Araştırma Makalesi
BibTex RIS Kaynak Göster

İstanbul’daki İnce Partiküllerin Kimyasal Bileşiminin İyon Kromatografisi ile İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 4, 272 - 286, 23.12.2025
https://doi.org/10.7240/jeps.1653993

Öz

Bu çalışma, İstanbul’un Beşiktaş ilçesinde yüksek zaman çözünürlüğüne sahip ince partikül madde (PM₂.₅) içerisindeki kimyasal bileşimi niceliksel olarak incelemektedir. İyon kromatografisi kullanılarak sülfat, nitrat, fosfat, amonyum ve nitrit iyonlarına odaklanılmıştır. PM₂.₅ örnekleri, 2017 yılı boyunca kış, ilkbahar, yaz ve sonbahar mevsimlerinde, gündüz ve gece saatlerinde toplanarak günlük ve mevsimsel değişimlerin analizi yapılmıştır. PM₂.₅ içindeki suda çözünebilen iyon (WSI) konsantrasyonları, Beijing ve Delhi gibi yüksek kirliliğe sahip şehirlerde kaydedilen seviyelerden önemli ölçüde daha düşük olup, Seoul ile benzerlik göstermektedir. Amonyum, gece saatlerinde belirgin yüksek seviyeler göstererek 367,8 ng/m³’e kadar ulaşmıştır ve bu durum durağan atmosfer koşullarında gaz-partikül dönüşümünün artmasıyla açıklanmaktadır. Fosfat, orta derecede günlük değişkenlik göstermiş olup, sabah erken saatlerde (07:00-09:00) ve öğleden sonra (15:00-19:00) 196,2-197,2 ng/m³ değerleriyle konsantrasyonları zirve yapmıştır ve bu durumun yanma kaynakları, toz yeniden süspansiyonu ve yarı uçucu organofosfat esterleri (OPE’ler) gibi sürekli kaynaklardan gelen katkılardan kaynaklandığı göstermektedir. İstanbul’daki ikincil inorganik aerosol seviyelerini düşürmek amacıyla WSI öncüllerini azaltmaya yönelik öneriler de sunulmaktadır.

Proje Numarası

TUBITAK project 115Y625.

Kaynakça

  • Kan, H., S.J. London, G. Chen, Y. Zhang, G. Song, N. Zhao, L. Jiang, and B. Chen, (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ Int, 33 (3), 376-384.
  • Song, Y., Y. Zhang, and W. Dai, PM2.5 Sources and Their Effects on Human Health in China: Case Report☆, in Encyclopedia of Environmental Health (Second Edition), J. Nriagu, Editor. 2019, Elsevier: Oxford. p. 274-281.
  • Wang, H. and D. Shooter, (2002). Coarse–fine and day–night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand. Atmos Environ, 36 (21), 3519-3529.
  • Ocskay, R., I. Salma, W. Wang, and W. Maenhaut, (2006). Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. J Environ Monit, 8 (2), 300-306.
  • Hsu, Y.-C., M.-H. Lai, W.-C. Wang, H.-L. Chiang, and Z.-X. Shieh, (2008). Characteristics of Water-Soluble Ionic Species in Fine (PM2.5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. J Air Waste Manage Assoc, 58 (12), 1579-1589.
  • ATSDR, (1998). Toxicological Profile for Sulfur Dioxide. U.S. Department Of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry.
  • Salameh, D., A. Detournay, J. Pey, N. Pérez, F. Liguori, D. Saraga, M.C. Bove, P. Brotto, F. Cassola, and D. Massabò, (2015). PM2.5 chemical composition in five European Mediterranean cities: a 1-year study. Atmospheric Research, 155 102-117.
  • İrde, Ç., (2024). Ministry of Environment, Urbanization and Climate Change. Türkiye’s Informative Inventory Report IIR 2024.
  • Carslaw, K., O. Boucher, D. Spracklen, G. Mann, J. Rae, S. Woodward, and M. Kulmala, (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10.
  • Duce, D.J.E.I.R.A., On the global flux of atmospheric sea salt. 1988.
  • Laskin, A., R.C. Moffet, M.K. Gilles, J.D. Fast, R.A. Zaveri, B. Wang, P. Nigge, and J. Shutthanandan, (2012). Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. Journal of Geophysical Research: Atmospheres, 117 (D15).
  • Pratt, A., M. Johnson, E. Magalhaes, L. You, X. Diao, and J. Chamberlin, (2011). Yield Gaps and Potential Agricultural Growth in West and Central Africa. Research monograph 170.
  • Sangkham, S., W. Phairuang, S.P. Sherchan, N. Pansakun, N. Munkong, K. Sarndhong, M.A. Islam, and P. Sakunkoo, (2024). An update on adverse health effects from exposure to PM2.5. Environmental Advances, 18 100603.
  • Hong, X., K. Yang, H. Liang, and Y. Shi, (2022). Characteristics of Water-Soluble Inorganic Ions in PM2.5 in Typical Urban Areas of Beijing, China. ACS Omega, 7 (40), 35575-35585.
  • Bae, J.-W., H.J. Kwon, S.-H. Kim, L. Ma, H. Im, E. Kim, M.O. Kim, and W.-S. Kwon, (2020). Inhalation of ammonium sulfate and ammonium nitrate adversely affect sperm function. Reprod Toxicol, 96 424-431.
  • Sokan-Adeaga, A., G. Ana, M. Sokan-Adeaga, E. Sokan-Adeaga, and M. Oseji, (2019). Secondary inorganic aerosols: Impacts on the global climate system and human health. Biodiversity Int J, 3 (6), 249-59.
  • Szigeti, T., V.G. Mihucz, M. Óvári, A. Baysal, S. Atılgan, S. Akman, and G. Záray, (2013). Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem J, 107 (0), 86-94.
  • Theodosi, C., U. Im, A. Bougiatioti, P. Zarmpas, O. Yenigun, and N. Mihalopoulos, (2010). Aerosol chemical composition over Istanbul. Sci Total Environ, 408 (12), 2482-2491.
  • Koçak, M., C. Theodosi, P. Zarmpas, U. Im, A. Bougiatioti, O. Yenigun, and N. Mihalopoulos, (2011). Particulate matter (PM10) in Istanbul: Origin, source areas and potential impact on surrounding regions. Atmos Environ, 45 (38), 6891-6900.
  • Mertoglu, E., H.D. Amantha, and R.M. Flores-Rangel, (2022). Chemical characterization of water-soluble ions in highly time-resolved atmospheric fine particles in Istanbul megacity. Environmental Science and Pollution Research, 29 (50), 76456-76471.
  • Salam, A., M. Assaduzzaman, M.N. Hossain, and A.N.A. Siddiki, (2015). Water soluble ionic species in the atmospheric fine particulate matters (PM2. 5) in a Southeast Asian mega city (Dhaka, Bangladesh). Open Journal of Air Pollution, 4 (3), 99-108.
  • Zhou, L., Z. Liang, B.R. Go, R.A.I. Cuevas, R. Tang, M. Li, C. Cheng, and C.K. Chan, (2023). Sulfate formation via aerosol-phase SO2 oxidation by model biomass burning photosensitizers: 3,4-dimethoxybenzaldehyde, vanillin and syringaldehyde using single-particle mixing-state analysis. Atmos. Chem. Phys., 23 (9), 5251-5261.
  • Seinfeld, J.H. and S.N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change. 2016: John Wiley & Sons.
  • Türküm, A., H. Pekey, B. Pekey, and G. Tuncel, (2008). Investigating relationships between aerosol and rainwater compositions at different locations in Turkey. Atmospheric Research, 89 (4), 315-323.
  • Türküm, A., (2018). Kocaeli atmosferinde uçucu organik bileşiklerin ve inorganik gazların dağılımları, kaynakları ve sağlık risklerinin belirlenmesi.
  • Shon, Z.-H., K.-H. Kim, S.-K. Song, K. Jung, N.-J. Kim, and J.-B. Lee, (2012). Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmos Environ, 59 540-550.
  • Liu, Z., Y. Xie, B. Hu, T. Wen, J. Xin, X. Li, and Y. Wang, (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183 119-131.
  • Xu, W., Liu, X., Liu, L., Dore, A. J., Tang, A., Lu, L., ... & Zhang, F., (2019). Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos Environ.
  • Dumka, U., S. Tiwari, D. Kaskaoutis, P. Hopke, J. Singh, A. Srivastava, D. Bisht, S. Attri, S. Tyagi, and A. Misra, (2017). Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 74 (4), 423-450.
  • Ye, X., Tao, Y., Liu, Y., Wang, R., Li, Q., Yang, X., & Chen, J., (2019). Size-fractionated water-soluble ions during autumn and winter: Insights into volatile ammonium formation mechanisms in Shanghai, a megacity of China. Atmos Environ.
  • Wang, S., J. Nan, C. Shi, Q. Fu, S. Gao, D. Wang, H. Cui, A. Saiz-Lopez, and B. Zhou, (2015). Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci Rep, 5 15842.
  • Duan, J., R.J. Huang, Y. Li, Q. Chen, Y. Zheng, Y. Chen, C. Lin, H. Ni, M. Wang, J. Ovadnevaite, D. Ceburnis, C. Chen, D.R. Worsnop, T. Hoffmann, C. O'Dowd, and J. Cao, (2020). Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmos. Chem. Phys., 20 (6), 3793-3807.
  • Flores, R.M., (in review). Characteristics, Evolution, and Sources of OC and EC fractions with Insights into Secondary Organic Aerosol Formation at a Traffic Site in Istanbul.
  • Kim, M.J. Sensitivity of Nitrate Aerosol Production to Vehicular Emissions in an Urban Street. Atmosphere, 2019. 10.
  • Schaap, M., G. Spindler, M. Schulz, K. Acker, W. Maenhaut, A. Berner, W. Wieprecht, N. Streit, K. Müller, and E. Brüggemann, (2004). Artefacts in the sampling of nitrate studied in the “INTERCOMP” campaigns of EUROTRAC-AEROSOL. Atmos Environ, 38 (38), 6487-6496.
  • Fu, X., T. Wang, J. Gao, P. Wang, Y. Liu, S. Wang, B. Zhao, and L. Xue, (2020). Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environ Sci Technol, 54 (7), 3881-3889.
  • Flores, R.M., E. Mertoğlu, H. Özdemir, B.O. Akkoyunlu, G. Demir, A. Ünal, and M. Tayanç, (2020). A high-time resolution study of PM2.5, organic carbon, and elemental carbon at an urban traffic site in Istanbul. Atmos Environ, 223 117241.
  • Chiu, Y.T.T. and A.G. Carlton, (2024). Aerosol Thermodynamics: Nitrate Loss from Regulatory PM2.5 Filters in California. ACS EST Air, 1 (1), 25-32.
  • Zhang, Z., C. Ye, Y. Wu, T. Zhou, P. Chen, S. Kang, C. Zhang, Z. Jiang, and L. Geng, (2025). On the presence of high nitrite (NO2-) in coarse particles at Mt. Qomolangma. EGUsphere, 2025 1-25.
  • Wang, L., L. Wen, C. Xu, J. Chen, X. Wang, L. Yang, W. Wang, X. Yang, X. Sui, L. Yao, and Q. Zhang, (2015). HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Sci Total Environ, 538 93-101.
  • Chen, J., X. Wang, J. Zhang, M. Li, H. Li, Z. Liu, Y. Bi, D. Wu, X. Yin, R. Gu, Y. Jiang, Y. Shan, Y. Zhao, L. Xue, and W. Wang, (2022). Particulate organic nitrates at Mount Tai in winter and spring: Variation characteristics and effects of mountain-valley breezes and elevated emission sources. Environ Res, 212 113182.
  • Jeon, J.-W., S.-W. Park, Y.-J. Han, T. Lee, S.-H. Lee, J.-M. Park, M.-S. Yoo, H.-J. Shin, and P.K. Hopke, (2024). Nitrate formation mechanisms causing high concentration of PM2.5 in a residential city with low anthropogenic emissions during cold season. Environ Pollut, 352 124141.
  • Wang, Q., Y. Miao, and L. Wang, (2020). Regional Transport Increases Ammonia Concentration in Beijing, China. Atmosphere, 11 (6), 563.
  • Kutzner, R.D., J. Cuesta, P. Chelin, J.E. Petit, M. Ray, X. Landsheere, B. Tournadre, J.C. Dupont, A. Rosso, F. Hase, J. Orphal, and M. Beekmann, (2021). Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode. Atmos. Chem. Phys., 21 (15), 12091-12111.
  • Wang, Y., M. Bao, F. Tan, Z. Qu, Y. Zhang, and J. Chen, (2020). Distribution of organophosphate esters between the gas phase and PM2.5 in urban Dalian, China. Environ Pollut, 259 113882.
  • Richon, C., J.C. Dutay, F. Dulac, R. Wang, and Y. Balkanski, (2018). Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences, 15 (8), 2499-2524.
  • Flores, R.M., H. Özdemir, B.O. Akkoyunlu, A. Ünal, and M. Tayanç, (2020). Seasonal variation of carbonaceous PM2.5 in an Istanbul traffic site. Atmospheric Pollution Research, 11 (12), 2110-2118.
  • Dong, S., H. Zhang, P. Krishnan, S. Jia, C. Huang, F. Wang, L. Luo, F. Wang, H. Meng, Y. Zhu, R. Li, and M. Tang, (2023). Sources and solubility of aerosol phosphorus at a coastal site in northern China: Coarse versus fine particles and spring versus winter. Atmos Environ, 315 120127.
  • Flores, R.M., H. Özdemir, A. Ünal, and M. Tayanç, (2022). Distribution and sources of SVOCs in fine and coarse aerosols in the megacity of Istanbul. Atmospheric Research, 271 106100.

Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography

Yıl 2025, Cilt: 37 Sayı: 4, 272 - 286, 23.12.2025
https://doi.org/10.7240/jeps.1653993

Öz

This study quantitatively investigates the chemical composition of highly-time resolved fine particulate matter (PM2.5) in the Beşiktaş district of Istanbul, focusing on sulfate, nitrate, phosphate, ammonium, and nitrite using ion chromatography. PM2.5 samples were collected during the daytime and nighttime in winter, spring, summer, and fall of 2017, allowing analysis of diurnal and seasonal variations. Water soluble ion (WSI) concentrations in PM2.5 were notably lower than those recorded in heavily polluted cities such as Beijing and Delhi and were comparable to Seoul. Ammonium exhibited pronounced peaks, reaching as high as 367.8 ng/m3 during nighttime (19:00-07:00), attributed to enhanced gas-to-particle partitioning under stable atmospheric conditions. Phosphate exhibited moderate diurnal variability, typically peaking in early morning (07:00-09:00) and late afternoon (15:00-19:00), with maximum concentrations recorded at 196.2-197.2 ng/m3, suggesting continuous contributions from combustion sources, dust resuspension, and semi-volatile organophosphate esters (OPEs). Suggestions to decrease the WSI precursors are also provided in order to decrease secondary inorganic aerosol levels in Istanbul.

Etik Beyan

the submitted work has not been published elsewhere or submitted for publication elsewhere

Proje Numarası

TUBITAK project 115Y625.

Teşekkür

The PM2.5 samples were collected as part of the TUBITAK project 115Y625. The authors would like to express their sincere gratitude to Prof. Dr. Bilge Alpaslan Kocamemi and Buğra Şenol for their invaluable assistance with ion chromatography analysis.

Kaynakça

  • Kan, H., S.J. London, G. Chen, Y. Zhang, G. Song, N. Zhao, L. Jiang, and B. Chen, (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ Int, 33 (3), 376-384.
  • Song, Y., Y. Zhang, and W. Dai, PM2.5 Sources and Their Effects on Human Health in China: Case Report☆, in Encyclopedia of Environmental Health (Second Edition), J. Nriagu, Editor. 2019, Elsevier: Oxford. p. 274-281.
  • Wang, H. and D. Shooter, (2002). Coarse–fine and day–night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand. Atmos Environ, 36 (21), 3519-3529.
  • Ocskay, R., I. Salma, W. Wang, and W. Maenhaut, (2006). Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. J Environ Monit, 8 (2), 300-306.
  • Hsu, Y.-C., M.-H. Lai, W.-C. Wang, H.-L. Chiang, and Z.-X. Shieh, (2008). Characteristics of Water-Soluble Ionic Species in Fine (PM2.5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. J Air Waste Manage Assoc, 58 (12), 1579-1589.
  • ATSDR, (1998). Toxicological Profile for Sulfur Dioxide. U.S. Department Of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry.
  • Salameh, D., A. Detournay, J. Pey, N. Pérez, F. Liguori, D. Saraga, M.C. Bove, P. Brotto, F. Cassola, and D. Massabò, (2015). PM2.5 chemical composition in five European Mediterranean cities: a 1-year study. Atmospheric Research, 155 102-117.
  • İrde, Ç., (2024). Ministry of Environment, Urbanization and Climate Change. Türkiye’s Informative Inventory Report IIR 2024.
  • Carslaw, K., O. Boucher, D. Spracklen, G. Mann, J. Rae, S. Woodward, and M. Kulmala, (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10.
  • Duce, D.J.E.I.R.A., On the global flux of atmospheric sea salt. 1988.
  • Laskin, A., R.C. Moffet, M.K. Gilles, J.D. Fast, R.A. Zaveri, B. Wang, P. Nigge, and J. Shutthanandan, (2012). Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. Journal of Geophysical Research: Atmospheres, 117 (D15).
  • Pratt, A., M. Johnson, E. Magalhaes, L. You, X. Diao, and J. Chamberlin, (2011). Yield Gaps and Potential Agricultural Growth in West and Central Africa. Research monograph 170.
  • Sangkham, S., W. Phairuang, S.P. Sherchan, N. Pansakun, N. Munkong, K. Sarndhong, M.A. Islam, and P. Sakunkoo, (2024). An update on adverse health effects from exposure to PM2.5. Environmental Advances, 18 100603.
  • Hong, X., K. Yang, H. Liang, and Y. Shi, (2022). Characteristics of Water-Soluble Inorganic Ions in PM2.5 in Typical Urban Areas of Beijing, China. ACS Omega, 7 (40), 35575-35585.
  • Bae, J.-W., H.J. Kwon, S.-H. Kim, L. Ma, H. Im, E. Kim, M.O. Kim, and W.-S. Kwon, (2020). Inhalation of ammonium sulfate and ammonium nitrate adversely affect sperm function. Reprod Toxicol, 96 424-431.
  • Sokan-Adeaga, A., G. Ana, M. Sokan-Adeaga, E. Sokan-Adeaga, and M. Oseji, (2019). Secondary inorganic aerosols: Impacts on the global climate system and human health. Biodiversity Int J, 3 (6), 249-59.
  • Szigeti, T., V.G. Mihucz, M. Óvári, A. Baysal, S. Atılgan, S. Akman, and G. Záray, (2013). Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem J, 107 (0), 86-94.
  • Theodosi, C., U. Im, A. Bougiatioti, P. Zarmpas, O. Yenigun, and N. Mihalopoulos, (2010). Aerosol chemical composition over Istanbul. Sci Total Environ, 408 (12), 2482-2491.
  • Koçak, M., C. Theodosi, P. Zarmpas, U. Im, A. Bougiatioti, O. Yenigun, and N. Mihalopoulos, (2011). Particulate matter (PM10) in Istanbul: Origin, source areas and potential impact on surrounding regions. Atmos Environ, 45 (38), 6891-6900.
  • Mertoglu, E., H.D. Amantha, and R.M. Flores-Rangel, (2022). Chemical characterization of water-soluble ions in highly time-resolved atmospheric fine particles in Istanbul megacity. Environmental Science and Pollution Research, 29 (50), 76456-76471.
  • Salam, A., M. Assaduzzaman, M.N. Hossain, and A.N.A. Siddiki, (2015). Water soluble ionic species in the atmospheric fine particulate matters (PM2. 5) in a Southeast Asian mega city (Dhaka, Bangladesh). Open Journal of Air Pollution, 4 (3), 99-108.
  • Zhou, L., Z. Liang, B.R. Go, R.A.I. Cuevas, R. Tang, M. Li, C. Cheng, and C.K. Chan, (2023). Sulfate formation via aerosol-phase SO2 oxidation by model biomass burning photosensitizers: 3,4-dimethoxybenzaldehyde, vanillin and syringaldehyde using single-particle mixing-state analysis. Atmos. Chem. Phys., 23 (9), 5251-5261.
  • Seinfeld, J.H. and S.N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change. 2016: John Wiley & Sons.
  • Türküm, A., H. Pekey, B. Pekey, and G. Tuncel, (2008). Investigating relationships between aerosol and rainwater compositions at different locations in Turkey. Atmospheric Research, 89 (4), 315-323.
  • Türküm, A., (2018). Kocaeli atmosferinde uçucu organik bileşiklerin ve inorganik gazların dağılımları, kaynakları ve sağlık risklerinin belirlenmesi.
  • Shon, Z.-H., K.-H. Kim, S.-K. Song, K. Jung, N.-J. Kim, and J.-B. Lee, (2012). Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmos Environ, 59 540-550.
  • Liu, Z., Y. Xie, B. Hu, T. Wen, J. Xin, X. Li, and Y. Wang, (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183 119-131.
  • Xu, W., Liu, X., Liu, L., Dore, A. J., Tang, A., Lu, L., ... & Zhang, F., (2019). Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos Environ.
  • Dumka, U., S. Tiwari, D. Kaskaoutis, P. Hopke, J. Singh, A. Srivastava, D. Bisht, S. Attri, S. Tyagi, and A. Misra, (2017). Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 74 (4), 423-450.
  • Ye, X., Tao, Y., Liu, Y., Wang, R., Li, Q., Yang, X., & Chen, J., (2019). Size-fractionated water-soluble ions during autumn and winter: Insights into volatile ammonium formation mechanisms in Shanghai, a megacity of China. Atmos Environ.
  • Wang, S., J. Nan, C. Shi, Q. Fu, S. Gao, D. Wang, H. Cui, A. Saiz-Lopez, and B. Zhou, (2015). Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci Rep, 5 15842.
  • Duan, J., R.J. Huang, Y. Li, Q. Chen, Y. Zheng, Y. Chen, C. Lin, H. Ni, M. Wang, J. Ovadnevaite, D. Ceburnis, C. Chen, D.R. Worsnop, T. Hoffmann, C. O'Dowd, and J. Cao, (2020). Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmos. Chem. Phys., 20 (6), 3793-3807.
  • Flores, R.M., (in review). Characteristics, Evolution, and Sources of OC and EC fractions with Insights into Secondary Organic Aerosol Formation at a Traffic Site in Istanbul.
  • Kim, M.J. Sensitivity of Nitrate Aerosol Production to Vehicular Emissions in an Urban Street. Atmosphere, 2019. 10.
  • Schaap, M., G. Spindler, M. Schulz, K. Acker, W. Maenhaut, A. Berner, W. Wieprecht, N. Streit, K. Müller, and E. Brüggemann, (2004). Artefacts in the sampling of nitrate studied in the “INTERCOMP” campaigns of EUROTRAC-AEROSOL. Atmos Environ, 38 (38), 6487-6496.
  • Fu, X., T. Wang, J. Gao, P. Wang, Y. Liu, S. Wang, B. Zhao, and L. Xue, (2020). Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environ Sci Technol, 54 (7), 3881-3889.
  • Flores, R.M., E. Mertoğlu, H. Özdemir, B.O. Akkoyunlu, G. Demir, A. Ünal, and M. Tayanç, (2020). A high-time resolution study of PM2.5, organic carbon, and elemental carbon at an urban traffic site in Istanbul. Atmos Environ, 223 117241.
  • Chiu, Y.T.T. and A.G. Carlton, (2024). Aerosol Thermodynamics: Nitrate Loss from Regulatory PM2.5 Filters in California. ACS EST Air, 1 (1), 25-32.
  • Zhang, Z., C. Ye, Y. Wu, T. Zhou, P. Chen, S. Kang, C. Zhang, Z. Jiang, and L. Geng, (2025). On the presence of high nitrite (NO2-) in coarse particles at Mt. Qomolangma. EGUsphere, 2025 1-25.
  • Wang, L., L. Wen, C. Xu, J. Chen, X. Wang, L. Yang, W. Wang, X. Yang, X. Sui, L. Yao, and Q. Zhang, (2015). HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Sci Total Environ, 538 93-101.
  • Chen, J., X. Wang, J. Zhang, M. Li, H. Li, Z. Liu, Y. Bi, D. Wu, X. Yin, R. Gu, Y. Jiang, Y. Shan, Y. Zhao, L. Xue, and W. Wang, (2022). Particulate organic nitrates at Mount Tai in winter and spring: Variation characteristics and effects of mountain-valley breezes and elevated emission sources. Environ Res, 212 113182.
  • Jeon, J.-W., S.-W. Park, Y.-J. Han, T. Lee, S.-H. Lee, J.-M. Park, M.-S. Yoo, H.-J. Shin, and P.K. Hopke, (2024). Nitrate formation mechanisms causing high concentration of PM2.5 in a residential city with low anthropogenic emissions during cold season. Environ Pollut, 352 124141.
  • Wang, Q., Y. Miao, and L. Wang, (2020). Regional Transport Increases Ammonia Concentration in Beijing, China. Atmosphere, 11 (6), 563.
  • Kutzner, R.D., J. Cuesta, P. Chelin, J.E. Petit, M. Ray, X. Landsheere, B. Tournadre, J.C. Dupont, A. Rosso, F. Hase, J. Orphal, and M. Beekmann, (2021). Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode. Atmos. Chem. Phys., 21 (15), 12091-12111.
  • Wang, Y., M. Bao, F. Tan, Z. Qu, Y. Zhang, and J. Chen, (2020). Distribution of organophosphate esters between the gas phase and PM2.5 in urban Dalian, China. Environ Pollut, 259 113882.
  • Richon, C., J.C. Dutay, F. Dulac, R. Wang, and Y. Balkanski, (2018). Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences, 15 (8), 2499-2524.
  • Flores, R.M., H. Özdemir, B.O. Akkoyunlu, A. Ünal, and M. Tayanç, (2020). Seasonal variation of carbonaceous PM2.5 in an Istanbul traffic site. Atmospheric Pollution Research, 11 (12), 2110-2118.
  • Dong, S., H. Zhang, P. Krishnan, S. Jia, C. Huang, F. Wang, L. Luo, F. Wang, H. Meng, Y. Zhu, R. Li, and M. Tang, (2023). Sources and solubility of aerosol phosphorus at a coastal site in northern China: Coarse versus fine particles and spring versus winter. Atmos Environ, 315 120127.
  • Flores, R.M., H. Özdemir, A. Ünal, and M. Tayanç, (2022). Distribution and sources of SVOCs in fine and coarse aerosols in the megacity of Istanbul. Atmospheric Research, 271 106100.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hava Kirliliği Modellemesi ve Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Rosa Maria Flores Rangel 0000-0002-0323-4043

Proje Numarası TUBITAK project 115Y625.
Gönderilme Tarihi 9 Mart 2025
Kabul Tarihi 12 Ekim 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Flores Rangel, R. M. (2025). Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography. International Journal of Advances in Engineering and Pure Sciences, 37(4), 272-286. https://doi.org/10.7240/jeps.1653993
AMA Flores Rangel RM. Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography. JEPS. Aralık 2025;37(4):272-286. doi:10.7240/jeps.1653993
Chicago Flores Rangel, Rosa Maria. “Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 272-86. https://doi.org/10.7240/jeps.1653993.
EndNote Flores Rangel RM (01 Aralık 2025) Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography. International Journal of Advances in Engineering and Pure Sciences 37 4 272–286.
IEEE R. M. Flores Rangel, “Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography”, JEPS, c. 37, sy. 4, ss. 272–286, 2025, doi: 10.7240/jeps.1653993.
ISNAD Flores Rangel, Rosa Maria. “Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 272-286. https://doi.org/10.7240/jeps.1653993.
JAMA Flores Rangel RM. Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography. JEPS. 2025;37:272–286.
MLA Flores Rangel, Rosa Maria. “Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 272-86, doi:10.7240/jeps.1653993.
Vancouver Flores Rangel RM. Investigation of Chemical Composition of Fine Particles in Istanbul With Ion Chromatography. JEPS. 2025;37(4):272-86.