Araştırma Makalesi
BibTex RIS Kaynak Göster

Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini

Yıl 2023, , 39 - 53, 30.03.2023
https://doi.org/10.7240/jeps.1175507

Öz

Hava Kalite Endeksi (AQI), Avrupa standartları çerçevesinde yer alan beş temel kirletici unsur (CO, SO2, NO2, O3 ve PM10) göz önünde bulundurularak değerlendirilen bir endekstir. Bu endeks ile şehirlerdeki kirlilik miktarları hakkında bilgi elde edilebilmekte ve şehirlerin daha temiz şehirlere dönüşmesi için çalışmalar yapılabilmektedir. Günümüzde bu ölçümlere gerekli önem verilmemekle birlikte yeterli miktarda ve doğrulukta ölçümler yapılamamaktadır. Çalışmamızda, şehirlerin kirlilik oranına göre sınıflandırılabilmesi ve böylece kirlilik durumu kritik seviyede olan şehirlerin kısa sürede belirlenebilmesi amaçlanmıştır. Bu amaç doğrultusunda, hava kalitesi belirleyicileri olarak değerlendirilebilecek, şehirlerin hava kalitesine etkisi olan farklı parametreler toplanarak bir araya getirilmiş, AQI verileri ile birlikte veri seti olarak kullanılmıştır. Şehrin nüfusu, betonarme yapı sayısı, yeşil alan ve kullanılan ulaşım araç oranlarının da belirleyici olarak kullanıldığı çalışmamızda hava kalitesi 3 ve 5 sınıflı sınıflandırma problemi olarak ayrı ayrı ele alınmıştır. Çalışmamızda, AQI değerinin insan sağlığına etki oranları hesaplanarak sınıf atamaları yapılmıştır. Makine öğrenmesi yöntemlerini kullanarak sunduğumuz çözümlerde hava kalitesi tahmini 3 sınıflı modellerde %87 oranında, 5 sınıflı modellerde ise %82 oranında başarılı sonuçlar üretmiştir.

Kaynakça

  • [1] Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The lancet, 360(9341), 1233-1242.
  • [2] Bayram, H. (2005). Türkiye’de hava kirliliği sorunu: Nedenleri, alınan önlemler ve mevcut durum. Toraks Dergisi, 6(2), 159-165.
  • [3] Kyrkilis, G., Chaloulakou, A., & Kassomenos, P. A. (2007). Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environment international, 33(5), 670-676.
  • [4] Akyüz, A. A. (2019). Yaşamsal Bilinmezlik: İklim Krizi Ve Gıda.
  • [5] Houghton, J. (2005). Global warming. Reports on progress in physics, 68(6), 1343.
  • [6] Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., & Weyer, N. M. (2019). The ocean and cryosphere in a changing climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
  • [7] Tubitak Bilim ve Teknik, 632’s Extra Article, https://bilimteknik.tubitak.gov.tr/pdf/temmuz-2020, (February 2022).
  • [8] Advameg Inc. City Data, Advanced U.S. City Search, http://www.city-data.com/advanced/search.php (February 2022).
  • [9] Badem, H. (2019). Parkinson Hastaliğinin Ses Sinyalleri Üzerinden Makine Öğrenmesi Teknikleri ile Tanimlanmasi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 630-637.
  • [10] Canbay P. Sağlıkta Yapay Zeka: Makine Öğrenmesi Yöntemleri ve Uygulamaları. Şahin AR, Doğan K, Sivri S. Sağlık Bilimlerinde Yapay Zeka, 11-24, Ankara, Türkiye, Akademisyen Kitabevi, 2020.
  • [11] Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
  • [12] Pasupuleti, V. R., Kalyan, P., & Reddy, H. K. (2020, March). Air quality prediction of data log by machine learning. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1395-1399). IEEE.
  • [13] Mahalingam, U., Elangovan, K., Dobhal, H., Valliappa, C., Shrestha, S., & Kedam, G. (2019, March). A machine learning model for air quality prediction for smart cities. In 2019 International conference on wireless communications signal processing and networking (WiSPNET) (pp. 452-457). IEEE.
  • [14] Janarthanan, R., Partheeban, P., Somasundaram, K., & Elamparithi, P. N. (2021). A deep learning approach for prediction of air quality index in a metropolitan city. Sustainable Cities and Society, 67, 102720.
  • [15] Bhalgat, P., Bhoite, S., & Pitare, S. (2019). Air quality prediction using machine learning algorithms. International Journal of Computer Applications Technology and Research, 8(9), 367-390.
  • [16] NandigalaVenkatAnurag, Y., & Sharanya, S. (2019). Air Quality Index Prediction with Meteorological Data Using Feature Based Weighted Xgboost. International Journal of Recent Technology and Engineering (IJRTE), 8(1), 1355-1358.
  • [17] Liang, Y. C., Maimury, Y., Chen, A. H. L., & Juarez, J. R. C. (2020). Machine learning-based prediction of air quality. Applied Sciences, 10(24), 9151.
  • [18] Kamal, M. M., Jailani, R., & Shauri, R. L. A. (2006, June). Prediction of ambient air quality based on neural network technique. In 2006 4th Student Conference on Research and Development (pp. 115-119). IEEE.
  • [19] Deus, D. (2018). Assessment of Supervised Classifiers for Land Cover Categorization Based on Integration of ALOS PALSAR and Landsat Data. Advances in Remote Sensing, 7(2), 47-60.
  • [20] Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329.
  • [21] Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
  • [22] Cha, S. H. (2007). Comprehensive survey on distance/similarity measures between probability density functions. City, 1(2), 1.
  • [23] Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote sensing of environment, 61(3), 399-409.
  • [24] Bryll, R., Gutierrez-Osuna, R., & Quek, F. (2003). Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern recognition, 36(6), 1291-1302.
  • [25] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
  • [26] Suguna, N., & Thanushkodi, K. (2010). An improved k-nearest neighbor classification using genetic algorithm. International Journal of Computer Science Issues, 7(2), 18-21.
  • [27] Sisodia, D., & Sisodia, D. S. (2018). Prediction of diabetes using classification algorithms. Procedia computer science, 132, 1578-1585.
  • [28] Kamel, H., Abdulah, D., & Al-Tuwaijari, J. M. (2019, June). Cancer classification using gaussian naive bayes algorithm. In 2019 International Engineering Conference (IEC) (pp. 165-170). IEEE.
  • [29] Noble, W. S. (2006). What is a support vector machine?. Nature biotechnology, 24(12), 1565-1567.
  • [30] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.
  • [31] Hilbe, J. M. (2011). Logistic regression. International encyclopedia of statistical science, 1, 15-32.
  • [32] Wong, T. W., San Tam, W. W., Yu, I. T. S., Lau, A. K. H., Pang, S. W., & Wong, A. H. (2013). Developing a risk-based air quality health index. Atmospheric environment, 76, 52-58.
  • [33] Rovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2. 5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment, 703, 135538.
  • [34] Stripe Payments Europe Ltd., Paris Air Pollution Has Reached A Critical Level https://www.statista.com/chart/7152/paris-air-pollution-has-reached-a-critical-level/ (June 2021).
  • [35] Kalıpcı, E., & Başer, V. (2019). Coğrafi Bilgi Sistemi (CBS) ve hava kalitesi verileri kullanılarak Türkiye’nin hava kirliliğinin değerlendirilmesi. Karadeniz Fen Bilimleri Dergisi, 9(2), 377-389.
  • [36] Wikimedia Foundation, Sources of Air Pollution, https://commons.wikimedia.org/wiki/File:Sources_of_Air_Pollution.png (November 2021).
  • [37] Birleşmiş Milletler, Ambient (outdoor) air pollution, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (November 2021).
  • [38] Almetwally, A. A., Bin-Jumah, M., & Allam, A. A. (2020). Ambient air pollution and its influence on human health and welfare: an overview. Environmental Science and Pollution Research, 27(20), 24815-24830.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mehtap Öklü 0000-0002-8833-2231

Pelin Canbay 0000-0002-8067-3365

Yayımlanma Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Öklü, M., & Canbay, P. (2023). Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini. International Journal of Advances in Engineering and Pure Sciences, 35(1), 39-53. https://doi.org/10.7240/jeps.1175507
AMA Öklü M, Canbay P. Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini. JEPS. Mart 2023;35(1):39-53. doi:10.7240/jeps.1175507
Chicago Öklü, Mehtap, ve Pelin Canbay. “Makine Öğrenmesi Yöntemleri Ile Şehirlerin Hava Kalitesi Tahmini”. International Journal of Advances in Engineering and Pure Sciences 35, sy. 1 (Mart 2023): 39-53. https://doi.org/10.7240/jeps.1175507.
EndNote Öklü M, Canbay P (01 Mart 2023) Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini. International Journal of Advances in Engineering and Pure Sciences 35 1 39–53.
IEEE M. Öklü ve P. Canbay, “Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini”, JEPS, c. 35, sy. 1, ss. 39–53, 2023, doi: 10.7240/jeps.1175507.
ISNAD Öklü, Mehtap - Canbay, Pelin. “Makine Öğrenmesi Yöntemleri Ile Şehirlerin Hava Kalitesi Tahmini”. International Journal of Advances in Engineering and Pure Sciences 35/1 (Mart 2023), 39-53. https://doi.org/10.7240/jeps.1175507.
JAMA Öklü M, Canbay P. Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini. JEPS. 2023;35:39–53.
MLA Öklü, Mehtap ve Pelin Canbay. “Makine Öğrenmesi Yöntemleri Ile Şehirlerin Hava Kalitesi Tahmini”. International Journal of Advances in Engineering and Pure Sciences, c. 35, sy. 1, 2023, ss. 39-53, doi:10.7240/jeps.1175507.
Vancouver Öklü M, Canbay P. Makine Öğrenmesi Yöntemleri ile Şehirlerin Hava Kalitesi Tahmini. JEPS. 2023;35(1):39-53.