Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 83 - 89, 31.03.2019
https://doi.org/10.7240/jeps.494603

Öz

Kaynakça

  • 1. Dang, C. V. (2018). Convergence to Cure Cancer through Research. Cancer Res, 78 (1), 3-4.
  • 2. Hait, W. N. (2011). Forty Years of Translational Cancer Research. Cancer Discov, 1 (7), 627-627.
  • 3. Balaraman, S., Nayak, N., Subbiah, M. ve Elango, K. P. (2018). Synthesis and antiviral study of novel 4-(2-(6-amino-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyrimidin-3-yl)ethyl)benzamide derivatives. Med Chem Res 27 (11-12), 2538-2546.
  • 4. Gujarati, N. A., Zeng, L. L., Gupta, P., Chen, Z. S. ve Korlipara, V. L. (2017). Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorg Med Chem Lett, 27 (20), 4698-4704.
  • 5. Kaur, A., Pathak, D. P., Sharma, V., Narasimhan, B., Sharma, P., Mathur, R. ve Wakode, S. (2018). Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg Chem, 81, 191-202.
  • 6. Lu, K., Cai, L. D., Zhang, X., Wu, G. D., Xu, C. J., Zhao, Y. F. ve Gong, P. (2018). Design, synthesis, and biological evaluation of novel substituted benzamide derivatives bearing a 1,2,3-triazole moiety as potent human dihydroorotate dehydrogenase inhibitors. Bioorg Chem, 76, 528-537.
  • 7. Perin, N., Roskaric, P., Sovic, I., Bocek, I., Starcevic, K., Hranjec, M. ve Vianello, R. (2018). Amino-Substituted Benzamide Derivatives as Promising Antioxidant Agents: A Combined Experimental and Computational Study. Chem Res Toxicol, 31 (9), 974-984.
  • 8. Thirumurugan, K., Lakshmanan, S., Govindaraj, D., Prabu, D. S. D., Ramalakshmi, N. ve Antony, S. A. (2018). Design, synthesis and anti-inflammatory activity of pyrimidine scaffold benzamide derivatives as epidermal growth factor receptor tyrosine kinase inhibitors. J Mol Struct, 1171, 541-550.
  • 9. Vandyck, K., Rombouts, G., Stoops, B., Tahri, A., Vos, A., Verschueren, W., Wu, Y. M., Yang, J. M., Hou, F. L., Huang, B., Vergauwen, K., Dehertogh, P., Berke, J. M. ve Raboisson, P. (2018). Synthesis and Evaluation of N-Phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators Inhibiting Hepatitis B Virus (HBV). J Med Chem 61 (14), 6247-6260.
  • 10. Wei, M. M., Peng, X., Xing, L., Dai, Y., Huang, R. M., Geng, M. Y., Zhang, A., Ai, J. ve Song, Z. L. (2018). Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-l-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem, 154, 9-28.
  • 11. Creaven, B. S., Duff, B., Egan, D. A., Kavanagh, K., Rosair, G., Thangella, V. R. ve Walsh, M. (2010). Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg Chim Acta, 363 (14), 4048-4058.
  • 12. Ghorab, M. M., Shaaban, M. A., Refaat, H. M., Heiba, H. I. ve Ibrahim, S. S. (2012). Anticancer and radiosensitizing evaluation of some new pyranothiazole-Schiff bases bearing the biologically active sulfonamide moiety. Eur J Med Chem, 53, 403-407.
  • 13. Obeid, A., El-Shekeil, A., Al-Aghbari, S., Al-Shabi, J. (2012). Anticancer, DNA cleavage, and antimicrobial activity studies of some new Schiff-base titanium(IV) complexes. J Coord Chem, 65 (15), 2762-2770.
  • 14. Pignatello, R., Panico, A., Mazzone, P., Pinizzotto, M. R., Garozzo, A. ve Furneri, P. M. (1994). Schiff-Bases of N-Hydroxy-N'-Aminoguanidines as Antiviral, Antibacterial and Anticancer Agents. Eur J Med Chem, 29 (10), 781-785.
  • 15. Shukla, S., Srivastava, R. S., Shrivastava, S. K., Sodhi, A. ve Kumar, P. (2013). Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1,2-naphthoquinone. Med Chem Res, 22 (4), 1604-1617.
  • 16. Sondhi, S. M., Arya, S., Rani, R., Kumar, N. ve Roy, P. (2012). Synthesis, anti-inflammatory and anticancer activity evaluation of some mono- and bis-Schiff's bases. Med Chem Res. 21 (11), 3620-3628.
  • 17. Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G. ve Pettinari, R. (2013). Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem, 60, 216-232.
  • 18. Berlinck, R. G. S., Britton, R., Piers, E., Lim, L., Roberge, M., da Rocha, R. M. ve Andersen, R. J. (1998). Granulatimide and isogranulatimide, aromatic alkaloids with G2 checkpoint inhibition activity isolated from the Brazilian ascidian Didemnum granulatum: Structure elucidation and synthesis. J Org Chem, 63 (26), 9850-9856.
  • 19. Lavrard, H., Rodriguez, F. ve Delfourne, E. (2014). Design of granulatimide and isogranulatimide analogues as potential Chk1 inhibitors: Study of amino-platforms for their synthesis. Bioorgan Med Chem, 22 (17), 4961-4967.
  • 20. Loubinoux, B., Gerardin, P., Kunz, W. ve Herzog, J. (1991). Activity of Fumaramidmycin Mimics against Oomycetes. Pestic Sci, 33 (3), 263-269.
  • 21. Moreau, P., Anizon, F., Sancelme, M., Prudhomme, M., Bailly, C., Carrasco, C., Ollier, M., Severe, D., Riou, J. F., Fabbro, D., Meyer, T. ve Aubertin, A. M. (1998). Syntheses and biological evaluation of indolocarbazoles, analogues of rebeccamycin, modified at the imide heterocycle. J Med Chem, 41 (10), 1631-1640.
  • 22. Moreau, P., Anizon, F., Sancelme, M., Prudhomme, M., Severe, D., Riou, J. F., Goossens, J. F., Henichart, J. P., Bailly, C., Labourier, E., Tazzi, J., Fabbro, D., Meyer, T. ve Aubertin, A. M. (1999). Synthesis, mode of action, and biological activities of rebeccamycin bromo derivatives. J Med Chem, 42 (10), 1816-1822.
  • 23. Browne, S. G. (1960). Cantharidin Poisoning Due to a "Blister Beetle". Br Med J, 2 (5208), 1290-1.
  • 24. Feng, S., Zhu, J., Xia, K., Yu, W., Wang, Y., Wang, J., Li, F., Yang, Z., Yang, X., Liu, B., Tao, H. ve Liang, C. (2018). Cantharidin Inhibits Anti-Apoptotic Bcl-2 Family Proteins and Induces Apoptosis in Human Osteosarcoma Cell Lines MG-63 and MNNG/HOS via Mitochondria-Dependent Pathway. Med Sci Monit, 24, 6742-6749.
  • 25. Liu, Y. P., Li, L., Xu, L., Dai, E. N. ve Chen, W. D. (2018). Cantharidin suppresses cell growth and migration, and activates autophagy in human non-small cell lung cancer cells. Oncol Lett, 15 (5), 6527-6532.
  • 26. Mu, Z. ve Sun, Q. (2018). Cantharidin inhibits melanoma cell proliferation via the miR21mediated PTEN pathway. Mol Med Rep, 18 (5), 4603-4610.
  • 27. Wang, G., Dong, J. ve Deng, L. (2018). Overview of Cantharidin and its Analogues. Curr Med Chem, 25 (17), 2034-2044.
  • 28. Wang, W. J., Wu, M. Y.,Shen, M., Zhi, Q., Liu, Z. Y., Gong, F. R., Tao, M. ve Li, W. (2015). Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the beta-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol, 47 (5), 1912-22.
  • 29. Li, C. C., Yu, F. S., Fan, M. J., Chen, Y. Y., Lien, J. C., Chou, Y. C., Lu, H. F., Tang, N. Y., Peng, S. F., Huang, W. W. ve Chung, J. G. (2017). Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. Environ Toxicol, 32 (3), 723-738.
  • 30. Gul, M., Kulu, I., Gunkara, O. T. ve Ocal, N. (2013). Reductive Heck Reactions and [3+2] Cycloadditions of Unsaturated N,N'-Bistricyclic Imides. Acta Chim Slov, 60 (1), 87-94.
  • 31. Gunkara, O. T., Kulu, I. ve Ocal, N. (2015). Aryl- and Heteroaryl Substituted Tandospirones as Possible Antidepressant Drugs. Mini-Rev Med Chem, 15 (9), 789-796.
  • 32. Gunkara, O. T., Kulu, I., Ocal, N. ve Kaufmann, D. E. (2010). Synthesis of arylated norbornyl amino acid esters. Monatsh Chem, 141 (11), 1237-1243.
  • 33. Gunkara, O. T. ve Ocal, N. (2015). Hydroarylation Reactions of N-Substituted Tricyclic Imides. Mini-Rev Org Chem, 12 (5), 424-434.
  • 34. Niwayama, S., Cho, H., Zabet-Moghaddam, M. ve Whittlesey, B. R. (2010). Remote exo/endo selectivity in selective monohydrolysis of dialkyl bicyclo[2.2.1]heptane-2,3-dicarboxylate derivatives. J Org Chem, 75 (11), 3775-80.
  • 35. Kas'yan, L. I., Tarabara, I. N., Bondarenko, Y. S., Shishkina, S. V., Shishkin, O. V. ve Musatov, V. I. (2005). Structure and reactivity of bicyclo[2.2.1]hept-2-ene-endo-5,endo-6-dicarboxylic (endic) acid hydrazide. Russ J Org Chem+, 41 (8), 1122-1131.

Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu

Yıl 2019, , 83 - 89, 31.03.2019
https://doi.org/10.7240/jeps.494603

Öz

Son yıllarda kanser hastalığı üzerinde yapılan
çalışmaların sayısı oldukça artmaktadır. Çeşitli kanser türlerine karşı etkili
olabilecek anti-kanser ilaçlarının yenilerinin elde edilmesi için çeşitli
çalışmalar yapılmaktadır. Bu çalışmada anti-kanser aktivite gösterebilecek yeni
bisiklik schiff bazı türevleri sentezlenmiş ve sentezlenen yeni bileşiklerin
yapıları IR, 1H-NMR, 13C-NMR, GC-MS gibi spektroskopik
yöntemlerle yapıları karakterize edilmiştir.

Kaynakça

  • 1. Dang, C. V. (2018). Convergence to Cure Cancer through Research. Cancer Res, 78 (1), 3-4.
  • 2. Hait, W. N. (2011). Forty Years of Translational Cancer Research. Cancer Discov, 1 (7), 627-627.
  • 3. Balaraman, S., Nayak, N., Subbiah, M. ve Elango, K. P. (2018). Synthesis and antiviral study of novel 4-(2-(6-amino-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyrimidin-3-yl)ethyl)benzamide derivatives. Med Chem Res 27 (11-12), 2538-2546.
  • 4. Gujarati, N. A., Zeng, L. L., Gupta, P., Chen, Z. S. ve Korlipara, V. L. (2017). Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorg Med Chem Lett, 27 (20), 4698-4704.
  • 5. Kaur, A., Pathak, D. P., Sharma, V., Narasimhan, B., Sharma, P., Mathur, R. ve Wakode, S. (2018). Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg Chem, 81, 191-202.
  • 6. Lu, K., Cai, L. D., Zhang, X., Wu, G. D., Xu, C. J., Zhao, Y. F. ve Gong, P. (2018). Design, synthesis, and biological evaluation of novel substituted benzamide derivatives bearing a 1,2,3-triazole moiety as potent human dihydroorotate dehydrogenase inhibitors. Bioorg Chem, 76, 528-537.
  • 7. Perin, N., Roskaric, P., Sovic, I., Bocek, I., Starcevic, K., Hranjec, M. ve Vianello, R. (2018). Amino-Substituted Benzamide Derivatives as Promising Antioxidant Agents: A Combined Experimental and Computational Study. Chem Res Toxicol, 31 (9), 974-984.
  • 8. Thirumurugan, K., Lakshmanan, S., Govindaraj, D., Prabu, D. S. D., Ramalakshmi, N. ve Antony, S. A. (2018). Design, synthesis and anti-inflammatory activity of pyrimidine scaffold benzamide derivatives as epidermal growth factor receptor tyrosine kinase inhibitors. J Mol Struct, 1171, 541-550.
  • 9. Vandyck, K., Rombouts, G., Stoops, B., Tahri, A., Vos, A., Verschueren, W., Wu, Y. M., Yang, J. M., Hou, F. L., Huang, B., Vergauwen, K., Dehertogh, P., Berke, J. M. ve Raboisson, P. (2018). Synthesis and Evaluation of N-Phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators Inhibiting Hepatitis B Virus (HBV). J Med Chem 61 (14), 6247-6260.
  • 10. Wei, M. M., Peng, X., Xing, L., Dai, Y., Huang, R. M., Geng, M. Y., Zhang, A., Ai, J. ve Song, Z. L. (2018). Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-l-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem, 154, 9-28.
  • 11. Creaven, B. S., Duff, B., Egan, D. A., Kavanagh, K., Rosair, G., Thangella, V. R. ve Walsh, M. (2010). Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg Chim Acta, 363 (14), 4048-4058.
  • 12. Ghorab, M. M., Shaaban, M. A., Refaat, H. M., Heiba, H. I. ve Ibrahim, S. S. (2012). Anticancer and radiosensitizing evaluation of some new pyranothiazole-Schiff bases bearing the biologically active sulfonamide moiety. Eur J Med Chem, 53, 403-407.
  • 13. Obeid, A., El-Shekeil, A., Al-Aghbari, S., Al-Shabi, J. (2012). Anticancer, DNA cleavage, and antimicrobial activity studies of some new Schiff-base titanium(IV) complexes. J Coord Chem, 65 (15), 2762-2770.
  • 14. Pignatello, R., Panico, A., Mazzone, P., Pinizzotto, M. R., Garozzo, A. ve Furneri, P. M. (1994). Schiff-Bases of N-Hydroxy-N'-Aminoguanidines as Antiviral, Antibacterial and Anticancer Agents. Eur J Med Chem, 29 (10), 781-785.
  • 15. Shukla, S., Srivastava, R. S., Shrivastava, S. K., Sodhi, A. ve Kumar, P. (2013). Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1,2-naphthoquinone. Med Chem Res, 22 (4), 1604-1617.
  • 16. Sondhi, S. M., Arya, S., Rani, R., Kumar, N. ve Roy, P. (2012). Synthesis, anti-inflammatory and anticancer activity evaluation of some mono- and bis-Schiff's bases. Med Chem Res. 21 (11), 3620-3628.
  • 17. Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G. ve Pettinari, R. (2013). Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem, 60, 216-232.
  • 18. Berlinck, R. G. S., Britton, R., Piers, E., Lim, L., Roberge, M., da Rocha, R. M. ve Andersen, R. J. (1998). Granulatimide and isogranulatimide, aromatic alkaloids with G2 checkpoint inhibition activity isolated from the Brazilian ascidian Didemnum granulatum: Structure elucidation and synthesis. J Org Chem, 63 (26), 9850-9856.
  • 19. Lavrard, H., Rodriguez, F. ve Delfourne, E. (2014). Design of granulatimide and isogranulatimide analogues as potential Chk1 inhibitors: Study of amino-platforms for their synthesis. Bioorgan Med Chem, 22 (17), 4961-4967.
  • 20. Loubinoux, B., Gerardin, P., Kunz, W. ve Herzog, J. (1991). Activity of Fumaramidmycin Mimics against Oomycetes. Pestic Sci, 33 (3), 263-269.
  • 21. Moreau, P., Anizon, F., Sancelme, M., Prudhomme, M., Bailly, C., Carrasco, C., Ollier, M., Severe, D., Riou, J. F., Fabbro, D., Meyer, T. ve Aubertin, A. M. (1998). Syntheses and biological evaluation of indolocarbazoles, analogues of rebeccamycin, modified at the imide heterocycle. J Med Chem, 41 (10), 1631-1640.
  • 22. Moreau, P., Anizon, F., Sancelme, M., Prudhomme, M., Severe, D., Riou, J. F., Goossens, J. F., Henichart, J. P., Bailly, C., Labourier, E., Tazzi, J., Fabbro, D., Meyer, T. ve Aubertin, A. M. (1999). Synthesis, mode of action, and biological activities of rebeccamycin bromo derivatives. J Med Chem, 42 (10), 1816-1822.
  • 23. Browne, S. G. (1960). Cantharidin Poisoning Due to a "Blister Beetle". Br Med J, 2 (5208), 1290-1.
  • 24. Feng, S., Zhu, J., Xia, K., Yu, W., Wang, Y., Wang, J., Li, F., Yang, Z., Yang, X., Liu, B., Tao, H. ve Liang, C. (2018). Cantharidin Inhibits Anti-Apoptotic Bcl-2 Family Proteins and Induces Apoptosis in Human Osteosarcoma Cell Lines MG-63 and MNNG/HOS via Mitochondria-Dependent Pathway. Med Sci Monit, 24, 6742-6749.
  • 25. Liu, Y. P., Li, L., Xu, L., Dai, E. N. ve Chen, W. D. (2018). Cantharidin suppresses cell growth and migration, and activates autophagy in human non-small cell lung cancer cells. Oncol Lett, 15 (5), 6527-6532.
  • 26. Mu, Z. ve Sun, Q. (2018). Cantharidin inhibits melanoma cell proliferation via the miR21mediated PTEN pathway. Mol Med Rep, 18 (5), 4603-4610.
  • 27. Wang, G., Dong, J. ve Deng, L. (2018). Overview of Cantharidin and its Analogues. Curr Med Chem, 25 (17), 2034-2044.
  • 28. Wang, W. J., Wu, M. Y.,Shen, M., Zhi, Q., Liu, Z. Y., Gong, F. R., Tao, M. ve Li, W. (2015). Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the beta-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol, 47 (5), 1912-22.
  • 29. Li, C. C., Yu, F. S., Fan, M. J., Chen, Y. Y., Lien, J. C., Chou, Y. C., Lu, H. F., Tang, N. Y., Peng, S. F., Huang, W. W. ve Chung, J. G. (2017). Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. Environ Toxicol, 32 (3), 723-738.
  • 30. Gul, M., Kulu, I., Gunkara, O. T. ve Ocal, N. (2013). Reductive Heck Reactions and [3+2] Cycloadditions of Unsaturated N,N'-Bistricyclic Imides. Acta Chim Slov, 60 (1), 87-94.
  • 31. Gunkara, O. T., Kulu, I. ve Ocal, N. (2015). Aryl- and Heteroaryl Substituted Tandospirones as Possible Antidepressant Drugs. Mini-Rev Med Chem, 15 (9), 789-796.
  • 32. Gunkara, O. T., Kulu, I., Ocal, N. ve Kaufmann, D. E. (2010). Synthesis of arylated norbornyl amino acid esters. Monatsh Chem, 141 (11), 1237-1243.
  • 33. Gunkara, O. T. ve Ocal, N. (2015). Hydroarylation Reactions of N-Substituted Tricyclic Imides. Mini-Rev Org Chem, 12 (5), 424-434.
  • 34. Niwayama, S., Cho, H., Zabet-Moghaddam, M. ve Whittlesey, B. R. (2010). Remote exo/endo selectivity in selective monohydrolysis of dialkyl bicyclo[2.2.1]heptane-2,3-dicarboxylate derivatives. J Org Chem, 75 (11), 3775-80.
  • 35. Kas'yan, L. I., Tarabara, I. N., Bondarenko, Y. S., Shishkina, S. V., Shishkin, O. V. ve Musatov, V. I. (2005). Structure and reactivity of bicyclo[2.2.1]hept-2-ene-endo-5,endo-6-dicarboxylic (endic) acid hydrazide. Russ J Org Chem+, 41 (8), 1122-1131.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Tahir Günkara 0000-0003-3528-5045

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Günkara, Ö. T. (2019). Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences, 31(1), 83-89. https://doi.org/10.7240/jeps.494603
AMA Günkara ÖT. Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu. JEPS. Mart 2019;31(1):83-89. doi:10.7240/jeps.494603
Chicago Günkara, Ömer Tahir. “Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 31, sy. 1 (Mart 2019): 83-89. https://doi.org/10.7240/jeps.494603.
EndNote Günkara ÖT (01 Mart 2019) Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences 31 1 83–89.
IEEE Ö. T. Günkara, “Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu”, JEPS, c. 31, sy. 1, ss. 83–89, 2019, doi: 10.7240/jeps.494603.
ISNAD Günkara, Ömer Tahir. “Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences 31/1 (Mart 2019), 83-89. https://doi.org/10.7240/jeps.494603.
JAMA Günkara ÖT. Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu. JEPS. 2019;31:83–89.
MLA Günkara, Ömer Tahir. “Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu”. International Journal of Advances in Engineering and Pure Sciences, c. 31, sy. 1, 2019, ss. 83-89, doi:10.7240/jeps.494603.
Vancouver Günkara ÖT. Antikanser Aktivite Gösterebilecek Yeni Heterohalkalı Bileşiklerin Sentezlenmesi Ve Karakterizasyonu. JEPS. 2019;31(1):83-9.