Araştırma Makalesi
BibTex RIS Kaynak Göster

Manyetik Nanopartiküllerle Katkılanmış Fe₃O₄ ve CoFe₂O₄ Kompozit Malzemelerde Mıknatıslanma Eğrileri ve Enerji Kayıplarının Sayısal Analizi

Yıl 2025, Cilt: 37 Sayı: 4, 301 - 308, 23.12.2025
https://doi.org/10.7240/jeps.1681456

Öz

Bu çalışmada, manyetik nanopartiküllerle katkılanmış Fe₃O₄ ve CoFe₂O₄'nin oda sıcaklığında manyetik özellikleri ve enerji kayıpları sonlu elemanlar analiz yöntemi kullanılarak incelenmiştir. Manyetik histerezis halkaları, Trapezoidal, Simpson 1/3, Simpson 3/8 ve Newton-Cotes gibi sayısal entegrasyon yöntemleri kullanılarak hesaplanmıştır. Farklı katkılama oranlarının mıknatıslanma ve enerji kayıpları üzerindeki etkileri analiz edilmiştir. Entegrasyon yöntemlerinin karşılaştırılması sonucunda, Newton-Cotes yönteminin diğer yöntemlere kıyasla daha güvenilir bulgular sağladığı ortaya konmuştur. Ayrıca demir içeren kompozitlerde Simpson 1/3 yönteminin Trapezoidal yöntemine kıyasla daha düşük hata oranlarına sahip olduğu bildirilmiştir. Ayrıca elde edilen sonuçlar, Newton-Cotes yönteminin karmaşık manyetik histerezis eğrilerinin integralini hesaplamada daha etkili olduğunu göstermektedir. Bu analizlerin sonuçlarının manyetik malzemelerin tasarımı ve optimizasyonu için iyileştirme ve geliştirmelerde kullanılabileceği vurgulanmıştır.

Kaynakça

  • Gupta, S., Basak, A., & Nandy, D. (2023). Impact of Changing Stellar and Planetary Magnetic Fields on (Exo)planetary Environments and Atmospheric Mass Loss. The Astrophys. J, 953, 70.
  • Skomski, R. (2020). Simple Models of Magnetism. Oxford University Press.
  • Lohr, J., Mansilla, M. V., Gerbaldo, M. V., Moreno, M. S., Tobia, D., Goya, G. F., Winkler, E. L., Zysler, R. D., & Lima Jr, E. (2021). Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1 yO/Fe3O4 core–shell nanoparticles synthesis. J Nanopart Res, 23, 140.
  • Apostolova, I., Apostolov, A., & Wesselinowa, J. (2023). Magnetic Properties of Gd-Doped Fe3O4 Nanoparticles. Applied Sciences, 13(11), 6411.
  • Lyskawinski, W., Sujka, P., Szelag, W., & Baranski, M. (2011). Numerical analysis of hysteresis loss in pulse transformer. Archives of Electrical Engineering, 60(2).
  • Bircakova, Z., Kollar, P., Füzer, J., Bures, R., Faberova, M., & Jakubcin, M. (2023). Energy loss and hysteresis of reversible magnetization processes in iron-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 587, 171291.
  • Ramprecht, J., & Sjöberg, D. (2008). Magnetic losses in composite materials. Journal of Physics D: Applied Physics, 41, 13.
  • Helbig, S., Abert, C., Sánchez, P., Kantorovich, A., & Sofia, S. (2023). Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle. Phys. Rev. B, 107(5).
  • Seyed, F.R., Nidal, A.-Z., & Mika, S. (2025). A comprehensive review of spinel ferrites and their magnetic composites as highly efficient adsorbents of rare earth elements. Emerging Contaminants, 11(1), 100429.
  • Abhivyakti, Kaur, P., Aggarwal, D., Nitansh, & Singhal, S. (2025). Defect-engineered C,N-ZnO/Co3O4/CoFe2O4/Fe3O4 for ultra-fast tetracycline degradation and environmental impact assessment using an in silico mathematical model. Adv Compos Hybrid Mater, 8, 156.
  • Atkinson, K.E. (2008). An Introduction to Numerical Analysis, 2nd Ed. Wiley India Pvt. Limited.
  • Kovacheva, D., Ruskov, T., Krastev, P., Asenov, S., Tanev, N., Mönch, I., Koseva, R., Wolff, U., Gemming, T., Markova-Velichkova, M., Nihtianova, D., & Arndt, K.F. (2012). Synthesis and characterization of magnetic nano-sized Fe3O4 and CoFe2O4. Bulgarian Chemical Communications, 44, 90-97.
  • Chen, F., Ilyas, N., Liu, X., Li, Z., Yan, S., & Fu, H. (2021). Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid. Frontiers in Energy Research, 9.
  • Ilgaz, A., & Bayırlı, M. (2024). Fractal characterization for conductivity mechanism of single-walled carbon nanotube doped composites. Indian J Phys, 98, 1335–1341.
  • Ilgaz, A., & Bayırlı, M. (2023). Determination of dielectric performance and surface heteromorphology in single-walled carbon nanotube/vinylester polymer composites by fractal approaches. International Journal of Polymer Analysis and Characterization, 28(5), 419–432.
  • Zhang, Z., Hamzehbahmani, H., & Gaskell, P.H. (2023). A new hysteresis simulation method for interpreting the magnetic properties of non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 576, 170763.
  • Driscoll, T. A., & Braun, R. J. (2022). Fundamentals of Numerical Computation: Julia Edition. Society for Industrial.
  • Mazeika, K., Becyte, V., Polishchuk, Yu.O.T., Kulyk, M.M., Yelenich, O.V., & Tovstolytkin, A.I. (2018). Comparison Between Magnetic Properties of CoFe2O4 and CoFe2O4 /polypyrrole nanoparticles. Lithuanian Journal of Physics, 58(3), 267–276.
  • Praveena, K., & Srinath, S. (2014). Synthesis and characterization of CoFe2O4/polyaniline nanocomposites for electromagnetic interference applications. J. Nanosci. Nanotechnol, 14(6), 4371-4376.
  • Rana, S., Philip, J., & Raj, B. (2010). Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry. Materials Chemistry and Physics, 124(1), 264-269.

Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles

Yıl 2025, Cilt: 37 Sayı: 4, 301 - 308, 23.12.2025
https://doi.org/10.7240/jeps.1681456

Öz

In this study, the magnetic properties and energy losses of polyester doped with Fe₃O₄ and CoFe₂O₄ magnetic nanoparticles were investigated at room temperature using the finite element analysis method. The magnetic hysteresis loops were calculated using numerical integration methods such as the Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, and Newton-Cotes. The effects of different doping ratios on magnetization and energy losses were analyzed. As a result of the comparison of integration methods, it was revealed that the Newton-Cotes method provides more reliable findings compared to other methods. It was also reported that the Simpson's 1/3 rule method has lower error rates compared to the Trapezoidal method in iron-containing composites. Besides, the obtained results show that the Newton-Cotes method is more effective in calculating the integral of complex magnetic hysteresis curves. It was emphasized that the results of these analyses can be used in improvements and developments for the design and optimization of magnetic materials.

Kaynakça

  • Gupta, S., Basak, A., & Nandy, D. (2023). Impact of Changing Stellar and Planetary Magnetic Fields on (Exo)planetary Environments and Atmospheric Mass Loss. The Astrophys. J, 953, 70.
  • Skomski, R. (2020). Simple Models of Magnetism. Oxford University Press.
  • Lohr, J., Mansilla, M. V., Gerbaldo, M. V., Moreno, M. S., Tobia, D., Goya, G. F., Winkler, E. L., Zysler, R. D., & Lima Jr, E. (2021). Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1 yO/Fe3O4 core–shell nanoparticles synthesis. J Nanopart Res, 23, 140.
  • Apostolova, I., Apostolov, A., & Wesselinowa, J. (2023). Magnetic Properties of Gd-Doped Fe3O4 Nanoparticles. Applied Sciences, 13(11), 6411.
  • Lyskawinski, W., Sujka, P., Szelag, W., & Baranski, M. (2011). Numerical analysis of hysteresis loss in pulse transformer. Archives of Electrical Engineering, 60(2).
  • Bircakova, Z., Kollar, P., Füzer, J., Bures, R., Faberova, M., & Jakubcin, M. (2023). Energy loss and hysteresis of reversible magnetization processes in iron-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 587, 171291.
  • Ramprecht, J., & Sjöberg, D. (2008). Magnetic losses in composite materials. Journal of Physics D: Applied Physics, 41, 13.
  • Helbig, S., Abert, C., Sánchez, P., Kantorovich, A., & Sofia, S. (2023). Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle. Phys. Rev. B, 107(5).
  • Seyed, F.R., Nidal, A.-Z., & Mika, S. (2025). A comprehensive review of spinel ferrites and their magnetic composites as highly efficient adsorbents of rare earth elements. Emerging Contaminants, 11(1), 100429.
  • Abhivyakti, Kaur, P., Aggarwal, D., Nitansh, & Singhal, S. (2025). Defect-engineered C,N-ZnO/Co3O4/CoFe2O4/Fe3O4 for ultra-fast tetracycline degradation and environmental impact assessment using an in silico mathematical model. Adv Compos Hybrid Mater, 8, 156.
  • Atkinson, K.E. (2008). An Introduction to Numerical Analysis, 2nd Ed. Wiley India Pvt. Limited.
  • Kovacheva, D., Ruskov, T., Krastev, P., Asenov, S., Tanev, N., Mönch, I., Koseva, R., Wolff, U., Gemming, T., Markova-Velichkova, M., Nihtianova, D., & Arndt, K.F. (2012). Synthesis and characterization of magnetic nano-sized Fe3O4 and CoFe2O4. Bulgarian Chemical Communications, 44, 90-97.
  • Chen, F., Ilyas, N., Liu, X., Li, Z., Yan, S., & Fu, H. (2021). Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid. Frontiers in Energy Research, 9.
  • Ilgaz, A., & Bayırlı, M. (2024). Fractal characterization for conductivity mechanism of single-walled carbon nanotube doped composites. Indian J Phys, 98, 1335–1341.
  • Ilgaz, A., & Bayırlı, M. (2023). Determination of dielectric performance and surface heteromorphology in single-walled carbon nanotube/vinylester polymer composites by fractal approaches. International Journal of Polymer Analysis and Characterization, 28(5), 419–432.
  • Zhang, Z., Hamzehbahmani, H., & Gaskell, P.H. (2023). A new hysteresis simulation method for interpreting the magnetic properties of non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 576, 170763.
  • Driscoll, T. A., & Braun, R. J. (2022). Fundamentals of Numerical Computation: Julia Edition. Society for Industrial.
  • Mazeika, K., Becyte, V., Polishchuk, Yu.O.T., Kulyk, M.M., Yelenich, O.V., & Tovstolytkin, A.I. (2018). Comparison Between Magnetic Properties of CoFe2O4 and CoFe2O4 /polypyrrole nanoparticles. Lithuanian Journal of Physics, 58(3), 267–276.
  • Praveena, K., & Srinath, S. (2014). Synthesis and characterization of CoFe2O4/polyaniline nanocomposites for electromagnetic interference applications. J. Nanosci. Nanotechnol, 14(6), 4371-4376.
  • Rana, S., Philip, J., & Raj, B. (2010). Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry. Materials Chemistry and Physics, 124(1), 264-269.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Maddenin İstatistiksel Mekanik, Fiziksel Kombinatorik ve Matematiksel Yönleri
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Bayırlı 0000-0002-7775-0251

Aykut Ilgaz 0000-0002-9632-0281

Gönderilme Tarihi 22 Nisan 2025
Kabul Tarihi 15 Eylül 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Bayırlı, M., & Ilgaz, A. (2025). Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles. International Journal of Advances in Engineering and Pure Sciences, 37(4), 301-308. https://doi.org/10.7240/jeps.1681456
AMA Bayırlı M, Ilgaz A. Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles. JEPS. Aralık 2025;37(4):301-308. doi:10.7240/jeps.1681456
Chicago Bayırlı, Mehmet, ve Aykut Ilgaz. “Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 301-8. https://doi.org/10.7240/jeps.1681456.
EndNote Bayırlı M, Ilgaz A (01 Aralık 2025) Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles. International Journal of Advances in Engineering and Pure Sciences 37 4 301–308.
IEEE M. Bayırlı ve A. Ilgaz, “Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles”, JEPS, c. 37, sy. 4, ss. 301–308, 2025, doi: 10.7240/jeps.1681456.
ISNAD Bayırlı, Mehmet - Ilgaz, Aykut. “Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 301-308. https://doi.org/10.7240/jeps.1681456.
JAMA Bayırlı M, Ilgaz A. Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles. JEPS. 2025;37:301–308.
MLA Bayırlı, Mehmet ve Aykut Ilgaz. “Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 301-8, doi:10.7240/jeps.1681456.
Vancouver Bayırlı M, Ilgaz A. Magnetization Curves and Numerical Analysis of Energy Losses in Fe₃O₄ and CoFe₂O₄ Composite Materials Doped with Magnetic Nanoparticles. JEPS. 2025;37(4):301-8.