Araştırma Makalesi
BibTex RIS Kaynak Göster

Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi

Yıl 2021, , 243 - 249, 31.03.2021
https://doi.org/10.7240/jeps.779555

Öz

Bu çalışmanın amacı, yoğun lazer alanı altında üçlü ters parabolik kuantum bariyer çift kuyu potansiyelinde elektronik iletim ve enerji seviyelerinin bariyer genişlikleri, lazer alanı giydirme parametresine bağlılığını araştırmaktır. Çalışmada Denge-dışı Green fonksiyonları yöntemi kullanılarak iletim olasılıkları ve rezonans enerji seviyeleri tespit edilmiştir. Lazer alanının ve yapı parametrelerinin rezonans tünellemeyi oldukça etkilediği, enerji seviyelerinin yerlerinin kontrolünün bu parametrelerle yapılabildiği görülmüştür. Lazer alanının artmasıyla enerji seviyelerinin daha yüksek enerjilerde ortaya çıktığı görülmüştür. Yapının rezonans tünelleme özelliğinin kontrolü işlevsel nano-aygıt yapımında oldukça önem arz etmektedir.

Kaynakça

  • [1] Tsu, R., Esaki, L. (1973). Tunneling in a finite superlattice, Appl. Phys. Lett,. 22, 562-564.
  • [2] Levi, A.F.J. (2006). Applied Quantum Mechanics, Cambridge University Press, Cambridge.
  • [3] Mizuta, H., Tanoue, T. 1995. Physics and Applications of Resonant Tunneling Diodes, Cambridge University Press, New York, 1995.
  • [4] Saczuk, E., Kamiński, J. Z. (2003). Resonant tunnelling in the presence of intense laser fields, Phys. Stat. Sol. (b), 240, 273-284
  • [5] Aktas, S., Kes, H., Boz, F.K., Okan, S.E. (2016). Control of a resonant tunneling structure by intense laser fields, Superlattices and Microstruct., 98, 220-227.
  • [6] Miyamoto, T., Yamaguchi, A., Mukai, T. (2016) Terahertz imaging system with resonant tunneling diodes, Jpn. J. Appl. Phys,. 55, 032201.
  • [7] Rong, T., Yang, L.-A., Yang, L., Hao, Y. (2018). Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/ GaN heterostructures, J. Appl. Phys., 123, 045702.
  • [8] Shen, W.P., Rustgi, M.L. (1993). Two coupled parabolic wells under an electric field, J. Appl. Phys., 74, 4006-4014.
  • [9] Ohmukai, M. (2005). Triangular double barrier resonant tunneling, Mater. Sci. Eng. B, 116, 87-90.
  • [10] Wang, H., Xu, H., Zhang, Y. (2006). A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes, Phys. Lett. A, 355, 481-488.
  • [11] Karmakar, R., Biswas, A., Mukherjee, S., Deyasi, A. (2011). Calculating Transmission Coefficient of Double Quantum Well Triple Barrier Structure having Parabolic Geometry using Propagation Matrix Method, IJEAT, 1, 37-41.
  • [12] Chang, L.L., Esaki, L., Tsu, R. (1974). Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett., 24, 593-595.
  • [13] Nutku, F. (2014). Quasi-bound levels, transmission and resonant tunneling in heterostructures with double and multi rectangular, trapezoidal, triangular barriers, J. Comput. Electron., 13, 456-465.
  • [14] Batı, M., Sakiroglu, S., Sokmen, I. (2016). Electron transport in electrically biased inverse parabolic double-barrier structure, Chin. Phys. B 25, 057307.
  • [15] Batı, M. (2018). Resonant tunneling properties of inverted Morse double quantum barrier, Chin. J. Phys., 56, 593-597.
  • [16] Aktas, S., Bilekkaya, A., Boz, F.K., Okan, S.E. (2015). Electron transmission in symmetric and asymmetric double-barrier structures controlled by laser fields, Superlatt. and Microstruct., 85, 266-273.
  • [17] Bati, M. (2019). Electronic Transport and Resonant Tunneling Properties of Hyperbolic Pöschl-Teller Double-Barrier Structures, J. Comput. Theor. Transp.., 48:2, 66-76.
  • [18] Ferry, D.K., Goodnick, S.M., Bird, J. (2009). Transport in Nanostructures, Cambridge University Press, Cambridge.
  • [19] Datta, S. (2005). Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge
  • [20] Martinz, S.D.G., Ramos, R.V. (2016). Double quantum well triple barrier structures: analytical and numerical results, Can. J. Phys., 94(11), 1180-1188.
  • [21] L.D. Macks, S.A. Brown, R.G. Clark, R.P. Starrett, M.A. Reed, M.R., Deshpande, C.J.L. Fernando, W.R. Frensley, (1996). Resonant tunneling in double-quantum-well triple-barrier heterostructures, Phys. Rev. B, 54 4857-4862.
  • [22] Peralta, X.G., Allen, S.J., Wanke, M.C., Harff, N.B., Simmons, J.A., Lilly, M.P., Reno, J.L., Burke, P.J., Eisentein, J.P. (2002). Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors, Appl. Phys. Lett., 81, 1627-1629.
  • [23] Wecker, T., Callsen, G., Hoffmann, A., Reuter, D., As, D.J. (2018). Correlation of the Carrier Decay Time and Barrier Thickness for Asymmetric Cubic GaN/Al0.64Ga0.36N Double Quantum Wells, Phys. Status Solidi (b), 255, 1700373.
  • [24] Waho, T., Chen, K., Yamamoto, M. (1996). A novel multiple-valued logic gate using resonant tunneling devices, IEEE Electron Device Lett., 17, 223-225.
  • [25] Lee, J., Lee, J., Yang, K. (2012). A low-power 40-gb/s 1: 2 demultiplexer ic based on a resonant tunneling diode, IEEE Trans Nanotechnol., 11, 431-434.
  • [26] Singh, M.M, Siddiqui, M.J. (2016). Effect of Si-delta doping and barrier lengths on the performance of triple barrier GaAs/AlGaAs resonant tunneling diode, (2016) IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, 30-34.
  • [27] Markelz, A.G., Asmar, N.G. (1996). Interband impact ionization by terahertz illumination of InAs heterostructures, Appl. Phys. Lett., 69, 3975.
  • [28] Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G., da Silva, E.F. (2009). Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well, J. Appl. Phys., 105, 123111.
  • [29] Eseanu, N., Niculescu, E.C., Burileanu, L.M.( 2009). Simultaneous effects of pressure and laser field on donors in GaAs/Ga 1−x Alx As quantum wells, Physica E, 41, 1386-1392.
  • [30] Eseanu, N. (2011). Intense laser field effect on the interband absorption in differently shaped near-surface quantum wells, Phys. Lett. A, 375(6), 1036-1042.
  • [31] Niculescu, E.C., Eseanu, N., Spandonide, A. (2015). Laser Field Effects on The Interband Transitions In Differently Shaped Quantum Wells, U.P.B. Sci. Bull., Series A, 77.
  • [32] Chakraborty, T., Manaselyan, A., Barseghyan, M., Laroze, D. (2018). Controllable continuous evolution of electronic states in a single quantum ring, Phys. Rev. B, 97, 041304.
  • [33] Ungan, F., Mora-Ramos, M.E., Barseghyan, M.G., Pérez, L.M., Laroze, D. (2019). Intersubband optical properties of a laser-dressed asymmetric triple quantum well nanostructure, Physica E, 114, 113647.
  • [34] Barseghyan, M.G., Baghramyan, H.M., Kirakosyan, A.A., Laroze, D. (2020). The transition from double to single quantum dot induced by THz laser field, Physica E, 116, 113758.
  • [35] Yesilgul, U., Al, E.B., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Ungan, F., Kasapoglu, E. (2016). Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields, Opt. Mater., 58, 107-112.
  • [36] Salén, P., Basini, M., Bonetti, S., Hebling, J., Krasilnikov, M., Nikitin, A. Y., Shamuilov, G., Tibai, Z., Zhaunerchyk, V., Goryashko, V. (2019). Matter manipulation with extreme terahertz light: Progress in the enabling THz technology, Phys. Rep., 836-837, 1-74.
  • [37] Dexheimer, S. L. (2007). Terahertz Spectroscopy: Principles and Applications, CRC Press
  • [38] Marinescu, M., Gavrila, M. (1996). First iteration within the high-frequency Floquet theory of laser-atom interactions, Phys. Rev. A, 53, 2513-2521.
  • [39] Boz, F.K., Aktas, S., Bekar, B., Okan, S.E. (2012). Laser field-driven potential profiles of double quantum wells, Phys. Lett. A, 376, 590-594.

Investigation of Relation of Electron Transmission and Energy State to Structure Parameters and The Intense Laser Field in The Triple Inverse Parabolic Quantum Barrier Double Well Potential

Yıl 2021, , 243 - 249, 31.03.2021
https://doi.org/10.7240/jeps.779555

Öz

The aim of this study is to investigate the dependence of the transmission properties and energy state of the triple inverse parabolic quantum barrier double well potential under the intense laser field with the well and barrier widths and the laser field dressing parameter. In the study, transmission probabilities and resonance energy levels were determined using the Non-Equilibrium Green functions method. It has been observed that laser field and structure parameters affect resonance tunneling and control of the location of energy levels can be done with these parameters. It has been observed that energy levels emerge at higher energies as the laser field increases. The control of the resonance tunneling feature of the structure is very important in the production of functional nano-devices.

Kaynakça

  • [1] Tsu, R., Esaki, L. (1973). Tunneling in a finite superlattice, Appl. Phys. Lett,. 22, 562-564.
  • [2] Levi, A.F.J. (2006). Applied Quantum Mechanics, Cambridge University Press, Cambridge.
  • [3] Mizuta, H., Tanoue, T. 1995. Physics and Applications of Resonant Tunneling Diodes, Cambridge University Press, New York, 1995.
  • [4] Saczuk, E., Kamiński, J. Z. (2003). Resonant tunnelling in the presence of intense laser fields, Phys. Stat. Sol. (b), 240, 273-284
  • [5] Aktas, S., Kes, H., Boz, F.K., Okan, S.E. (2016). Control of a resonant tunneling structure by intense laser fields, Superlattices and Microstruct., 98, 220-227.
  • [6] Miyamoto, T., Yamaguchi, A., Mukai, T. (2016) Terahertz imaging system with resonant tunneling diodes, Jpn. J. Appl. Phys,. 55, 032201.
  • [7] Rong, T., Yang, L.-A., Yang, L., Hao, Y. (2018). Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/ GaN heterostructures, J. Appl. Phys., 123, 045702.
  • [8] Shen, W.P., Rustgi, M.L. (1993). Two coupled parabolic wells under an electric field, J. Appl. Phys., 74, 4006-4014.
  • [9] Ohmukai, M. (2005). Triangular double barrier resonant tunneling, Mater. Sci. Eng. B, 116, 87-90.
  • [10] Wang, H., Xu, H., Zhang, Y. (2006). A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes, Phys. Lett. A, 355, 481-488.
  • [11] Karmakar, R., Biswas, A., Mukherjee, S., Deyasi, A. (2011). Calculating Transmission Coefficient of Double Quantum Well Triple Barrier Structure having Parabolic Geometry using Propagation Matrix Method, IJEAT, 1, 37-41.
  • [12] Chang, L.L., Esaki, L., Tsu, R. (1974). Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett., 24, 593-595.
  • [13] Nutku, F. (2014). Quasi-bound levels, transmission and resonant tunneling in heterostructures with double and multi rectangular, trapezoidal, triangular barriers, J. Comput. Electron., 13, 456-465.
  • [14] Batı, M., Sakiroglu, S., Sokmen, I. (2016). Electron transport in electrically biased inverse parabolic double-barrier structure, Chin. Phys. B 25, 057307.
  • [15] Batı, M. (2018). Resonant tunneling properties of inverted Morse double quantum barrier, Chin. J. Phys., 56, 593-597.
  • [16] Aktas, S., Bilekkaya, A., Boz, F.K., Okan, S.E. (2015). Electron transmission in symmetric and asymmetric double-barrier structures controlled by laser fields, Superlatt. and Microstruct., 85, 266-273.
  • [17] Bati, M. (2019). Electronic Transport and Resonant Tunneling Properties of Hyperbolic Pöschl-Teller Double-Barrier Structures, J. Comput. Theor. Transp.., 48:2, 66-76.
  • [18] Ferry, D.K., Goodnick, S.M., Bird, J. (2009). Transport in Nanostructures, Cambridge University Press, Cambridge.
  • [19] Datta, S. (2005). Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge
  • [20] Martinz, S.D.G., Ramos, R.V. (2016). Double quantum well triple barrier structures: analytical and numerical results, Can. J. Phys., 94(11), 1180-1188.
  • [21] L.D. Macks, S.A. Brown, R.G. Clark, R.P. Starrett, M.A. Reed, M.R., Deshpande, C.J.L. Fernando, W.R. Frensley, (1996). Resonant tunneling in double-quantum-well triple-barrier heterostructures, Phys. Rev. B, 54 4857-4862.
  • [22] Peralta, X.G., Allen, S.J., Wanke, M.C., Harff, N.B., Simmons, J.A., Lilly, M.P., Reno, J.L., Burke, P.J., Eisentein, J.P. (2002). Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors, Appl. Phys. Lett., 81, 1627-1629.
  • [23] Wecker, T., Callsen, G., Hoffmann, A., Reuter, D., As, D.J. (2018). Correlation of the Carrier Decay Time and Barrier Thickness for Asymmetric Cubic GaN/Al0.64Ga0.36N Double Quantum Wells, Phys. Status Solidi (b), 255, 1700373.
  • [24] Waho, T., Chen, K., Yamamoto, M. (1996). A novel multiple-valued logic gate using resonant tunneling devices, IEEE Electron Device Lett., 17, 223-225.
  • [25] Lee, J., Lee, J., Yang, K. (2012). A low-power 40-gb/s 1: 2 demultiplexer ic based on a resonant tunneling diode, IEEE Trans Nanotechnol., 11, 431-434.
  • [26] Singh, M.M, Siddiqui, M.J. (2016). Effect of Si-delta doping and barrier lengths on the performance of triple barrier GaAs/AlGaAs resonant tunneling diode, (2016) IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, 30-34.
  • [27] Markelz, A.G., Asmar, N.G. (1996). Interband impact ionization by terahertz illumination of InAs heterostructures, Appl. Phys. Lett., 69, 3975.
  • [28] Lima, F.M.S., Amato, M.A., Nunes, O.A.C., Fonseca, A.L.A., Enders, B.G., da Silva, E.F. (2009). Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well, J. Appl. Phys., 105, 123111.
  • [29] Eseanu, N., Niculescu, E.C., Burileanu, L.M.( 2009). Simultaneous effects of pressure and laser field on donors in GaAs/Ga 1−x Alx As quantum wells, Physica E, 41, 1386-1392.
  • [30] Eseanu, N. (2011). Intense laser field effect on the interband absorption in differently shaped near-surface quantum wells, Phys. Lett. A, 375(6), 1036-1042.
  • [31] Niculescu, E.C., Eseanu, N., Spandonide, A. (2015). Laser Field Effects on The Interband Transitions In Differently Shaped Quantum Wells, U.P.B. Sci. Bull., Series A, 77.
  • [32] Chakraborty, T., Manaselyan, A., Barseghyan, M., Laroze, D. (2018). Controllable continuous evolution of electronic states in a single quantum ring, Phys. Rev. B, 97, 041304.
  • [33] Ungan, F., Mora-Ramos, M.E., Barseghyan, M.G., Pérez, L.M., Laroze, D. (2019). Intersubband optical properties of a laser-dressed asymmetric triple quantum well nanostructure, Physica E, 114, 113647.
  • [34] Barseghyan, M.G., Baghramyan, H.M., Kirakosyan, A.A., Laroze, D. (2020). The transition from double to single quantum dot induced by THz laser field, Physica E, 116, 113758.
  • [35] Yesilgul, U., Al, E.B., Martínez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Ungan, F., Kasapoglu, E. (2016). Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields, Opt. Mater., 58, 107-112.
  • [36] Salén, P., Basini, M., Bonetti, S., Hebling, J., Krasilnikov, M., Nikitin, A. Y., Shamuilov, G., Tibai, Z., Zhaunerchyk, V., Goryashko, V. (2019). Matter manipulation with extreme terahertz light: Progress in the enabling THz technology, Phys. Rep., 836-837, 1-74.
  • [37] Dexheimer, S. L. (2007). Terahertz Spectroscopy: Principles and Applications, CRC Press
  • [38] Marinescu, M., Gavrila, M. (1996). First iteration within the high-frequency Floquet theory of laser-atom interactions, Phys. Rev. A, 53, 2513-2521.
  • [39] Boz, F.K., Aktas, S., Bekar, B., Okan, S.E. (2012). Laser field-driven potential profiles of double quantum wells, Phys. Lett. A, 376, 590-594.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Batı 0000-0003-2304-4869

Yayımlanma Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Batı, M. (2021). Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 33(2), 243-249. https://doi.org/10.7240/jeps.779555
AMA Batı M. Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi. JEPS. Mart 2021;33(2):243-249. doi:10.7240/jeps.779555
Chicago Batı, Mehmet. “Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri Ile Elektron Geçişinin Örgü Parametreleri Ve Yoğun Lazer Alanına Bağlılığının İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 33, sy. 2 (Mart 2021): 243-49. https://doi.org/10.7240/jeps.779555.
EndNote Batı M (01 Mart 2021) Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi. International Journal of Advances in Engineering and Pure Sciences 33 2 243–249.
IEEE M. Batı, “Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi”, JEPS, c. 33, sy. 2, ss. 243–249, 2021, doi: 10.7240/jeps.779555.
ISNAD Batı, Mehmet. “Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri Ile Elektron Geçişinin Örgü Parametreleri Ve Yoğun Lazer Alanına Bağlılığının İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 33/2 (Mart 2021), 243-249. https://doi.org/10.7240/jeps.779555.
JAMA Batı M. Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi. JEPS. 2021;33:243–249.
MLA Batı, Mehmet. “Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri Ile Elektron Geçişinin Örgü Parametreleri Ve Yoğun Lazer Alanına Bağlılığının İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences, c. 33, sy. 2, 2021, ss. 243-9, doi:10.7240/jeps.779555.
Vancouver Batı M. Üçlü Ters Parabolik Kuantum Bariyer Çift Kuyu Potansiyelinde Enerji Seviyeleri ile Elektron Geçişinin Örgü Parametreleri ve Yoğun Lazer Alanına Bağlılığının İncelenmesi. JEPS. 2021;33(2):243-9.