Araştırma Makalesi
BibTex RIS Kaynak Göster

Fonksiyonel Koordinasyon Motifi Tasarımı: Nikotinamid-Co(II) Kompleksinin Yapısal ve Elektronik Özelliklerine İlişkin Bulgular

Yıl 2025, Cilt: 37 Sayı: 4, 371 - 384, 23.12.2025
https://doi.org/10.7240/jeps.1794749

Öz

Nikotinamid içeren yeni bir kobalt(II) kompleksi sentezlenmiş ve yapısal olarak karakterize edilmiştir. Tek kristal X-ışını kırınımı, kompleksin triklinik P-1 uzay grubunda kristallendiğini ve Co(II) merkezinin iki nikotinamid ligandı ve dört su molekülü ile tanımlanan hafif bozulmuş bir oktahedral geometriye sahip olduğunu ortaya koymuştur. Birim hücrede bulunan tiyofen-2-karboksilik asit molekülleri, hidrojen bağları aracılığıyla yapıyı stabilize etmektedir. FT-IR, UV-Vis ve TGA analizleri koordinasyon çevresini, elektronik geçişleri ve termal davranışı doğrulamıştır. DFT hesaplamaları deneysel sonuçları desteklemiş ve hesaplanan HOMO–LUMO aralığı (4.40 eV) ile deneysel optik bant aralığının (4.32 eV) yakın uyum gösterdiği görülmüştür. Hirshfeld yüzey analizi, kristal paketlenmesinde hidrojen bağlarının ve π–π etkileşimlerinin belirleyici rolünü vurgulamıştır. Genel olarak bulgular, kompleksin yapısal ve elektronik özelliklerine ilişkin tutarlı bir açıklama sunmakta ve nikotinamid temelli sistemlerin koordinasyon kimyası ve fonksiyonel malzeme tasarımındaki potansiyelini ön plana çıkarmaktadır.

Kaynakça

  • Zhao, L., Liu, X., Zhang, L., Qiu, G., Astruc, D., & Gu, H. (2017). Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coordination Chemistry Reviews, 337, 34-79.
  • Liu, W., Sahoo, B., Junge, K., & Beller, M. (2018). Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Accounts of Chemical Research, 51, 1858-1869.
  • Renfrew, A.K., O'Neill, E.S., Hambley, T.W., & New, E.J. (2018). Harnessing the properties of cobalt coordination complexes for biological application. Coordination Chemistry Reviews, 375, 221-233.
  • Munteanu, C.R., & Suntharalingam, K. (2015). Advances in cobalt complexes as anticancer agents. Dalton Transactions, 44, 13796-13808.
  • Bera, M., Kaur, S., Keshari, K., Moonshiram, D., & Paria, S. (2022). Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex. Inorganic Chemistry, 61, 21035-21046.
  • Losse, S., Vos, J.G., & Rau, S. (2010). Catalytic hydrogen production at cobalt centres. Coordination Chemistry Reviews, 254, 2492-2504.
  • Shahbaz, M., Dar, B., Sharif, S., Khurshid, M.A., Hussain, S., Riaz, B., Musaffa, M., Khalid, H., Ch, A.R., & Mahboob, A. (2024). Recent advances in the fluorimetric and colorimetric detection of cobalt ions. RSC Advances, 14, 9819-9847.
  • Heffern, M.C., Yamamoto, N., Holbrook, R.J., Eckermann, A.L., & Meade, T.J. (2013). Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology, 17, 189-196.
  • Arıcı, M., Yeşilel, O.Z., Acar, E., & Dege, N. (2017). Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids. Polyhedron, 127, 293-301.
  • Nar, M., Senturk, M., Kaya, A.A., Öztürkkan, F.E., Kaya, E.Ç., & Şahin, E. (2025). Nicotinamide complexes of metal(II) furan-2-carboxylates: synthesis, determination of crystal structures, Hirshfeld surface analysis, and in vitro and in silico evaluation of inhibitory properties on CA I, CA II, AChE, BChE, and GR enzymes. Structural Chemistry.
  • Al-Saif, F.A., & Refat, M.S. (2012). Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes. Journal of Molecular Structure, 1021, 40-52.
  • Özbek, F.E., Sertçelik, M., Yüksek, M., Necefoğlu, H., Çelik, R.Ç., Nayir, G.Y., & Hökelek, T. (2017). Cu(II) and Ni(II) 4-cyanobenzoate complexes with nicotinamide: Synthesis, spectral, structural and optical characterization and thermal behavior. Journal of Molecular Structure, 1150, 112-117.
  • Yıldırım, T., Köse, D.A., Avcı, E., Özer, D., & Şahin, O. (2019). Novel mixed ligand complexes of acesulfame / nicotinamide with some transition metals. Synthesis, crystal structural characterization, and biological properties. Journal of Molecular Structure, 1176, 576-582.
  • Altun, Ö., & Şuözer, M. (2017). Synthesis, spectral analysis, stability constants, antioxidant and biological activities of Co (II), Ni (II) and Cu (II) mixed ligand complexes of nicotinamide, theophylline and thiocyanate. Journal of Molecular Structure, 1149, 307-314.
  • Xue, J., Jiang, Y., Li, W., Yang, L., Xu, Y., Zhao, G., Zhang, G., Bu, X., Liu, K., Chen, J.e., & Wu, J. (2015). Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 864-870.
  • Sertçelik, M., Özbek, F.E., Yüksek, M., Elmalı, A., Aydoğdu, Ö., Necefoğlu, H., & Hökelek, T. (2020). Synthesis, spectral, thermal, structural, optical characterization, and Hirshfield surface analysis of N,N’-diethylnicotinamide complexes of Mn(II) and Co(II) 4-cyanobenzoates. Chemical Papers, 74, 2021-2033.
  • Bruker. (2014). APEX2, Version 2014.11-0. Bruker AXS Inc., Madison, WI.
  • Sheldrick, G. (2015). SHELXT-Integrated space-group and crystals-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71, 3-8.
  • Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71, 3-8.
  • Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339-341.
  • Spek, A.L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65, 148-155.
  • Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., & Streek, J. (2006). Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457.
  • Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., & Spackman, M.A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54, 1006-1011.
  • McKinnon, J.J., Jayatilaka, D., & Spackman, M.A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications.
  • Spackman, M.A., & McKinnon, J.J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4, 378-392.
  • Jelsch, C., Ejsmont, K., & Huder, L. (2014). The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ, 1, 119-128.
  • Kohn, W., & Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., et al. (2016). Gaussian 16 Rev. C.01. Wallingford, CT.
  • Dennington, R., Keith, T.A., & Millam, J.M. (2009). GaussView, Version 6. Semichem Inc.: Shawnee Mission, KS, USA.
  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098-3100.
  • Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648-5652.
  • Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
  • Runge, E., & Gross, E.K.U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52, 997.
  • O'Boyle, N.M., Tenderholt, A.L., & Langner, K.M. (2007). cclib: A library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839-845.
  • Özbek, F.E., Tercan, B., Şahin, E., Necefoğlu, H., & Hökelek, T. (2009). Tetraaquabis(nicotinamide-κN1)cobalt(II) bis(2-fluorobenzoate). Acta Crystallographica Section E Structure Reports Online, 65, m341-m342.
  • Turner, M.J., McKinnon, J.J., Jayatilaka, D., & Spackman, M.A. (2011). Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 13, 1804-1813.

Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex

Yıl 2025, Cilt: 37 Sayı: 4, 371 - 384, 23.12.2025
https://doi.org/10.7240/jeps.1794749

Öz

A new cobalt(II) complex containing nicotinamide has been synthesized and structurally characterized. Single crystal X-ray diffraction revealed that the complex crystallizes in the triclinic P-1 space group, with the Co(II) center surrounded by two nicotinamide ligands and four water molecules, forming a slightly distorted octahedral geometric arrangement. Thiophene-2-carboxylate anions in the unit cell are not ligands but anionic counterions, contributing to the stability of the structure through hydrogen bonds. The complex exhibits a broad absorption band in the 200-350 nm range, while a broad d-d transition band is observed in the 350-650 nm range. The electrochemical HOMO-LUMO gap was measured as 1.82 eV, while the theoretical band gap of 4.40 eV and the optical band gap of 4.32 eV were found to be quite close, and this result is in good agreement with the observed data. Hirshfeld surface analysis highlighted the fundamental role of hydrogen bonds and π–π interactions in crystal structures. The data obtained in this study contribute to the comprehensive understanding of the effects of non-coordinating counterions in cobalt(II)-nicotinamide systems and expand the knowledge base for the design of charged coordination compounds with broad application potential.

Teşekkür

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources). I acknowledge to Scientific and Technological Research Application and Research Center, Sinop University, Türkiye, for the use of the Bruker D8 QUEST diffractometer.

Kaynakça

  • Zhao, L., Liu, X., Zhang, L., Qiu, G., Astruc, D., & Gu, H. (2017). Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coordination Chemistry Reviews, 337, 34-79.
  • Liu, W., Sahoo, B., Junge, K., & Beller, M. (2018). Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Accounts of Chemical Research, 51, 1858-1869.
  • Renfrew, A.K., O'Neill, E.S., Hambley, T.W., & New, E.J. (2018). Harnessing the properties of cobalt coordination complexes for biological application. Coordination Chemistry Reviews, 375, 221-233.
  • Munteanu, C.R., & Suntharalingam, K. (2015). Advances in cobalt complexes as anticancer agents. Dalton Transactions, 44, 13796-13808.
  • Bera, M., Kaur, S., Keshari, K., Moonshiram, D., & Paria, S. (2022). Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex. Inorganic Chemistry, 61, 21035-21046.
  • Losse, S., Vos, J.G., & Rau, S. (2010). Catalytic hydrogen production at cobalt centres. Coordination Chemistry Reviews, 254, 2492-2504.
  • Shahbaz, M., Dar, B., Sharif, S., Khurshid, M.A., Hussain, S., Riaz, B., Musaffa, M., Khalid, H., Ch, A.R., & Mahboob, A. (2024). Recent advances in the fluorimetric and colorimetric detection of cobalt ions. RSC Advances, 14, 9819-9847.
  • Heffern, M.C., Yamamoto, N., Holbrook, R.J., Eckermann, A.L., & Meade, T.J. (2013). Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology, 17, 189-196.
  • Arıcı, M., Yeşilel, O.Z., Acar, E., & Dege, N. (2017). Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids. Polyhedron, 127, 293-301.
  • Nar, M., Senturk, M., Kaya, A.A., Öztürkkan, F.E., Kaya, E.Ç., & Şahin, E. (2025). Nicotinamide complexes of metal(II) furan-2-carboxylates: synthesis, determination of crystal structures, Hirshfeld surface analysis, and in vitro and in silico evaluation of inhibitory properties on CA I, CA II, AChE, BChE, and GR enzymes. Structural Chemistry.
  • Al-Saif, F.A., & Refat, M.S. (2012). Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes. Journal of Molecular Structure, 1021, 40-52.
  • Özbek, F.E., Sertçelik, M., Yüksek, M., Necefoğlu, H., Çelik, R.Ç., Nayir, G.Y., & Hökelek, T. (2017). Cu(II) and Ni(II) 4-cyanobenzoate complexes with nicotinamide: Synthesis, spectral, structural and optical characterization and thermal behavior. Journal of Molecular Structure, 1150, 112-117.
  • Yıldırım, T., Köse, D.A., Avcı, E., Özer, D., & Şahin, O. (2019). Novel mixed ligand complexes of acesulfame / nicotinamide with some transition metals. Synthesis, crystal structural characterization, and biological properties. Journal of Molecular Structure, 1176, 576-582.
  • Altun, Ö., & Şuözer, M. (2017). Synthesis, spectral analysis, stability constants, antioxidant and biological activities of Co (II), Ni (II) and Cu (II) mixed ligand complexes of nicotinamide, theophylline and thiocyanate. Journal of Molecular Structure, 1149, 307-314.
  • Xue, J., Jiang, Y., Li, W., Yang, L., Xu, Y., Zhao, G., Zhang, G., Bu, X., Liu, K., Chen, J.e., & Wu, J. (2015). Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 864-870.
  • Sertçelik, M., Özbek, F.E., Yüksek, M., Elmalı, A., Aydoğdu, Ö., Necefoğlu, H., & Hökelek, T. (2020). Synthesis, spectral, thermal, structural, optical characterization, and Hirshfield surface analysis of N,N’-diethylnicotinamide complexes of Mn(II) and Co(II) 4-cyanobenzoates. Chemical Papers, 74, 2021-2033.
  • Bruker. (2014). APEX2, Version 2014.11-0. Bruker AXS Inc., Madison, WI.
  • Sheldrick, G. (2015). SHELXT-Integrated space-group and crystals-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71, 3-8.
  • Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71, 3-8.
  • Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339-341.
  • Spek, A.L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65, 148-155.
  • Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., & Streek, J. (2006). Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457.
  • Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., & Spackman, M.A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54, 1006-1011.
  • McKinnon, J.J., Jayatilaka, D., & Spackman, M.A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications.
  • Spackman, M.A., & McKinnon, J.J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4, 378-392.
  • Jelsch, C., Ejsmont, K., & Huder, L. (2014). The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ, 1, 119-128.
  • Kohn, W., & Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., et al. (2016). Gaussian 16 Rev. C.01. Wallingford, CT.
  • Dennington, R., Keith, T.A., & Millam, J.M. (2009). GaussView, Version 6. Semichem Inc.: Shawnee Mission, KS, USA.
  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098-3100.
  • Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648-5652.
  • Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
  • Runge, E., & Gross, E.K.U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52, 997.
  • O'Boyle, N.M., Tenderholt, A.L., & Langner, K.M. (2007). cclib: A library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839-845.
  • Özbek, F.E., Tercan, B., Şahin, E., Necefoğlu, H., & Hökelek, T. (2009). Tetraaquabis(nicotinamide-κN1)cobalt(II) bis(2-fluorobenzoate). Acta Crystallographica Section E Structure Reports Online, 65, m341-m342.
  • Turner, M.J., McKinnon, J.J., Jayatilaka, D., & Spackman, M.A. (2011). Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 13, 1804-1813.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mücahit Özdemir 0000-0002-0840-4953

Gönderilme Tarihi 1 Ekim 2025
Kabul Tarihi 13 Kasım 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 4

Kaynak Göster

APA Özdemir, M. (2025). Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex. International Journal of Advances in Engineering and Pure Sciences, 37(4), 371-384. https://doi.org/10.7240/jeps.1794749
AMA Özdemir M. Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex. JEPS. Aralık 2025;37(4):371-384. doi:10.7240/jeps.1794749
Chicago Özdemir, Mücahit. “Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 4 (Aralık 2025): 371-84. https://doi.org/10.7240/jeps.1794749.
EndNote Özdemir M (01 Aralık 2025) Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex. International Journal of Advances in Engineering and Pure Sciences 37 4 371–384.
IEEE M. Özdemir, “Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex”, JEPS, c. 37, sy. 4, ss. 371–384, 2025, doi: 10.7240/jeps.1794749.
ISNAD Özdemir, Mücahit. “Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex”. International Journal of Advances in Engineering and Pure Sciences 37/4 (Aralık2025), 371-384. https://doi.org/10.7240/jeps.1794749.
JAMA Özdemir M. Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex. JEPS. 2025;37:371–384.
MLA Özdemir, Mücahit. “Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 4, 2025, ss. 371-84, doi:10.7240/jeps.1794749.
Vancouver Özdemir M. Designing Functional Coordination Motif: Structural and Electronic Insights from a Nicotinamide-Co(II) Complex. JEPS. 2025;37(4):371-84.