Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek Kullanımlık Karbon Elektrot ile Fluroksipir'in İlk Voltametrik Tespiti

Yıl 2025, Cilt: 37 Sayı: 4, 346 - 353, 23.12.2025
https://doi.org/10.7240/jeps.1738444

Öz

Bu araştırmanın amacı, Fluroksipir'in (FLX) çevrede kalıcılığını ve voltammetri kullanarak zararlı etkilerini değerlendirmektir. Literatürde voltammetrik yöntemlerle FLX'in tayini üzerine herhangi bir çalışmaya rastlanmamış olması çalışmanın özgünlüğünü göstermektedir. Seçilen analitik yaklaşım, döngüsel voltammetri (CV) ve kare dalga voltammetrisi (SWV) kullanılarak tek kullanımlık kalem grafit elektrot (PGE) yüzeyinde gerçekleştirilmiştir. Elektrokimyasal ölçümler pH 3,00 fosfat tampon çözeltisi (PBS) ortamında gerçekleştirilmiştir. FLX, yaklaşık 1,40 V (Ag/AgCl) potansiyelinde iyi tanımlanmış bir oksidasyon piki vermiş ve elde edilen akım sinyalleri artan konsantrasyonlarla artmıştır. Kalibrasyon çalışmaları sonucunda SWV tekniği ile 4,00×10⁻⁷ – 8,00×10⁻⁵ M aralığında yüksek doğrusallık elde edilmiş, kalibrasyon eğrisinin eğimi 517737,74 μA/M ve korelasyon katsayısı (R²) 0,995 olarak hesaplanmıştır. FLX için tayin ve dedeksiyon limitleri sırasıyla 1,45×10⁻⁷ M (LOD) ve 4,39×10⁻⁷ M (LOQ) olarak belirlenmiştir. Analitik yöntemin gün içi ve günler arası tekrarlanabilirlik katsayıları sırasıyla %0,87 ve %0,96 olarak bulunmuştur. Ep-pH grafiğinden elde edilen eğim yaklaşık olarak –59 mV/pH olup, Ep-logv analizinden elde edilen n ≈ 2 değeri, FLX'in elektrokimyasal oksidasyon sürecinin iki elektron ve iki protonun transferi ile gerçekleştiğini doğrulamıştır.

Kaynakça

  • Park, H., Choi, M. Y., Kwon, E., & Kim, T. H. (2016). Crystal structure of fluroxypyr. Structure Reports, 72, 1836–1838.
  • Theodoridis, G. (2006). Fluorine-containing agrochemicals: An overview of recent developments. Advances in Fluorine Science, 2, 121–175.
  • Wang, L., Xu, J., Zhao, P., & Pan, C. (2011). Dissipation and residues of fluroxypyr-meptyl in rice and environment. Bulletin of Environmental Contamination and Toxicology, 86, 449–453.
  • Zhang, G., Liu, N., Shi, S., Li, J., Geng, R., Fang, L., ... & Si, Y. (2025). Fluroxypyr inhibits maize growth by disturbing the diversity of the endophytic bacterial communities in maize roots. Microorganisms, 13, 728.
  • Connolly, A., Jones, K., Galea, K. S., Basinas, I., Kenny, L., McGowan, P., & Coggins, M. (2017). Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. International Journal of Hygiene and Environmental Health, 220, 1064–1073.
  • Sverdrup, L. E., Bjørge, C., Eklo, O. M., Grung, M., Källqvist, T., Klingen, I., ... & Øvrebø, S. (2022). Human health risk assessment of the pesticide Simplex with the active substances aminopyralid and fluroxypyr.
  • European Food Safety Authority. (2011). Conclusion on the peer review of the pesticide risk assessment of the active substance fluroxypyr (evaluated variant fluroxypyr‐meptyl). EFSA Journal, 9, 2091.
  • Boonupara, T., Udomkun, P., Khan, E., & Kajitvichyanukul, P. (2023). Airborne pesticides from agricultural practices: A critical review of pathways, influencing factors, and human health implications. Toxics, 11, 858.
  • Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of endocrine disruptor pesticides: A review. International Journal of Environmental Research and Public Health, 8, 2265–2303.
  • Zhang, C., Hu, R., Shi, G., Jin, Y., Robson, M. G., & Huang, X. (2015). Overuse or underuse? An observation of pesticide use in China. Science of the Total Environment, 538, 1–6.
  • Hu, J.-Y., Hu, Y.-Q., Zhen, Z.-H., & Deng, Z.-B. (2011). Residue analysis of fluroxypyr-meptyl in wheat and soil by GC–ECD. Chromatographia, 74, 291–296.
  • Mukherjee, S., Mukherjee, S., Kundu, A., Das, G. K., & Bhattacharyya, A. (2014). Analytical method, validation and degradation kinetics of fluroxypyr-meptyl in onion using gas chromatography-tandem mass spectrometry.
  • Halimah, M., Tan, Y. A., Aini, K., & Ismail, B. S. (2003). Method development for determination of fluroxypyr in water. Journal of Environmental Science and Health, Part B, 38, 429–440.
  • Umapathi, R., Ghoreishian, S. M., Sonwal, S., Rani, G. M., & Huh, Y. S. (2022). Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews, 453, 214305.
  • Uygun, Z. O., & Dilgin, Y. (2013). A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors and Actuators B: Chemical, 188, 78–84.
  • David, I. G., Popa, D.-E., & Buleandra, M. (2017). Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry, 2017, 1905968.
  • Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., & Beer, P. D. (2015). Halogen bonding in supramolecular chemistry. Chemical Reviews, 115, 7118–7195.
  • Bard, A. J., Faulkner, L. R., & White, H. S. (2022). Electrochemical methods: Fundamentals and applications (3rd ed.). John Wiley & Sons.
  • Slattery, S. J., Blaho, J. K., Lehnes, J., & Goldsby, K. A. (1998). pH-dependent metal-based redox couples as models for proton-coupled electron transfer reactions. Coordination Chemistry Reviews, 174, 391–416.
  • Jones, B. D. (2000). Applications of redox indicators for evaluating redox conditions in environmental samples (Master’s thesis). Oregon State University.
  • Crampton, M. R. (2015). Nucleophilic aromatic substitution: An update overview. In Arene chemistry: Reaction mechanisms and methods for aromatic compounds (pp. 131–173). Wiley.
  • Banerji, K. K. (2015). Oxidation and reduction. In Organic reaction mechanisms: An annual survey covering the literature dated January to December 2012 (pp. 91–170). Wiley.
  • Fuchigami, T. (2014). Organic electrode reactions. In Fundamentals and applications of organic electrochemistry (pp. 45–82). Wiley-VCH.
  • Branch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38, 798–805.

First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples

Yıl 2025, Cilt: 37 Sayı: 4, 346 - 353, 23.12.2025
https://doi.org/10.7240/jeps.1738444

Öz

The goal of this investigation was to assess the persistence of Fluroxypyr (FLX) in the environment as well as its hazardous effects using voltammetry. The originality of this research is that no study on the determination of FLX by voltammetric methods has been found in the literature. The chosen analytical approach was carried out on the surface of a disposable pencil graphite electrode (PGE) utilising cyclic voltammetry (CV) and square wave voltammetry (SWV). Electrochemical measurements were carried out in pH 3.00 phosphate buffer solution (PBS) medium. FLX gave a well-defined oxidation peak at a potential of approximately 1.40 V (Ag/AgCl), and the obtained current signals increased with increasing concentrations. As a result of calibration studies, high linearity was obtained with SWV technique in the range of 4.00×10⁻⁷ – 8.00×10⁻⁵ M, the slope of the calibration curve was calculated as 517737.74 μA/M and the correlation coefficient (R²) was 0.995. The determination and detection limits for FLX were determined as 1.45×10⁻⁷ M (LOD) and 4.39×10⁻⁷ M (LOQ), respectively. Intra-day and inter-day repeatability coefficients of the analytical method were found to be 0.87% and 0.96%, respectively. The slope obtained from the Ep-pH plot was approximately –59 mV/pH and the value of n ≈ 2 obtained from the Ep-logv analysis confirmed that the electrochemical oxidation process of FLX occurred by the transfer of two electrons and two protons.

Kaynakça

  • Park, H., Choi, M. Y., Kwon, E., & Kim, T. H. (2016). Crystal structure of fluroxypyr. Structure Reports, 72, 1836–1838.
  • Theodoridis, G. (2006). Fluorine-containing agrochemicals: An overview of recent developments. Advances in Fluorine Science, 2, 121–175.
  • Wang, L., Xu, J., Zhao, P., & Pan, C. (2011). Dissipation and residues of fluroxypyr-meptyl in rice and environment. Bulletin of Environmental Contamination and Toxicology, 86, 449–453.
  • Zhang, G., Liu, N., Shi, S., Li, J., Geng, R., Fang, L., ... & Si, Y. (2025). Fluroxypyr inhibits maize growth by disturbing the diversity of the endophytic bacterial communities in maize roots. Microorganisms, 13, 728.
  • Connolly, A., Jones, K., Galea, K. S., Basinas, I., Kenny, L., McGowan, P., & Coggins, M. (2017). Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. International Journal of Hygiene and Environmental Health, 220, 1064–1073.
  • Sverdrup, L. E., Bjørge, C., Eklo, O. M., Grung, M., Källqvist, T., Klingen, I., ... & Øvrebø, S. (2022). Human health risk assessment of the pesticide Simplex with the active substances aminopyralid and fluroxypyr.
  • European Food Safety Authority. (2011). Conclusion on the peer review of the pesticide risk assessment of the active substance fluroxypyr (evaluated variant fluroxypyr‐meptyl). EFSA Journal, 9, 2091.
  • Boonupara, T., Udomkun, P., Khan, E., & Kajitvichyanukul, P. (2023). Airborne pesticides from agricultural practices: A critical review of pathways, influencing factors, and human health implications. Toxics, 11, 858.
  • Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of endocrine disruptor pesticides: A review. International Journal of Environmental Research and Public Health, 8, 2265–2303.
  • Zhang, C., Hu, R., Shi, G., Jin, Y., Robson, M. G., & Huang, X. (2015). Overuse or underuse? An observation of pesticide use in China. Science of the Total Environment, 538, 1–6.
  • Hu, J.-Y., Hu, Y.-Q., Zhen, Z.-H., & Deng, Z.-B. (2011). Residue analysis of fluroxypyr-meptyl in wheat and soil by GC–ECD. Chromatographia, 74, 291–296.
  • Mukherjee, S., Mukherjee, S., Kundu, A., Das, G. K., & Bhattacharyya, A. (2014). Analytical method, validation and degradation kinetics of fluroxypyr-meptyl in onion using gas chromatography-tandem mass spectrometry.
  • Halimah, M., Tan, Y. A., Aini, K., & Ismail, B. S. (2003). Method development for determination of fluroxypyr in water. Journal of Environmental Science and Health, Part B, 38, 429–440.
  • Umapathi, R., Ghoreishian, S. M., Sonwal, S., Rani, G. M., & Huh, Y. S. (2022). Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews, 453, 214305.
  • Uygun, Z. O., & Dilgin, Y. (2013). A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors and Actuators B: Chemical, 188, 78–84.
  • David, I. G., Popa, D.-E., & Buleandra, M. (2017). Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry, 2017, 1905968.
  • Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., & Beer, P. D. (2015). Halogen bonding in supramolecular chemistry. Chemical Reviews, 115, 7118–7195.
  • Bard, A. J., Faulkner, L. R., & White, H. S. (2022). Electrochemical methods: Fundamentals and applications (3rd ed.). John Wiley & Sons.
  • Slattery, S. J., Blaho, J. K., Lehnes, J., & Goldsby, K. A. (1998). pH-dependent metal-based redox couples as models for proton-coupled electron transfer reactions. Coordination Chemistry Reviews, 174, 391–416.
  • Jones, B. D. (2000). Applications of redox indicators for evaluating redox conditions in environmental samples (Master’s thesis). Oregon State University.
  • Crampton, M. R. (2015). Nucleophilic aromatic substitution: An update overview. In Arene chemistry: Reaction mechanisms and methods for aromatic compounds (pp. 131–173). Wiley.
  • Banerji, K. K. (2015). Oxidation and reduction. In Organic reaction mechanisms: An annual survey covering the literature dated January to December 2012 (pp. 91–170). Wiley.
  • Fuchigami, T. (2014). Organic electrode reactions. In Fundamentals and applications of organic electrochemistry (pp. 45–82). Wiley-VCH.
  • Branch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38, 798–805.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sensör Teknolojisi , Elektrokimya
Bölüm Araştırma Makalesi
Yazarlar

Selva Bilge 0000-0001-5514-208X

Gönderilme Tarihi 9 Temmuz 2025
Kabul Tarihi 21 Eylül 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Bilge, S. (2025). First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples. International Journal of Advances in Engineering and Pure Sciences, 37(4), 346-353. https://doi.org/10.7240/jeps.1738444
AMA Bilge S. First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples. JEPS. Aralık 2025;37(4):346-353. doi:10.7240/jeps.1738444
Chicago Bilge, Selva. “First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 346-53. https://doi.org/10.7240/jeps.1738444.
EndNote Bilge S (01 Aralık 2025) First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples. International Journal of Advances in Engineering and Pure Sciences 37 4 346–353.
IEEE S. Bilge, “First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples”, JEPS, c. 37, sy. 4, ss. 346–353, 2025, doi: 10.7240/jeps.1738444.
ISNAD Bilge, Selva. “First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 346-353. https://doi.org/10.7240/jeps.1738444.
JAMA Bilge S. First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples. JEPS. 2025;37:346–353.
MLA Bilge, Selva. “First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 346-53, doi:10.7240/jeps.1738444.
Vancouver Bilge S. First Voltammetric Detection of Fluroxypyr with Pencil Graphite Electrode from Real Samples. JEPS. 2025;37(4):346-53.