulmaz T., Tavşanoğlu, Ç., & Fidan, E.C., 2022. İklimsel parametrelerin Myotis myotis türünün beslenme ve aktivite örüntüsü üzerine olan etkileri. TÜBİTAK 1001 Projesi.
  • Yorulmaz, T., Ürker, O., & Özmen, R., 2018. Yarasa ve orman ilişkisi üzerine bir değerlendirme. Ormancılık Araştırma Dergisi, 5(1), 31-43.

Possible Effects of Climate Change on Bats

Yıl 2022, Cilt: 4 Sayı: 2, 174 - 198, 05.09.2022
https://doi.org/10.53472/jenas.1149503

Öz

As one of our era’s most important environmental problems, climate change has negative effects on species, communities, and ecosystems. Bats have a wide distribution throughout Earth and significant roles in several ecosystem processes but they are also among organisms that will be negatively affected by climate change. In this study, possible effects of climate change on bats were revealed by reviewing observational, experimental, and modeling studies conducted in various biomes and geographies worldwide. In those studies, results on distribution, abundance, physiology, phenology, habitats, interactions with other species, foraging activity, and pathogen distribution efficiency of bat species were obtained. Available data suggest that responses of bat populations to climate change are complex, and generalizing is difficult due to species-specific responses. This review shows that our knowledge of the responses of bats to climate change is limited. More research is required on the response of bats to climate change, especially at the species level, in bats with different climatic requirements in different biogeographic regions.

Proje Numarası

121Z307

Kaynakça

  • Adams, R. A., 2010. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology, 91(8), 2437-2445.
  • Adams, R. A., 2018. Dark side of climate change: Species‐specific responses and first indications of disruption in spring altitudinal migration in myotis bats. Journal of Zoology, 304(4), 268-275.
  • Aguiar, L. M., Bernard, E., Ribeiro, V., Machado, R. B., & Jones, G., 2016. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5, 22-33.
  • Albayrak, İ., 1990. The bats of Eastern Anatolia and their distribution (Mammalia: Chiroptera). Turkish Journal of Zoology, 14, 214-228.
  • Albayrak, I., 1993. The bats of Western Turkey and their distribution (Mammalia: Chiroptera). Turkish Journal of Zoology, 17, 237-257.
  • Albayrak, İ., 2000. Bats, hand-winged mammals. Yeşil Atlas, Journal of Geography and Discovery, Doğan Burda Rizzoli Magazine Publishing and Marketing Inc., Istanbul. 3, 69- 73.
  • Albayrak, İ., Aşan, N., & Yorulmaz, T., 2008. The natural history of the Egyptian fruit bat, Rousettus aegyptiacus, in Turkey (Mammalia: Chiroptera). Turkish Journal of Zoology, 32(1), 11-18.
  • Altringham, J. D., 2011. Bats: from evolution to conservation. Oxford University Press.
  • Angerbjörn, A., Hersteinsson, P., Lidén, K., & Nelson, E., 1994. Dietary variation in arctic foxes (Alopex lagopus)-an analysis of stable carbon isotopes. Oecologia, 99(3), 226-232.
  • Arlettaz R, Godat S& Meyer H., 2000 Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93, 55–60.
  • Avena, C. V., Parfrey, L. W., Leff, J. W., Archer, H. M., Frick, W. F., Langwig, K. E., ... & McKenzie, V. J., 2016. Deconstructing the bat skin microbiome: influences of the host and the environment. Frontiers in Microbiology, 7, 1753.
  • Bai, Y., Urushadze, L., Osikowicz, L., McKee, C., Kuzmin, I., Kandaurov, A., Babuadze, G., Natradze I, Imnadze P., Kosoy, M. 2017. Molecular survey of bacterial zoonotic agents in bats from the country of Georgia (Caucasus). PLoS One, 12(1), e0171175.
  • Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S., Shouche, Y. S., 2016. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Scientific reports, 6(1), 1-13.
  • Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., ... & Ferrer, E. A., 2011. Has the Earth’s sixth mass extinction already arrived?. Nature, 471(7336), 51-57.
  • Beever, E. A., Hall, L. E., Varner, J., Loosen, A. E., Dunham, J. B., Gahl, M. K., Smith F.A., Lawler, J. J. 2017. Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 15(6), 299-308.
  • Benda, P., Horácek, I., 1998. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part I. Review of Distribution and Taxonomy of Bats in Turkey. Acta Soc. Zool. Bohem. 62, 255- 313.
  • Beyer, R. M., Manica, A., & Mora, C., 2021. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 767, 145413.
  • Bilgin, R., Karataş, A., Çoraman, E., Pandurski, I., Papadatou, E., & Morales, J. C., 2006. Molecular taxonomy and phylogeography of Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae), in the Eurasian transition. Biological Journal of the Linnaean Society, 87(4), 577-582.
  • Bilgin, R., Karataş, A., Çoraman, E. M. R. A. H., & Morales, J. C., 2008. The mitochondrial and nuclear genetic structure of Myotis capaccinii (Chiroptera: Vespertilionidae) in the Eurasian transition, and its taxonomic implications. Zoologica Scripta, 37(3), 253-262.
  • Bilgin, R., Keşişoğlu, A., & Rebelo, H., 2012. Distribution patterns of bats in the Eastern Mediterranean Region through a climate change perspective. Acta Chiropterologica, 14(2), 425-437.
  • Bilgin, R., Gürün, K., Rebelo, H., Puechmaille, S. J., Maracı, Ö., Presetnik, P., ... & Juste, J., 2016. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe?. Molecular Phylogenetics and Evolution, 99, 323-336.
  • Boonman, A. M., Boonman, M., Bretschneider, F., & van de Grind, W. A., 1998. Prey detection in trawling insectivorous bats: duckweed affects hunting behaviour in Daubenton's bat, Myotis daubentonii. Behavioral Ecology and Sociobiology, 44(2), 99-107.
  • Bradshaw, W. E., & Holzapfel, C. M., 2006. Evolutionary response to rapid climate change. Science, 312(5779), 1477-1478. Brook, C. E., & Dobson, A. P., 2015. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172-180.
  • Browning, E., Barlow, K. E., Burns, F., Hawkins, C., & Boughey, K., 2021. Drivers of European bat population change: a review reveals evidence gaps. Mammal Review, 51(3), 353-368.
  • Burles, D. W., Brigham, R. M., Ring, R. A., & Reimchen, T. E., 2009. Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Canadian Journal of Zoology, 87(2), 132-138.
  • Çağlar, M., 1965. Chiroptera fauna of Turkey. İstanbul Üniv. Fen Fak. Mec. Seri B 30, 125-134.
  • Cappelli, M. P., Blakey, R. V., Taylor, D., Flanders, J., Badeen, T., Butts, S., ... & Rebelo, H., 2021. Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere. Global Ecology and Conservation, 28, e01608.
  • Carr, A., Weatherall, A., & Jones, G., 2020. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. Forest Ecology and Management, 457, 117682.
  • Chalkowski, K., Lepczyk, C. A., & Zohdy, S., 2018. Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends in Parasitology, 34(8), 655-663.
  • Ciechanowski, M., Zając, T., Biłas, A., & Dunajski, R., 2007. Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Canadian Journal of Zoology, 85(12), 1249-1263.
  • Clements, W. H., & Kotalik, C., 2016. Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Freshwater Science, 35(1), 126-138.
  • COST (2019) Climate change and bats: from science to conservation. COST Action No: COSTCA18107. https://www.cost.eu/cost-action/climate-change-and-bats-from-science-to-conservation/
  • Costa, W. F., Ribeiro, M., Saraiva, A. M., Imperatriz-Fonseca, V. L., & Giannini, T. C., 2018. Bat diversity in Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 218, 200-210.
  • Cyranoski, D., 2020. The biggest mystery: what it will take to trace the coronavirus source. Nature, doi: 10.1038/d41586-020-01541-z.
  • Çoraman, E., Dietz, C., Hempel, E., Ghazaryan, A., Levin, E., Presetnik, P., ... & Mayer, F., 2019. Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mt DNA introgressions in secondary contacts. Journal of Biogeography, 46(2), 343-354.
  • Çoraman, E., Dundarova, H., Dietz, C., & Mayer, F., 2020. Patterns of mtDNA introgression suggest population replacement in Palaearctic whiskered bat species. Royal Society Open Science, 7(6), 191805.
  • Damien, M., & Tougeron, K., 2019. Prey–predator phenological mismatch under climate change. Current opinion in insect science, 35, 60-68.
  • Danford, C.G., Alston, E.R., 1877. On the Mammals of Asia Minor Part I. Proc. Zool. Soc. Lond. 1877, 270-282.
  • Doria, G., 1887. The bats found so far in Liguria. Ann. Mus. Civ. Stor. Natur. Genoa, S. 2 4 (1886), 385-474.
  • Fenolio, D. B., Graening, G. O., Collier, B. A., & Stout, J. F., 2006. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proceedings of the Royal Society B: Biological Sciences, 273(1585), 439-443.
  • Fenton, M. B., & Simmons, N. B., 2015. Bats. University of Chicago Press.
  • Fuller, A., Mitchell, D., Maloney, S. K., & Hetem, R. S., 2016. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Climate Change Responses, 3(1), 1-19.
  • Furman, A., Çoraman, E., Bilgin, R., Karataş, A., 2009. Molecular Ecology and Phylogeography of the Bent-Wing Bat Complex (Miniopterus schreibersii) (Chiroptera: Vespertilionidae) in Asia Minor and Adjacent Regions. Zoologica Scripta. 38 (2), 129-141.
  • Gannon, M. R., Bovard, B. N., Butchkoski, C. M., Reeder, D. M., Turner, G. G., & Whidden, H. P., 2016. The value of bats: Keystone species in the Keystone State. Conservation and Ecology of Pennsylvania’s Bats, 5-31.
  • Gerbáčová, K., Maliničová, L., Kisková, J., Maslišová, V., Uhrin, M., & Pristaš, P., 2020. The faecal microbiome of building-dwelling insectivorous bats (Myotis myotis and Rhinolophus hipposideros) also contains antibiotic-resistant bacterial representatives. Current Microbiology, 77(9), 2333-2344.
  • Gonsalves, L., Bicknell, B., Law, B., Webb, C., & Monamy, V., 2013. Mosquito consumption by insectivorous bats: does size matter ? . PloS one, 8(10), e77183.
  • Gu, G., & Adler, R. F., 2015. Spatial patterns of global precipitation change and variability during 1901–2010. Journal of Climate, 28(11), 4431-4453.
  • Haest, B., Stepanian, P. M., Wainwright, C. E., Liechti, F., & Bauer, S., 2021. Climatic drivers of (changes in) bat migration phenology at Bracken Cave (USA). Global Change Biology, 27(4), 768-780.
  • Haile, W. A., 2020. Impact of climate change on animal production and expansion of animal disease: a review on Ethiopia perspective. Am. J. Pure Appl. Sci, 2(3), 64-76.
  • Hanssen, S. A., Moe, B., Bårdsen, B. J., Hanssen, F., & Gabrielsen, G. W., 2013. A natural antipredation experiment: predator control and reduced sea ice increases colony size in a long‐lived duck. Ecology and evolution, 3(10), 3554-3564.
  • Hayes, M. A., & Piaggio, A. J., 2018. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One, 13(2), e0192887.
  • Hellmann, J. J., Nadelhoffer, K. J., Iverson, L. R., Ziska, L. H., Matthews, S. N., Myers, P., ... & Peters, M. P., 2010. Climate change impacts on terrestrial ecosystems in metropolitan Chicago and its surrounding, multi-state region. Journal of Great Lakes Research, 36, 74-85.
  • Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S., 2021. Future phytoplankton diversity in a changing climate. Nature communications, 12(1), 1-8..
  • Hetem, R. S., Fuller, A., Maloney, S. K., & Mitchell, D., 2014. Responses of large mammals to climate change. Temperature, 1(2), 115-127.
  • Hoffmann, A. A., & Sgrò, C. M., 2011. Climate change and evolutionary adaptation. Nature, 470(7335), 479-485.
  • Horta, M. A., Ledesma, L. A., Moura, W. C., & Lemos, E. R. S., 2022. From dogs to bats: Concerns regarding vampire bat-borne rabies in Brazil. PLOS Neglected Tropical Diseases, 16(3), e0010160.
  • Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent?. Trends in ecology & evolution, 15(2), 56-61.
  • Humphries, M. M., Thomas, D. W., & Speakman, J. R., 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418(6895), 313-316.
  • Hutson, A. M., & Mickleburgh, S. P. (Eds.)., 2001. Microchiropteran bats: global status survey and conservation action plan (Vol. 56). IUCN.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  • Jones, G., & Rebelo, H., 2013. Responses of bats to climate change: learning from the past and predicting the future. In Bat evolution, ecology, and conservation (pp. 457-478). Springer, New York, NY.
  • Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R., & Racey, P. A., 2009. Carpe noctem: the importance of bats as bioindicators. Endangered species research, 8(1-2), 93-115.
  • Jones, K. E., 2001. Chiroptera (Bats). e LS.
  • Kahmann, H., Çağlar, M., 1960. Contributions to Turkey's mammalian science. I- Bat from the Hatay countryside. İstanbul Üniv. Fen Fak. Mec. Seri B 25, 1-21.
  • Karataş, A., & Sachanowicz, K., 2008. Noteworthy bat records from Upper Mesopotamia, Turkey (Chiroptera). Lynx (Praha), 39, 103-108.
  • Kasso, M., Balakrishnan, M., 2013. Ecological and economic importance of bats (Order Chiroptera). International Scholarly Research Notices, 2013.
  • Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y., 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the national Academy of Sciences, 112(11), 3241-3246.
  • Kelt, D. A., Van Vuren, D. H., 2001. The ecology and macroecology of mammalian home range area. The American Naturalist, 157(6), 637-645.
  • Kerth, G., 2008. Animal sociality: bat colonies are founded by relatives. Current Biology, 18(17), R740-R742.
  • Kerth, G., 2008. Causes and consequences of sociality in bats. Bioscience, 58(8), 737-746.
  • Knutti, R., Rogelj, J., Sedláček, J., & Fischer, E. M. 2016. A scientific critique of the two-degree climate change target. Nature Geoscience, 9(1), 13-18.
  • Kunz T.H. , Lumsden L.F. , Fenton M.B. (2003). Bat ecology, University of Chicago Press, Chicago, Illinois.
  • Lacetera, N., 2019. Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26-31.
  • Lambert, C. T., Hall, L. K., Larsen, R. T., Knight, R. N., & McMillan, B. R., 2018. Temporal partitioning and the effects of climate change on two ecologically similar desert bats. Journal of Mammalogy, 99(6), 1486-1494.
  • Laws, A. N., 2017. Climate change effects on predator–prey interactions. Current Opinion in Insect Science, 23, 28-34.
  • Lučan, R. K., Weiser, M., & Hanák, V., 2013. Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat. Journal of Zoology, 290(2), 151-159.
  • Luo, J., Koselj, K., Zsebők, S., Siemers, B. M., & Goerlitz, H. R., 2014. Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats. Journal of the Royal Society Interface, 11(91), 20130961.
  • Marcogliese, D. J., 2001. Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79(8), 1331-1352.
  • Martin, G., Yanez-Arenas, C., Chen, C., Plowright, R. K., Webb, R. J., & Skerratt, L. F., 2018. Climate change could increase the geographic extent of Hendra virus spillover risk. EcoHealth, 15(3), 509-525.
  • McGinty, N., Barton, A. D., Record, N. R., Finkel, Z. V., Johns, D. G., Stock, C. A., & Irwin, A. J., 2021. Anthropogenic climate change impacts on copepod trait biogeography. Global Change Biology, 27(7), 1431-1442.
  • McHenry, J., Welch, H., Lester, S. E., & Saba, V., 2019. Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 25(12), 4208-4221.
  • McKee, C. D., Bai, Y., Webb, C. T., & Kosoy, M. Y., 2021. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infection, Genetics and Evolution, 89, 104719.
  • Mecklenburg, S., Drusch, M., Kaleschke, L., Rodriguez-Fernandez, N., Reul, N., Kerr, Y., ... & Kornberg, M., 2016. ESA's Soil Moisture and Ocean Salinity mission: From science to operational applications. Remote Sensing of Environment, 180, 3-18.
  • Milligan, S. R., Holt, W. V., & Lloyd, R., 2009. Impacts of climate change and environmental factors on reproduction and development in wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3313-3319.
  • Misra, P. K., Gautam, N. K., & Elangovan V., 2019. Bat guano: a rich source of macro and microelements essential for plant growth. Annals of Plant and Soil Research, 21(1), 82-86.
  • Mistry, S., & Moreno-Valdez, A., 2009. COS 85-2: Climate change, vampire bats, and rabies: modeling range shifts on the US-Mexico border. In Conference Proceedings of the 94th Ecological Society of America.
  • Mühldorfer, K., 2013. Bats and bacterial pathogens: a review. Zoonoses and Public Health, 60(1), 93-103.
  • Mühldorfer, K., Speck, S., & Wibbelt, G., 2011. Diseases in free-ranging bats from Germany. BMC Veterinary Research, 7(1), 1-11.
  • Nabi, G., Siddique, R., Ali, A., & Khan, S., 2020. Preventing bat-born viral outbreaks in future using ecological interventions. Environmental research, 185, 109460.
  • Netherer S& Schopf A. 2010 Potential effects of climate change on insect herbivores in European forests: general aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259, 831–838.
  • Owen‐Smith N., Mason, D. R., & Ogutu, J. O., 2005. Correlates of survival rates for 10 African ungulate populations: density, rainfall and predation. Journal of Animal Ecology, 74(4), 774-788.
  • Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., ... & Williams, S. E., 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.
  • Post, E., 2013. Ecology of climate change. In Ecology of Climate Change. Princeton University Press.
  • Preisser, E. L., Bolnick, D. I., & Benard, M. F., 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology, 86(2), 501-509.
  • Pryde, M. A., O’Donnell, C. F., & Barker, R. J., 2005. Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biological conservation, 126(2), 175-185.
  • Radchuk, V., Reed, T., Teplitsky, C., Van De Pol, M., Charmantier, A., Hassall, C., ... & Kramer-Schadt, S., 2019. Adaptive responses of animals to climate change are most likely insufficient. Nature communications, 10(1), 1-14.
  • Rebelo, H., Tarroso, P., & Jones, G., 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2), 561-576.
  • Roth, J. D., 2002. Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice. Oecologia, 133(1), 70-77.
  • Rushing, C. S., Royle, J. A., Ziolkowski, D. J., & Pardieck, K. L., 2020. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proceedings of the National Academy of Sciences, 117(23), 12897-12903.
  • Şadoğlu, P., 1953. Nutrition of fruit eating bats. Biology. 3, 12-17.
  • Satunin, K., 1913. About the zoogeographic borders of the Caucasus region. Preliminary notification. Damn. Kcukar. Mus. Tiflis. 7, 56-106.
  • Schindler, D. E., & Hilborn, R. (2015). Prediction, precaution, and policy under global change. Science, 347(6225), 953-954.
  • Sherwin, H. A., Montgomery, W. I., & Lundy, M. G., 2013. The impact and implications of climate change for bats. Mammal Review, 43(3), 171-182.
  • Shi, Z., 2010. Bat and virus. Protein & Cell, 1(2), 109-114.
  • Sibly, R. M., & Atkinson, D., 1994. How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 486-493.
  • Siemers B.M., & Schnitzler H.U., 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429, 657–661.
  • Simmonds, M. P., & Isaac, S. J., 2007. The impacts of climate change on marine mammals: early signs of significant problems. Oryx, 41(1), 19-26.
  • Simmons, N. B., 2005. An Eocene big bang for bats. Science, 307(5709), 527-528.
  • Smeraldo, S., Bosso, L., Salinas‐Ramos, V. B., Ancillotto, L., Sánchez‐Cordero, V., Gazaryan, S., & Russo, D., 2021. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Review, 51(4), 571-584.
  • Stawski, C., & Geiser, F., 2012. Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change?. PLoS One, 7(7), e40278.
  • Sueur, J., Krause, B., & Farina, A., 2019. Climate change is breaking Earth’s beat. Trends in Ecology & Evolution, 34(11), 971-973.
  • Thomas, C. D., Hill, J. K., Anderson, B. J., Bailey, S., Beale, C. M., Bradbury, R. B., ... & Yardley, T. (2011). A framework for assessing threats and benefits to species responding to climate change. Methods in Ecology and Evolution, 2(2), 125-142.
  • Tougeron, K., Damien, M., Le Lann, C., Brodeur, J., & van Baaren, J., 2018. Rapid responses of winter aphid-parasitoid communities to climate warming. Frontiers in Ecology and Evolution, 6, 173.
  • Ürker, O., & Yorulmaz, T., 2020. Köyceğiz-Dalyan Özel Çevre Koruma Bölgesi’ndeki Anadolu sığla ormanlarında yarasa (Chiroptera) aktivitesinin belirlenmesi. Ormancılık Araştırma Dergisi, 7(1), 88-103.
  • Van Asch, M., Van Tienderen, P. H., Holleman, L. J., & Visser, M. E., 2007. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Global Change Biology, 13(8), 1596-1604.
  • Van Buskirk, J., Mulvihill, R. S., & Leberman, R. C., 2012. Phenotypic plasticity alone cannot explain climate‐induced change in avian migration timing. Ecology and Evolution, 2(10), 2430-2437.
  • Veikkolainen, V., Vesterinen, E. J., Lilley, T. M., & Pulliainen, A. T., 2014. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerging Infectious Diseases, 20(6), 960.
  • Voigt, C. C., & Lewanzik, D., 2011. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proceedings of the Royal Society B: Biological Sciences, 278(1716), 2311-2317.
  • Wang, J., Gao, W., Wang, L., Metzner, W., Ma, J., & Feng, J., 2010. Seasonal variation in prey abundance influences habitat use by greater horseshoe bats (Rhinolophus ferrumequinum) in a temperate deciduous forest. Canadian Journal of Zoology, 88(3), 315-323.
  • Wang, L. F., & Anderson, D. E., 2019. Viruses in bats and potential spillover to animals and humans. Current Opinion in Virology, 34, 79-89.
  • Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M., & Winger, B. M., 2020. Shared morphological consequences of global warming in North American migratory birds. Ecology Letters, 23(2), 316-325.
  • Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., ... & Whyte, K. P., 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782.
  • Welbergen, J. A., Klose, S. M., Markus, N., & Eby, P., 2008. Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 419-425.
  • Whitmarsh, L., 2008. Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. Journal of Risk Research, 11(3), 351-374.
  • Williams, J. E., & Blois, J. L., 2018. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts?. Journal of Biogeography, 45(9), 2175-2189.
  • Willis, C. K., 2017. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integrative and Comparative Biology, 57(6), 1214-1224.
  • Wingenter, O. W., Haase, K. B., Zeigler, M., Blake, D. R., Rowland, F. S., Sive, B. C., ... & Riebesell, U., 2007. Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophysical Research Letters, 34(5).
  • Wu, J., 2016. Detection and attribution of the effects of climate change on bat distributions over the last 50 years. Climatic Change, 134(4), 681-696.
  • Xu, Y., Poosakkannu, A., Suominen, K., Laine, V., Lilley, T., Pulliainen, A., & Lehikoinen, A., 2022. Climate-driven dynamics of pathogenic microbial taxa in birds and bats. Research Square, doi: 10.21203/rs.3.rs-1362343/v1.
  • Yorulmaz, T., Arslan, N., 2020. Current status of the bats in Turkey with their ecogeographic distributions a recommendations for national conservation status (Mammalia: Chiroptera). Fresenius Environ. Bull. 29 (8), 6691–6706.
  • Yorulmaz T., Tavşanoğlu, Ç., & Fidan, E.C., 2022. İklimsel parametrelerin Myotis myotis türünün beslenme ve aktivite örüntüsü üzerine olan etkileri. TÜBİTAK 1001 Projesi.
  • Yorulmaz, T., Ürker, O., & Özmen, R., 2018. Yarasa ve orman ilişkisi üzerine bir değerlendirme. Ormancılık Araştırma Dergisi, 5(1), 31-43.
Toplam 132 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri, Halk Sağlığı, Çevre Sağlığı
Bölüm Derlemeler
Yazarlar

Mina Cansu Karaer 0000-0002-5765-4860

Tarkan Yorulmaz 0000-0002-9033-7162

Çağatay Tavşanoğlu 0000-0003-4447-6492

Proje Numarası 121Z307
Yayımlanma Tarihi 5 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Karaer, M. C., Yorulmaz, T., & Tavşanoğlu, Ç. (2022). İklim Değişikliğinin Yarasalar Üzerine Olası Etkileri. JENAS Journal of Environmental and Natural Studies, 4(2), 174-198. https://doi.org/10.53472/jenas.1149503

JENAS | Journal of Environmental and Natural Studies