Araştırma Makalesi
BibTex RIS Kaynak Göster

mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 37 Sayı: 4, 319 - 336, 23.12.2025
https://doi.org/10.7240/jeps.1707247

Öz

Stereolitografi 3D baskı işleminde bir nesnenin her katmanı, sıvı bir fotopolimer reçinenin UV ışığa maruz bırakılmasıyla oluşturulur. UV ışığının yoğunlaştığı bölgede reçineyi katılaştıran bir kimyasal reaksiyon gerçekleşir. Son zamanlarda, reçinelerin çeşitli katkı malzemeler (metal, seramik tozlar vb.) eklenerek güçlendirilmesi ile ilgili bir eğilim olmuştur. Bu çalışmada, ağırlıkça %0.5, %1 ve %1.5 dolgu oranlarında boyutları 13-20 nm Al₂O₃, 10-25 nm TiO₂ olan nanopartiküller ve 45 µm boyutunda prina, fındık kabuğu ve kenevir tozlarının katkı maddesi olarak eklendiği reçineler kullanılarak üretilen parçaların mekanik özellikleri değerlendirilmiştir. Çalışmada malzemelerin sertlik değerleri, çekme ve eğme dayanımları incelenmiştir. Sonuçlar, toz katkılı numunelerin tamamında çekme mukavemetinin referans numunelere (katkısız) göre azaldığını göstermiştir. Buna karşılık; nanopartiküller, kenevir ve prina toz katkısı bulunan bütün numunelerde eğme kuvvetinin referans numuneden yüksek olduğu, fındık tozu katkılı bütün numunelerde ise eğme kuvvetinin referans numuneden düşük olduğu görülmüştür.

Kaynakça

  • Farooqi, K.M. (2017). Rapid prototyping in cardiac disease. Springer.
  • Bagaria, V., Bhansali, R. ve Pawar, P. (2018). 3D printing—creating a blueprint for the future of orthopedics: current concept review and the road ahead. Journal of Clinical Orthopaedics and Trauma, 9(3), 207–212.
  • Temiz, A. (2024). The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(3), 121.
  • Saraç, M. vd. (2019). Mechanical characterization of 3D printable nanoclay reinforced polymer structures by stereolithography. Journal of the Institute of Science and Technology, 9(3), 1584–1593.
  • Zeng, Y.-S., Hsueh, M.-H. ve Hsiao, T.-C. (2023). Effect of ultraviolet post-curing, laser power, and layer thickness on the mechanical properties of acrylate used in stereolithography 3D printing. Materials Research Express, 10(2), 025303.
  • Wu, H. vd. (2020). Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 111, 100638.
  • Wang, X. vd. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.
  • Dursun, D. ve Dalgıç, A.C. (2018). Bioproduction of high value-added pigments from agro-industrial wastes. Akademik Gıda, 16(2), 205–209.
  • Koçar, O., Anaç, N., & Hazer, B. (2023). Yapıştırma Bağlantılarında Dolgu Malzemelerinin Bağlantı Mukavemetine Etkisi. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 220-232.
  • Anaç, N. ve Doğan, Z. (2023). The effect of organic fillers on the mechanical strength of the joint in the adhesive bonding. Processes, 11(2), 406.
  • Ulutaş, E. ve Taşdemir, M. (2024). Polipropilenin mekanik özelliklerine muz ve pirinç kabuğu tozlarının etkilerinin incelenmesi. Journal of the Institute of Science and Technology, 14(3), 1310-1319.
  • Valencia, L.M. vd. (2022). Synthesis of silver nanocomposites for stereolithography: in situ formation of nanoparticles. Polymers, 14(6), 1168.
  • Lai, C.Q. vd. (2021). Viscoelastic and high strain rate response of anisotropic graphene-polymer nanocomposites fabricated with stereolithographic 3D printing. Additive Manufacturing, 37, 101721.
  • Shah, M. vd. (2023). The influence of nanoparticle dispersions on mechanical and thermal properties of polymer nanocomposites using SLA 3D printing. Crystals, 13(2), 285.
  • Weng, Z. vd. (2016). Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 88, 234–242.
  • Li, Y. vd. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117, 276–286.
  • Aktitiz, I., Aydın, K. ve Topcu, A. (2021). Characterization of TiO₂ nanoparticle–reinforced polymer nanocomposite materials printed by stereolithography method. Journal of Materials Engineering and Performance, 30(7), 4975–4980.
  • Dizon, J.R.C. vd. (2023). Material development for additive manufacturing: Compressive loading behavior of SLA 3D-printed thermosets with nanosilica powders. Materials Science Forum, Trans Tech Publications.
  • Karatza, A. vd. (2022). SLA resins modification by liquid mixing with ceramic powders aiming at mechanical property and thermal stability enhancement for rapid tooling applications. Journal of Manufacturing and Materials Processing, 6(6), 129.
  • Liu, Y. vd. (2019). Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polymer Chemistry, 10(46), 6350–6359.
  • Hada, T. vd. (2022). Effect of different filler contents and printing directions on the mechanical properties for photopolymer resins. International Journal of Molecular Sciences, 23(4), 2296.
  • Jirků, P. vd. (2023). Evaluation of mechanical properties and filler interaction in the field of SLA polymeric additive manufacturing. Materials, 16(14), 4955.
  • Tilendo, A.C. ve Pajarito, B.B. (2017). Reinforcement of stereolithography resin with silica-based fillers. Materials Science Forum, Trans Tech Publications.
  • Dos Santos, M.N. vd. (2011). Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. Materials Science and Engineering: A, 528(13–14), 4318–4324.
  • Lin, D. vd. (2015). 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology, 26(43), 434003.
  • Cataldi, A. vd. (2016). Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Progress in Organic Coatings, 99, 230–239.
  • Sutton, J.T. vd. (2018). Lignin-containing photoactive resins for 3D printing by stereolithography. ACS Applied Materials & Interfaces, 10(42), 36456–36463.
  • Taormina, G. vd. (2018). 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of Applied Biomaterials & Functional Materials, 16(3), 151–160.
  • Bal, B.C. (2022). A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour. Furniture and Wooden Material Research Journal, 5(1), 40–49.
  • Dizon, J. vd. (2018). Mechanical characterization of 3D-printed polymers. Additive manufacturing, 20, 44-67.
  • Anycubic. (2023). User Guide for Standard Resin. Erişim adresi: https://cdn.shopify.com/s/files/1/0245/5519/2380/files/Anycubic_Standard_Resin_User_Manual_V1.0-EN_1.pdf?v=1663574587&ref=loox-pr
  • Pehlivan, F. (2024). Optimizing 3D-printed auxetic structures for tensile performance: taguchi method application on cell size and shape orientation. Manufacturing Technologies and Applications, 5(3), 284-294.
  • John, L. K., Murugan, R., ve Singamneni, S. (2022). Impact of quasi-isotropic raster layup on the mechanical behaviour of fused filament fabrication parts. High Performance Polymers, 34(1), 77-86.
  • Nugraha, A. D. vd. (2024). Investigating the characteristics of nano-graphite composites additively manufactured using stereolithography. Polymers, 16(8), 1021.
  • Bilge, K., Baykal, A., & Kizildag, N. (2025). Tensile failure mechanisms in additively manufactured brittle/ductile UV-curable resins and their nanocomposites with superior strength. Progress in Additive Manufacturing, 1-13.
  • Aktitiz, İ., Aydın, K. ve Topcu, A. (2020). Stereolitografi (SLA) tekniği ile basılan 3 boyutlu polimer yapılarda ikincil kürleme süresinin mekanik özelliklere etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 949–958.
  • Turan, S.R. vd. (2022). Investigation of the mechanical properties of samples produced at different filling ratios by stereolithography additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 399–407.
  • Akdemir, G. ve Uzun, G. (2023). SLA yöntemi ile üretilen numunelerde yaşlandırma işleminin Charpy çentik darbe test sonuçlarına etkileri. Manufacturing Technologies and Applications, 6(1), 13–22.
  • Anaç, N. vd. (2023). Plastik enjeksiyon yöntemi ile fındık kabuğu ve pirina katkılı biyokompozitlerin üretimi. International Journal of Pure and Applied Sciences, 10(1), 72–88.
  • Güler, S. vd. (2024). Fabrication of 3D-printed GNP/TiO₂/epoxy composites: an investigation on mechanical and photocatalytic properties. Rapid Prototyping Journal, 30(5), 1011–1022.
  • George, J.S. ve Thomas, S. (2021). The effect of polymeric inclusions and nanofillers on cure kinetics of epoxy resin: A review. Polymer Science, Series A, 63, 637–651.
  • Lapčík, L. vd. (2023). Study of mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Nanotechnology Reviews, 12(1), 20220520.
  • Liu, Y. vd. (2022). Preparation and properties of nano-TiO₂-modified photosensitive materials for 3D printing. e-Polymers, 22(1), 686–695.
  • Güler, S. (2023). Mechanical, thermal, and photocatalytic properties of TiO₂/ZnO hybrid composites fabricated via additive manufacturing. Recep Tayyip Erdoğan University Journal of Science and Engineering, 5(2), 149–158.
  • Afridi, A., Al Rashid, A., ve Koç, M. (2024). Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges. Bioprinting, 43, e00360.
  • Akbaş, S. vd. (2013). Fındık kabuklarının polipropilen esaslı polimer kompozit üretiminde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1), 50-56.
  • Töre, C. (2010). Kompozit malzeme temelleri: Polimer matrisli. TMMOB Makine Mühendisleri Odası Yayınları, Ankara, Türkiye, s. 99, 133.
  • Scotti, R. vd. (2014). Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer, 55(6), 1497-1506.
  • Bréchet, Y. vd. (2001). Polymer based nanocomposites: effect of filler‐filler and filler‐matrix interactions. Advanced engineering materials, 3(8), 571-577.
  • Özsoy, I., vd. (2015). The influence of micro-and nano-filler content on the mechanical properties of epoxy composites. Strojniski Vestnik/Journal of Mechanical Engineering, 61(10).

Investigation of Mechanical Properties of Parts Produced Using Powder Additive Photopolymer Resin with Masked Stereolithography

Yıl 2025, Cilt: 37 Sayı: 4, 319 - 336, 23.12.2025
https://doi.org/10.7240/jeps.1707247

Öz

In the stereolithography (SLA) 3D printing process, each layer of an object is formed by exposing a liquid photopolymer resin to ultraviolet (UV) light. A chemical reaction occurs in the exposed areas, solidifying the resin. Recently, there has been a growing trend toward reinforcing resins by incorporating various additives, such as metal and ceramic powders. In this study, the mechanical properties of parts produced using resins containing additives namely, nanoparticles of Al₂O₃ (13-20 nm) and TiO₂ (10-25 nm), as well as biomass powders (45 µm) derived from olive pomace, hazelnut shells, and hemp at filler ratios of 0.5 wt.%, 1 wt.%, and 1.5 wt.% were evaluated. The study examined the hardness, tensile strength, and flexural strength of the materials. The results showed that the tensile strength decreased in all powder-reinforced specimens compared to the reference (unfilled) samples. However, it was observed that specimens containing nanoparticles, hemp, and olive pomace exhibited higher flexural strength than the reference samples, whereas all specimens with hazelnut shell powder exhibited lower flexural strength.

Kaynakça

  • Farooqi, K.M. (2017). Rapid prototyping in cardiac disease. Springer.
  • Bagaria, V., Bhansali, R. ve Pawar, P. (2018). 3D printing—creating a blueprint for the future of orthopedics: current concept review and the road ahead. Journal of Clinical Orthopaedics and Trauma, 9(3), 207–212.
  • Temiz, A. (2024). The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(3), 121.
  • Saraç, M. vd. (2019). Mechanical characterization of 3D printable nanoclay reinforced polymer structures by stereolithography. Journal of the Institute of Science and Technology, 9(3), 1584–1593.
  • Zeng, Y.-S., Hsueh, M.-H. ve Hsiao, T.-C. (2023). Effect of ultraviolet post-curing, laser power, and layer thickness on the mechanical properties of acrylate used in stereolithography 3D printing. Materials Research Express, 10(2), 025303.
  • Wu, H. vd. (2020). Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 111, 100638.
  • Wang, X. vd. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.
  • Dursun, D. ve Dalgıç, A.C. (2018). Bioproduction of high value-added pigments from agro-industrial wastes. Akademik Gıda, 16(2), 205–209.
  • Koçar, O., Anaç, N., & Hazer, B. (2023). Yapıştırma Bağlantılarında Dolgu Malzemelerinin Bağlantı Mukavemetine Etkisi. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 220-232.
  • Anaç, N. ve Doğan, Z. (2023). The effect of organic fillers on the mechanical strength of the joint in the adhesive bonding. Processes, 11(2), 406.
  • Ulutaş, E. ve Taşdemir, M. (2024). Polipropilenin mekanik özelliklerine muz ve pirinç kabuğu tozlarının etkilerinin incelenmesi. Journal of the Institute of Science and Technology, 14(3), 1310-1319.
  • Valencia, L.M. vd. (2022). Synthesis of silver nanocomposites for stereolithography: in situ formation of nanoparticles. Polymers, 14(6), 1168.
  • Lai, C.Q. vd. (2021). Viscoelastic and high strain rate response of anisotropic graphene-polymer nanocomposites fabricated with stereolithographic 3D printing. Additive Manufacturing, 37, 101721.
  • Shah, M. vd. (2023). The influence of nanoparticle dispersions on mechanical and thermal properties of polymer nanocomposites using SLA 3D printing. Crystals, 13(2), 285.
  • Weng, Z. vd. (2016). Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 88, 234–242.
  • Li, Y. vd. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117, 276–286.
  • Aktitiz, I., Aydın, K. ve Topcu, A. (2021). Characterization of TiO₂ nanoparticle–reinforced polymer nanocomposite materials printed by stereolithography method. Journal of Materials Engineering and Performance, 30(7), 4975–4980.
  • Dizon, J.R.C. vd. (2023). Material development for additive manufacturing: Compressive loading behavior of SLA 3D-printed thermosets with nanosilica powders. Materials Science Forum, Trans Tech Publications.
  • Karatza, A. vd. (2022). SLA resins modification by liquid mixing with ceramic powders aiming at mechanical property and thermal stability enhancement for rapid tooling applications. Journal of Manufacturing and Materials Processing, 6(6), 129.
  • Liu, Y. vd. (2019). Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polymer Chemistry, 10(46), 6350–6359.
  • Hada, T. vd. (2022). Effect of different filler contents and printing directions on the mechanical properties for photopolymer resins. International Journal of Molecular Sciences, 23(4), 2296.
  • Jirků, P. vd. (2023). Evaluation of mechanical properties and filler interaction in the field of SLA polymeric additive manufacturing. Materials, 16(14), 4955.
  • Tilendo, A.C. ve Pajarito, B.B. (2017). Reinforcement of stereolithography resin with silica-based fillers. Materials Science Forum, Trans Tech Publications.
  • Dos Santos, M.N. vd. (2011). Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. Materials Science and Engineering: A, 528(13–14), 4318–4324.
  • Lin, D. vd. (2015). 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology, 26(43), 434003.
  • Cataldi, A. vd. (2016). Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Progress in Organic Coatings, 99, 230–239.
  • Sutton, J.T. vd. (2018). Lignin-containing photoactive resins for 3D printing by stereolithography. ACS Applied Materials & Interfaces, 10(42), 36456–36463.
  • Taormina, G. vd. (2018). 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of Applied Biomaterials & Functional Materials, 16(3), 151–160.
  • Bal, B.C. (2022). A research on some mechanical properties of composite material produced with linear low density polyethylene (LLDPE) and wood flour. Furniture and Wooden Material Research Journal, 5(1), 40–49.
  • Dizon, J. vd. (2018). Mechanical characterization of 3D-printed polymers. Additive manufacturing, 20, 44-67.
  • Anycubic. (2023). User Guide for Standard Resin. Erişim adresi: https://cdn.shopify.com/s/files/1/0245/5519/2380/files/Anycubic_Standard_Resin_User_Manual_V1.0-EN_1.pdf?v=1663574587&ref=loox-pr
  • Pehlivan, F. (2024). Optimizing 3D-printed auxetic structures for tensile performance: taguchi method application on cell size and shape orientation. Manufacturing Technologies and Applications, 5(3), 284-294.
  • John, L. K., Murugan, R., ve Singamneni, S. (2022). Impact of quasi-isotropic raster layup on the mechanical behaviour of fused filament fabrication parts. High Performance Polymers, 34(1), 77-86.
  • Nugraha, A. D. vd. (2024). Investigating the characteristics of nano-graphite composites additively manufactured using stereolithography. Polymers, 16(8), 1021.
  • Bilge, K., Baykal, A., & Kizildag, N. (2025). Tensile failure mechanisms in additively manufactured brittle/ductile UV-curable resins and their nanocomposites with superior strength. Progress in Additive Manufacturing, 1-13.
  • Aktitiz, İ., Aydın, K. ve Topcu, A. (2020). Stereolitografi (SLA) tekniği ile basılan 3 boyutlu polimer yapılarda ikincil kürleme süresinin mekanik özelliklere etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 949–958.
  • Turan, S.R. vd. (2022). Investigation of the mechanical properties of samples produced at different filling ratios by stereolithography additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 399–407.
  • Akdemir, G. ve Uzun, G. (2023). SLA yöntemi ile üretilen numunelerde yaşlandırma işleminin Charpy çentik darbe test sonuçlarına etkileri. Manufacturing Technologies and Applications, 6(1), 13–22.
  • Anaç, N. vd. (2023). Plastik enjeksiyon yöntemi ile fındık kabuğu ve pirina katkılı biyokompozitlerin üretimi. International Journal of Pure and Applied Sciences, 10(1), 72–88.
  • Güler, S. vd. (2024). Fabrication of 3D-printed GNP/TiO₂/epoxy composites: an investigation on mechanical and photocatalytic properties. Rapid Prototyping Journal, 30(5), 1011–1022.
  • George, J.S. ve Thomas, S. (2021). The effect of polymeric inclusions and nanofillers on cure kinetics of epoxy resin: A review. Polymer Science, Series A, 63, 637–651.
  • Lapčík, L. vd. (2023). Study of mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Nanotechnology Reviews, 12(1), 20220520.
  • Liu, Y. vd. (2022). Preparation and properties of nano-TiO₂-modified photosensitive materials for 3D printing. e-Polymers, 22(1), 686–695.
  • Güler, S. (2023). Mechanical, thermal, and photocatalytic properties of TiO₂/ZnO hybrid composites fabricated via additive manufacturing. Recep Tayyip Erdoğan University Journal of Science and Engineering, 5(2), 149–158.
  • Afridi, A., Al Rashid, A., ve Koç, M. (2024). Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges. Bioprinting, 43, e00360.
  • Akbaş, S. vd. (2013). Fındık kabuklarının polipropilen esaslı polimer kompozit üretiminde değerlendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1), 50-56.
  • Töre, C. (2010). Kompozit malzeme temelleri: Polimer matrisli. TMMOB Makine Mühendisleri Odası Yayınları, Ankara, Türkiye, s. 99, 133.
  • Scotti, R. vd. (2014). Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer, 55(6), 1497-1506.
  • Bréchet, Y. vd. (2001). Polymer based nanocomposites: effect of filler‐filler and filler‐matrix interactions. Advanced engineering materials, 3(8), 571-577.
  • Özsoy, I., vd. (2015). The influence of micro-and nano-filler content on the mechanical properties of epoxy composites. Strojniski Vestnik/Journal of Mechanical Engineering, 61(10).
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İmalat Süreçleri ve Teknolojileri, Katmanlı Üretim
Bölüm Araştırma Makalesi
Yazarlar

Furkan Parmaksız 0000-0001-7002-9157

Yusuf Ceylan 0009-0009-7306-3778

Erdinç Kaloğlu 0009-0002-5709-5496

Musa Çeviker 0009-0008-4783-2791

Nergizhan Anaç 0000-0001-6738-9741

Oğuz Koçar 0000-0002-1928-4301

Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 15 Eylül 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Parmaksız, F., Ceylan, Y., Kaloğlu, E., … Çeviker, M. (2025). mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 37(4), 319-336. https://doi.org/10.7240/jeps.1707247
AMA Parmaksız F, Ceylan Y, Kaloğlu E, Çeviker M, Anaç N, Koçar O. mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi. JEPS. Aralık 2025;37(4):319-336. doi:10.7240/jeps.1707247
Chicago Parmaksız, Furkan, Yusuf Ceylan, Erdinç Kaloğlu, Musa Çeviker, Nergizhan Anaç, ve Oğuz Koçar. “mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 319-36. https://doi.org/10.7240/jeps.1707247.
EndNote Parmaksız F, Ceylan Y, Kaloğlu E, Çeviker M, Anaç N, Koçar O (01 Aralık 2025) mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences 37 4 319–336.
IEEE F. Parmaksız, Y. Ceylan, E. Kaloğlu, M. Çeviker, N. Anaç, ve O. Koçar, “mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi”, JEPS, c. 37, sy. 4, ss. 319–336, 2025, doi: 10.7240/jeps.1707247.
ISNAD Parmaksız, Furkan vd. “mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 319-336. https://doi.org/10.7240/jeps.1707247.
JAMA Parmaksız F, Ceylan Y, Kaloğlu E, Çeviker M, Anaç N, Koçar O. mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi. JEPS. 2025;37:319–336.
MLA Parmaksız, Furkan vd. “mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 319-36, doi:10.7240/jeps.1707247.
Vancouver Parmaksız F, Ceylan Y, Kaloğlu E, Çeviker M, Anaç N, Koçar O. mSLA Yöntemi ile Toz Katkılı Fotopolimer Reçine Kullanılarak Üretilen Parçaların Mekanik Özelliklerinin İncelenmesi. JEPS. 2025;37(4):319-36.