Araştırma Makalesi
BibTex RIS Kaynak Göster

Kabozantinib ile İnsan Serum Albumini Arasındaki Bağlanma Etkileşimine İlişkin İlk Spektroskopik Bulgular

Yıl 2025, Cilt: 37 Sayı: 4, 337 - 345, 23.12.2025
https://doi.org/10.7240/jeps.1732487

Öz

Bu çalışmada, tirozin kinaz inhibitörü kabozantinib (CAB) ile insan serum albumini (HSA) arasındaki etkileşim ilk kez floresans spektroskopisi kullanılarak araştırılmış; bağlanma mekanizması, bağlanma kuvveti ve olası konformasyonel etkiler detaylı olarak incelenmiştir. CAB ve HSA arasındaki ilişki ağırlıklı olarak floresan spektroskopik analiz yoluyla araştırıldı. Bu etkileşimi değerlendirmek için, artan CAB konsantrasyonlarının sabit bir HSA çözeltisi konsantrasyonuna titre edilmesiyle bir dizi söndürme ölçümü sistematik olarak gerçekleştirildi. Söndürme mekanizmasını belirlemek ve termodinamik parametreleri hesaplamak üzere sıcaklık bağımlı ölçümler de yapılmıştır. Söndürme davranışı ve bağlanma sabitleri, Stern–Volmer analizi ve çift logaritmik eğri uydurma yöntemleri ile değerlendirilmiştir. Artan CAB konsantrasyonları karşısında HSA'nın doğal floresansının kademeli olarak azaldığı gözlemlenmiş ve bu durum CAB–HSA kompleksinin oluşumunu işaret etmiştir. Sıcaklık arttıkça Stern–Volmer söndürme sabitlerinde (KSV) belirgin bir düşüş kaydedilmiş, bu da etkileşimin statik söndürme mekanizmasına dayandığını göstermiştir. Elde edilen bağlanma sabitleri (Ka) 104 M-1 mertebesinde olup, CAB ile HSA arasında orta kuvvette bir etkileşim olduğunu ve CAB’ın plazmada taşınabilirliğini desteklemektedir. Termodinamik veriler bağlanmanın kendiliğinden gerçekleştiğini göstermiş; hidrofobik etkileşimlerin başlıca katkıyı sağladığı, ayrıca hidrojen bağları ve zayıf van der Waals etkileşimlerinin de rol oynadığı anlaşılmıştır. Ayrıca, emisyon maksimumlarında gözlenen hafif kırmızı kaymalar ve triptofan ile tirozin kalıntıları çevresinde belirgin floresans söndürülmesi, protein yapısında CAB bağlanmasına bağlı lokal konformasyonel değişikliklerin meydana geldiğini ortaya koymuştur.

Kaynakça

  • El-Khoueiry, A. B., Hanna, D. L., Llovet, J., & Kelley, R. K. (2021). Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treatment Reviews, 98, 102221.
  • Castellano, D., Maroto, J. P., Benzaghou, F., Taguieva, N., Nguyen, L., Clary, D. O., & Jonasch, E. (2020). Exposure-response modeling of cabozantinib in patients with renal cell carcinoma: Implications for patient care. Cancer Treatment Reviews, 89, 102062.
  • Nguyen, L., Chapel, S., Tran, B. D., & Lacy, S. (2019). Updated population pharmacokinetic model of cabozantinib integrating various cancer types including hepatocellular carcinoma. The Journal of Clinical Pharmacology, 59(11), 1551-1561.
  • Yakes, F. M., Chen, J., Tan, J., Yamaguchi, K., Shi, Y., Yu, P., ... & Joly, A. H. (2011). Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Molecular Cancer Therapeutics, 10(12), 2298-2308.
  • Shayeb, A. M., McManus, H. D., Urman, D., Jani, C., Zhang, T., Dizman, N., ... & McKay, R. R. (2023). Cabozantinib Safety with Different Anticoagulants in Patients with Renal Cell Carcinoma. Clinical Genitourinary Cancer, 21(1), 55-62.
  • Kurzrock, R., Sherman, S. I., Ball, D. W., Forastiere, A. A., Cohen, R. B., Mehra, R., ... & Salgia, R. (2011). Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. Journal of Clinical Oncology, 29(19), 2660-2666.
  • Terada, T., Noda, S., & Inui, K. I. (2015). Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacology & Therapeutics, 152, 125-134.
  • Li, J., Li, J., Jiao, Y., & Dong, C. (2014). Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 48-54.
  • Shahabadi, N., & Maghsudi, M. (2009). Binding studies of a new copper (II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. Journal of Molecular Structure, 929(1-3), 193-199.
  • Peters Jr, T. (1995). All about albumin: biochemistry, genetics, and medical applications. Academic Press.
  • Erkmen, C., & Kabir, M. Z. (2024). Current analytical methods and applications used in the insight of serum proteins interactions with various food additives, pesticides, and contaminants. Exploration of Foods and Foodomics, 2(3), 195-222.
  • Bozoğlan, B. K., Tunç, S., & Duman, O. (2014). Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods. Journal of Luminescence, 155, 198-204.
  • Ayranci, E., & Duman, O. (2004). Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chemistry, 84(4), 539-543.
  • Siddiqui, S., Ameen, F., ur Rehman, S., Sarwar, T., & Tabish, M. (2021). Studying the interaction of drug/ligand with serum albumin. Journal of Molecular Liquids, 336, 116200.
  • Alam, P., Abdelhameed, A. S., Rajpoot, R. K., & Khan, R. H. (2016). Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 157, 70-76.
  • Amir, M., Qureshi, M. A., & Javed, S. (2021). Biomolecular interactions and binding dynamics of tyrosine kinase inhibitor erdafitinib, with human serum albumin. Journal of Biomolecular Structure and Dynamics, 39(11), 3934-3947.
  • Amir, M., & Javed, S. (2023). Elucidation of binding dynamics of tyrosine kinase inhibitor tepotinib, to human serum albumin, using spectroscopic and computational approach. International Journal of Biological Macromolecules, 241, 124656.
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693-1704.
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the interaction of novel tyrosine kinase inhibitor apatinib mesylate with bovine serum albumin using spectroscopies and theoretical calculation approaches. Journal of Biomolecular Structure and Dynamics, 39(13), 4795-4806.
  • Menezes, T. M., da Silva Neto, A. M., Gubert, P., & Neves, J. L. (2021). Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. Journal of Molecular Liquids, 340, 116843.
  • Magdy, G., Belal, F., Hakiem, A. F. A., & Abdel-Megied, A. M. (2021). Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. International Journal of Biological Macromolecules, 182, 1852-1862.
  • Ajmal, M. R., Abdelhameed, A. S., Alam, P., & Khan, R. H. (2016). Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 159, 199-208.
  • Duan, X., Wang, D., Liu, Y., Wang, L., Wang, X., & Liu, B. (2023). The influence of several nutritional supplements on the rational use of cabozantinib. Luminescence, 38(1), 28-38.
  • Harding, M., & Beeby, P. (1998). Synthesis and interaction with human serum albumin of the first 3, 18-disubstituted derivative of bilirubin. Journal of the Chemical Society, Perkin Transactions 1, (18), 3041-3044.
  • Ayimbila, F., Tantimongcolwat, T., Ruankham, W., Pingaew, R., Prachayasittikul, V., Prachayasittikul, V., ... & Phopin, K. (2025). Exploring the binding interaction of 1, 4-naphthoquinone derivative–human serum albumin complex by biophysics and molecular simulation. Scientific Reports, 15(1), 19249.
  • Lakowicz, J. R. (Ed.). (2006). Principles of fluorescence spectroscopy. Boston, MA: springer US.
  • Abou-Zied, O. K., & Al-Shihi, O. I. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793-10801.
  • Peters Jr, T. (1995). All about albumin: biochemistry, genetics, and medical applications. Academic Press.
  • Il'ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of ochratoxin A with human serum albumin. A common binding site of ochratoxin A and warfarin in subdomain IIA. The Journal of Physical Chemistry B, 106(2), 460-465.
  • Caglayan, M. G., & Onur, F. (2015). A metal-enhanced fluorescence study of primary amines: determination of aminoglycosides with europium and gold nanoparticles. Analytical Methods, 7(4), 1407-1414.
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455-458.
  • Alam, P., Abdelhameed, A. S., Rajpoot, R. K., & Khan, R. H. (2016). Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 157, 70-76.
  • Amir, M., & Javed, S. (2023). Elucidation of binding dynamics of tyrosine kinase inhibitor tepotinib, to human serum albumin, using spectroscopic and computational approach. International Journal of Biological Macromolecules, 241, 124656.
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693-1704.
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological and Pharmaceutical Bulletin, 25(6), 695-704.
  • He, J., Wu, D., Zhai, Y., Wang, Q., Ma, X., Yang, H., & Li, H. (2016). Interaction of inosine with human serum albumin as determined by NMR relaxation data and fluorescence methodology. Journal of Molecular Liquids, 219, 547-553.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096-3102.
  • Zhang, D., Zhang, X., Liu, Y. C., Huang, S. C., Ouyang, Y., & Hu, Y. J. (2018). Investigations of the molecular interactions between nisoldipine and human serum albumin in vitro using multi-spectroscopy, electrochemistry and docking studies. Journal of Molecular Liquids, 258, 155-162.
  • Cheng, Z., & Liu, R. (2013). Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 92-105.
  • Feroz, S. R., Mohamad, S. B., Lee, G. S., Malek, S. N. A., & Tayyab, S. (2015). Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods. Phytomedicine, 22(6), 621-630.

The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights

Yıl 2025, Cilt: 37 Sayı: 4, 337 - 345, 23.12.2025
https://doi.org/10.7240/jeps.1732487

Öz

This study aims to examine, for the first time, the interaction between the tyrosine kinase inhibitor cabozantinib (CAB) and human serum albumin (HSA), emphasizing the binding mechanism, affinity, and possible structural alterations by fluorescence spectroscopy. The association between CAB and HSA was predominantly explored through fluorescence spectroscopic analysis. To evaluate this interaction, a set of quenching measurements was systematically carried out by titrating increasing concentrations of CAB into a fixed concentration of HSA solution. Temperature-dependent measurements were also conducted to analyze the quenching mechanism and to calculate thermodynamic parameters. Stern-Volmer analysis, as well as double logarithmic fitting, were used to evaluate the quenching behavior and binding affinity. The progressive decrease of HSA’s native fluorescence upon incremental addition of CAB concentrations indicated the formation of the CAB-HSA complex. A noticeable reduction in Stern-Volmer quenching constants (KSV) was recorded as the temperature increased, suggesting a static quenching mechanism. Binding constants (Ka) were found to be in the order of 104 M-1, pointing to a relatively intermediate affinity between CAB and HSA, compatible with its transport in blood plasma. The spontaneity of the binding was supported by thermodynamic data, highlighting hydrophobic interactions as the principal contributor, in combination with hydrogen bonding and weak van der Waals attractions. In addition, no shifts in emission maxima and significant fluorescence quenching around tryptophan and tyrosine residues indicated microenvironmental perturbations, suggesting localized conformational changes in the protein structure upon CAB binding.

Kaynakça

  • El-Khoueiry, A. B., Hanna, D. L., Llovet, J., & Kelley, R. K. (2021). Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treatment Reviews, 98, 102221.
  • Castellano, D., Maroto, J. P., Benzaghou, F., Taguieva, N., Nguyen, L., Clary, D. O., & Jonasch, E. (2020). Exposure-response modeling of cabozantinib in patients with renal cell carcinoma: Implications for patient care. Cancer Treatment Reviews, 89, 102062.
  • Nguyen, L., Chapel, S., Tran, B. D., & Lacy, S. (2019). Updated population pharmacokinetic model of cabozantinib integrating various cancer types including hepatocellular carcinoma. The Journal of Clinical Pharmacology, 59(11), 1551-1561.
  • Yakes, F. M., Chen, J., Tan, J., Yamaguchi, K., Shi, Y., Yu, P., ... & Joly, A. H. (2011). Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Molecular Cancer Therapeutics, 10(12), 2298-2308.
  • Shayeb, A. M., McManus, H. D., Urman, D., Jani, C., Zhang, T., Dizman, N., ... & McKay, R. R. (2023). Cabozantinib Safety with Different Anticoagulants in Patients with Renal Cell Carcinoma. Clinical Genitourinary Cancer, 21(1), 55-62.
  • Kurzrock, R., Sherman, S. I., Ball, D. W., Forastiere, A. A., Cohen, R. B., Mehra, R., ... & Salgia, R. (2011). Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. Journal of Clinical Oncology, 29(19), 2660-2666.
  • Terada, T., Noda, S., & Inui, K. I. (2015). Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacology & Therapeutics, 152, 125-134.
  • Li, J., Li, J., Jiao, Y., & Dong, C. (2014). Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 48-54.
  • Shahabadi, N., & Maghsudi, M. (2009). Binding studies of a new copper (II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. Journal of Molecular Structure, 929(1-3), 193-199.
  • Peters Jr, T. (1995). All about albumin: biochemistry, genetics, and medical applications. Academic Press.
  • Erkmen, C., & Kabir, M. Z. (2024). Current analytical methods and applications used in the insight of serum proteins interactions with various food additives, pesticides, and contaminants. Exploration of Foods and Foodomics, 2(3), 195-222.
  • Bozoğlan, B. K., Tunç, S., & Duman, O. (2014). Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods. Journal of Luminescence, 155, 198-204.
  • Ayranci, E., & Duman, O. (2004). Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chemistry, 84(4), 539-543.
  • Siddiqui, S., Ameen, F., ur Rehman, S., Sarwar, T., & Tabish, M. (2021). Studying the interaction of drug/ligand with serum albumin. Journal of Molecular Liquids, 336, 116200.
  • Alam, P., Abdelhameed, A. S., Rajpoot, R. K., & Khan, R. H. (2016). Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 157, 70-76.
  • Amir, M., Qureshi, M. A., & Javed, S. (2021). Biomolecular interactions and binding dynamics of tyrosine kinase inhibitor erdafitinib, with human serum albumin. Journal of Biomolecular Structure and Dynamics, 39(11), 3934-3947.
  • Amir, M., & Javed, S. (2023). Elucidation of binding dynamics of tyrosine kinase inhibitor tepotinib, to human serum albumin, using spectroscopic and computational approach. International Journal of Biological Macromolecules, 241, 124656.
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693-1704.
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the interaction of novel tyrosine kinase inhibitor apatinib mesylate with bovine serum albumin using spectroscopies and theoretical calculation approaches. Journal of Biomolecular Structure and Dynamics, 39(13), 4795-4806.
  • Menezes, T. M., da Silva Neto, A. M., Gubert, P., & Neves, J. L. (2021). Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. Journal of Molecular Liquids, 340, 116843.
  • Magdy, G., Belal, F., Hakiem, A. F. A., & Abdel-Megied, A. M. (2021). Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. International Journal of Biological Macromolecules, 182, 1852-1862.
  • Ajmal, M. R., Abdelhameed, A. S., Alam, P., & Khan, R. H. (2016). Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 159, 199-208.
  • Duan, X., Wang, D., Liu, Y., Wang, L., Wang, X., & Liu, B. (2023). The influence of several nutritional supplements on the rational use of cabozantinib. Luminescence, 38(1), 28-38.
  • Harding, M., & Beeby, P. (1998). Synthesis and interaction with human serum albumin of the first 3, 18-disubstituted derivative of bilirubin. Journal of the Chemical Society, Perkin Transactions 1, (18), 3041-3044.
  • Ayimbila, F., Tantimongcolwat, T., Ruankham, W., Pingaew, R., Prachayasittikul, V., Prachayasittikul, V., ... & Phopin, K. (2025). Exploring the binding interaction of 1, 4-naphthoquinone derivative–human serum albumin complex by biophysics and molecular simulation. Scientific Reports, 15(1), 19249.
  • Lakowicz, J. R. (Ed.). (2006). Principles of fluorescence spectroscopy. Boston, MA: springer US.
  • Abou-Zied, O. K., & Al-Shihi, O. I. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793-10801.
  • Peters Jr, T. (1995). All about albumin: biochemistry, genetics, and medical applications. Academic Press.
  • Il'ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of ochratoxin A with human serum albumin. A common binding site of ochratoxin A and warfarin in subdomain IIA. The Journal of Physical Chemistry B, 106(2), 460-465.
  • Caglayan, M. G., & Onur, F. (2015). A metal-enhanced fluorescence study of primary amines: determination of aminoglycosides with europium and gold nanoparticles. Analytical Methods, 7(4), 1407-1414.
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455-458.
  • Alam, P., Abdelhameed, A. S., Rajpoot, R. K., & Khan, R. H. (2016). Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 157, 70-76.
  • Amir, M., & Javed, S. (2023). Elucidation of binding dynamics of tyrosine kinase inhibitor tepotinib, to human serum albumin, using spectroscopic and computational approach. International Journal of Biological Macromolecules, 241, 124656.
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693-1704.
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological and Pharmaceutical Bulletin, 25(6), 695-704.
  • He, J., Wu, D., Zhai, Y., Wang, Q., Ma, X., Yang, H., & Li, H. (2016). Interaction of inosine with human serum albumin as determined by NMR relaxation data and fluorescence methodology. Journal of Molecular Liquids, 219, 547-553.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096-3102.
  • Zhang, D., Zhang, X., Liu, Y. C., Huang, S. C., Ouyang, Y., & Hu, Y. J. (2018). Investigations of the molecular interactions between nisoldipine and human serum albumin in vitro using multi-spectroscopy, electrochemistry and docking studies. Journal of Molecular Liquids, 258, 155-162.
  • Cheng, Z., & Liu, R. (2013). Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 92-105.
  • Feroz, S. R., Mohamad, S. B., Lee, G. S., Malek, S. N. A., & Tayyab, S. (2015). Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods. Phytomedicine, 22(6), 621-630.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Spektrometri
Bölüm Araştırma Makalesi
Yazarlar

Cem Erkmen 0000-0001-5944-3912

Gönderilme Tarihi 1 Temmuz 2025
Kabul Tarihi 20 Ekim 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Erkmen, C. (2025). The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights. International Journal of Advances in Engineering and Pure Sciences, 37(4), 337-345. https://doi.org/10.7240/jeps.1732487
AMA Erkmen C. The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights. JEPS. Aralık 2025;37(4):337-345. doi:10.7240/jeps.1732487
Chicago Erkmen, Cem. “The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 337-45. https://doi.org/10.7240/jeps.1732487.
EndNote Erkmen C (01 Aralık 2025) The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights. International Journal of Advances in Engineering and Pure Sciences 37 4 337–345.
IEEE C. Erkmen, “The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights”, JEPS, c. 37, sy. 4, ss. 337–345, 2025, doi: 10.7240/jeps.1732487.
ISNAD Erkmen, Cem. “The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 337-345. https://doi.org/10.7240/jeps.1732487.
JAMA Erkmen C. The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights. JEPS. 2025;37:337–345.
MLA Erkmen, Cem. “The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 337-45, doi:10.7240/jeps.1732487.
Vancouver Erkmen C. The First Molecular-Scale View of Cabozantinib–Human Serum Albumin Binding: Quantitative Spectroscopic Insights. JEPS. 2025;37(4):337-45.