Araştırma Makalesi
BibTex RIS Kaynak Göster

Kıvılcım Plazma Sinterleme Yöntemiyle Üretilen Mg-TiB2 Nanokompozitlerin Elektriksel, Isıl ve Mekanik Özellikleri

Yıl 2021, , 526 - 536, 30.12.2021
https://doi.org/10.7240/jeps.862794

Öz

Monolitik magnezyum, nano-TiB2 partikülleri ile takviyelendirilerek Mg-TiB2 nanokompozitleri üretilmiş ve nano-TiB2 partiküllerinin Mg matrisli nanokompozitlerin elektriksel, ısıl ve mekanik özellikleri üzerindeki etkileri incelenmiştir. Monolitik Mg ve Mg-TiB2 nanokompozitler kıvılcım plazma sinterleme yöntemi ile üretilmiştir. Hem analitik hem de deneysel sonuçlar, Mg-TiB2 nanokompozitlerin elektriksel ve ısıl iletkenliklerinin monolitik Mg'den daha düşük olduğunu ve nano-TiB2 partiküllerinin miktarı arttıkça elektriksel ve ısıl iletkenliklerinin azaldığını ortaya koymuştur. Mg-TiB2 nanokompozitlerin deneysel olarak bulunan elektriksel ve ısıl iletkenliklerinin, daha yüksek nano-TiB2 partikül miktarlarında daha yüksek oranda düştüğü saptanmıştır. Belirli miktarda nano-TiB2 partikül içeren Mg-TiB2 nanokompozitlerin deneysel elektriksel ve ısıl iletkenlikleri, analitik hesaplamalar ile elde edilen sonuçlardan daha düşük değerlerde bulunmuştur. Mg-TiB2 nanokompozitlerin basma dayanımları monolitik Mg’den daha yüksek olmakla birlikte, nano-TiB2 partikül miktarı arttıkça basma dayanımı artmış, ancak yüksek miktarda nano-TiB2 partiküllerin kullanılması basma dayanımında azalmaya neden olmuştur. Monolitik Mg ile karşılaştırıldığında, ağırlıkça %1,5 nano-TiB2 partikül içeren Mg-TiB2 nanokompozitinin basma dayanımı %34 artış gösterirken, hasar gerinimi ise %12 azalmıştır.

Kaynakça

  • Akbari, M.K., Shirvanimoghaddam, K., Hai, Z., Zhuiykov, S., Khayyam, H. (2017). Al-TiB2 micro/nanocomposites: Particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater. Sci. Eng. A, 682, 98-106.
  • Malaki, M., Xu, W., Kasar, A.K., Menezes, P.L., Dieringa, H., Varma, R.S., Gupta, M. (2019). Advanced metal matrix nanocomposites. Metals, 9(3), 330, 1-39.
  • Ceschini, L., Dahle, A., Gupta, M., Jarfors, A.E.W., Jayalakshmi, S., Morri, A., Rotundo, F., Toschi, S., Singh, R.A. (2017). Aluminum and magnesium metal matrix nanocomposites. Springer Nature, Singapore, pp. 1-164.
  • Stalin, B., Ravichandran, M., Mohanavel, V., Raj, L.P. (2020). Investigations into microstructure and mechanical properties of Mg-5wt.%Cu-TiB2 composites produced via powder metallurgy route. J. Min. Metall. Sect. B: Metall., 56(1), 99-108.
  • Abbas, A., Rajagopal, V., Huang, S.J. (2021). Magnesium metal matrix composites and their applications. In: Magnesium alloys structure and properties, T.A. Tański, P. Jarka (eds.), IntechOpen, London, UK, 1-17.
  • Shu, S., Yang, H., Tong, C., Qiu, F. (2016). Fabrication of TiCx-TiB2/Al composites for application as a heat sink. Materials, 9(642), 1-10.
  • Rudajevová, A., Lukáč, P. (2000). Thermal conductivity of SiC reinforced magnesium matrix composites. In: Microstructural investigation and analysis, B. Jouffrey (ed.), Wiley‐VCH Verlag GmbH, Weinheim, Germany, pp. 179-183.
  • Dieringa, H. (2020). Production and properties of light metal matrix nanocomposites. Metals, 10(1), 95, 1-4.
  • Grasso, S., Sakka, Y., Maizza, G. (2009). Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Sci. Technol. Advanced Materials, 10(5), 053001, 1-24.
  • Munir, Z. A., Tamburini, U. A., Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci., 41(3), 763-777.
  • Guillon, O., Gonzalez‐Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J. (2014). Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater., 16(7), 830-849.
  • Sharma, N., Alam, S.N., Ray, B.C. (2019). Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. In: Spark plasma sintering of materials: Advances in processing and applications, C. Pasquale (ed.), Springer International Publishing, Cham, Switzerland, 219, pp. 21-59.
  • Muhammad, W.N.A.W., Mutoh, Y., Miyashita, Y. (2010). Microstructure and mechanical properties of magnesium prepared by spark plasma sintering. Adv. Mat. Res., 129-131, 764-768.
  • Mondet, M, Barraud, E., Lemonnier, S., Guyon, J., Allain, N., Grosdidier, T. (2016). Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater., 119, 55-67.
  • Dey, A., Pandey, K.M., (2015). Magnesium metal matrix composites-A review, Rev. Adv. Mater. Sci., 42, 58-67.
  • Muhammad, W.N.A.W., Sajuri, Z., Mutoh, Y., Miyashita, Y., (2011). Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J. Alloy. Compd., 509, 6021-6029, 2011.
  • Garbiec, D., (2016). Study on microstructure and some mechanical properties of spark plasma sintered Mg-Al2O3 composites. The 5 International Lower Silesia-Saxony Conference: Advanced Metal Forming Processes in Automotive Industry, Wroclaw, Poland, 28-29 June.
  • Ghasali, E., Alizadeh, M., Niazmand, M., Ebadzadeh, T. (2017). Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering. J. Alloy. Compd., 697, 200-207.
  • Zhang, H., Zhao, Y., Yan, Y., Fan, J., Wang, L., Dong, H., Xu, B. (2017). Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion. J. Alloy. Compd., 725, 652-664.
  • Dieringa, H. (2013). Applications: magnesium-based metal matrix composites (MMCs). In: Fundamentals of magnesium alloy metallurgy, M.O. Pekguleryuz, K.A. Kainer, A.A. Kaya (eds.), Woodhead Publishing, Cambridge, UK, pp. 317-341.
  • Xiao, P., Gao, Y., Yang, C., Liu, Z., Li, Y., Xu, F. (2018). Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles, Mater. Sci. Eng. A., 710, 251-259.
  • Aydin, F., Sun, Y. (2018). Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can. Metall. Q., 57(4), 455-469.
  • Jiang, Q.C., Wang, H.Y., Ma, B.X., Wang, Y., Zhao, F. (2004). Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett., 58(27-28), 3509-3513.
  • Leich, L., Röttger, A., Kuchenbecker, R., Theisen, W. (2020). Electro-discharge sintering of nanocrystalline NdFeB magnets: process parameters, microstructure, and the resulting magnetic properties. J. Mater. Sci.: Mater. Electron., 31, 20431-20443.
  • Balice, L., Cologna, M., Audubert, F., Hazemann, J. L. (2021). Densification mechanisms of UO2 consolidated by spark plasma sintering. J. Eur. Ceram. Soc., 41(1), 719-728.
  • Schmidt, R., Martin Scholze, H., Stolle, A. (2016). Temperature progression in a mixer ball mill. Int. J. Ind. Chem., 7, 181-186.
  • Calin, R., Pul, M., Pehlivanli, Z.O., (2012). The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-MgO composites. Mater. Res., 15(6), 1057-1063.
  • Davis, L.C., Artz, B.E. (1995). Thermal conductivity of metal‐matrix composites. J. Appl. Phys., 77(10), 4954-4960.
  • Ast, D.G. (1974). Evidence for percolation-controlled conductivity in amorphous AsxTe1-x films. Phys. Rev. Lett., 33(17), 1042-1045.
  • Weber, L., Dorn, J., Mortensen, A. (2003). On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater., 51, 3199-3211.
  • Beni, H.A., Alizadeh, M., Ghaffari, M., Amini, R. (2014). Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Compos. B. Eng., 58, 438-442, 2014.
  • Miller, W.S., Humphreys, F.J. (1991). Strengthening mechanisms in particulate metal matrix composites. Scr. Mater., 25(1), 33-38.
  • Iqbal, A.K.M.A., Arai, Y., Araki, W. (2013). Effect of hybrid reinforcement on crack initiation and early propagation mechanisms in cast metal matrix composites during low cycle fatigue. Mater. Des., 45, 241-252.
  • Manohar, G., Pandey, K.M., Maity, S.R. (2021). Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram. Int., 47(11), 15147-15154.
  • Senthilkumar, P., Manimaran, R., and Y.K., Reddy. (2021). Evaluation of mechanical properties of hybrid Al7009 nanocomposite. Energy Sources A: Recovery Util. Environ. Eff., 43(2), 216-224.

Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering

Yıl 2021, , 526 - 536, 30.12.2021
https://doi.org/10.7240/jeps.862794

Öz

Monolithic magnesium was reinforced with nano-TiB2 particles to produce Mg-TiB2 nanocomposites, and the effects of nano-TiB2 particles on the electrical, thermal, and mechanical properties of Mg matrix nanocomposites were studied. Monolithic Mg and Mg-TiB2 nanocomposites were manufactured using spark plasma sintering process. Both analytical and experimental findings revealed that the electrical and thermal conductivities of Mg-TiB2 nanocomposites were lower than those of monolithic Mg and decreased as the amount of nano-TiB2 particles increased. The electrical and thermal conductivities of Mg-TiB2 nanocomposites decreased at a higher rate for a higher weight fraction of nano-TiB2 particles. The experimental electrical and thermal conductivities of Mg-TiB2 nanocomposites at a certain amount of nano-TiB2 particles was measured at lower values than those obtained by analytical calculations. The compressive strength of Mg-TiB2 nanocomposites was higher than that of monolithic Mg and improved as the weight fraction of nano-TiB2 particles increased; however, a high amount of nano-TiB2 particles resulted in a decrease in compressive strength. The compressive strength of Mg-TiB2 nanocomposite with 1.5wt.% nano-TiB2 particles improved by 34%; on the other hand, its failure strain decreased by 12% compared to monolithic Mg.

Kaynakça

  • Akbari, M.K., Shirvanimoghaddam, K., Hai, Z., Zhuiykov, S., Khayyam, H. (2017). Al-TiB2 micro/nanocomposites: Particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater. Sci. Eng. A, 682, 98-106.
  • Malaki, M., Xu, W., Kasar, A.K., Menezes, P.L., Dieringa, H., Varma, R.S., Gupta, M. (2019). Advanced metal matrix nanocomposites. Metals, 9(3), 330, 1-39.
  • Ceschini, L., Dahle, A., Gupta, M., Jarfors, A.E.W., Jayalakshmi, S., Morri, A., Rotundo, F., Toschi, S., Singh, R.A. (2017). Aluminum and magnesium metal matrix nanocomposites. Springer Nature, Singapore, pp. 1-164.
  • Stalin, B., Ravichandran, M., Mohanavel, V., Raj, L.P. (2020). Investigations into microstructure and mechanical properties of Mg-5wt.%Cu-TiB2 composites produced via powder metallurgy route. J. Min. Metall. Sect. B: Metall., 56(1), 99-108.
  • Abbas, A., Rajagopal, V., Huang, S.J. (2021). Magnesium metal matrix composites and their applications. In: Magnesium alloys structure and properties, T.A. Tański, P. Jarka (eds.), IntechOpen, London, UK, 1-17.
  • Shu, S., Yang, H., Tong, C., Qiu, F. (2016). Fabrication of TiCx-TiB2/Al composites for application as a heat sink. Materials, 9(642), 1-10.
  • Rudajevová, A., Lukáč, P. (2000). Thermal conductivity of SiC reinforced magnesium matrix composites. In: Microstructural investigation and analysis, B. Jouffrey (ed.), Wiley‐VCH Verlag GmbH, Weinheim, Germany, pp. 179-183.
  • Dieringa, H. (2020). Production and properties of light metal matrix nanocomposites. Metals, 10(1), 95, 1-4.
  • Grasso, S., Sakka, Y., Maizza, G. (2009). Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Sci. Technol. Advanced Materials, 10(5), 053001, 1-24.
  • Munir, Z. A., Tamburini, U. A., Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci., 41(3), 763-777.
  • Guillon, O., Gonzalez‐Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J. (2014). Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater., 16(7), 830-849.
  • Sharma, N., Alam, S.N., Ray, B.C. (2019). Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. In: Spark plasma sintering of materials: Advances in processing and applications, C. Pasquale (ed.), Springer International Publishing, Cham, Switzerland, 219, pp. 21-59.
  • Muhammad, W.N.A.W., Mutoh, Y., Miyashita, Y. (2010). Microstructure and mechanical properties of magnesium prepared by spark plasma sintering. Adv. Mat. Res., 129-131, 764-768.
  • Mondet, M, Barraud, E., Lemonnier, S., Guyon, J., Allain, N., Grosdidier, T. (2016). Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering. Acta Mater., 119, 55-67.
  • Dey, A., Pandey, K.M., (2015). Magnesium metal matrix composites-A review, Rev. Adv. Mater. Sci., 42, 58-67.
  • Muhammad, W.N.A.W., Sajuri, Z., Mutoh, Y., Miyashita, Y., (2011). Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J. Alloy. Compd., 509, 6021-6029, 2011.
  • Garbiec, D., (2016). Study on microstructure and some mechanical properties of spark plasma sintered Mg-Al2O3 composites. The 5 International Lower Silesia-Saxony Conference: Advanced Metal Forming Processes in Automotive Industry, Wroclaw, Poland, 28-29 June.
  • Ghasali, E., Alizadeh, M., Niazmand, M., Ebadzadeh, T. (2017). Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering. J. Alloy. Compd., 697, 200-207.
  • Zhang, H., Zhao, Y., Yan, Y., Fan, J., Wang, L., Dong, H., Xu, B. (2017). Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion. J. Alloy. Compd., 725, 652-664.
  • Dieringa, H. (2013). Applications: magnesium-based metal matrix composites (MMCs). In: Fundamentals of magnesium alloy metallurgy, M.O. Pekguleryuz, K.A. Kainer, A.A. Kaya (eds.), Woodhead Publishing, Cambridge, UK, pp. 317-341.
  • Xiao, P., Gao, Y., Yang, C., Liu, Z., Li, Y., Xu, F. (2018). Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles, Mater. Sci. Eng. A., 710, 251-259.
  • Aydin, F., Sun, Y. (2018). Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can. Metall. Q., 57(4), 455-469.
  • Jiang, Q.C., Wang, H.Y., Ma, B.X., Wang, Y., Zhao, F. (2004). Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater. Lett., 58(27-28), 3509-3513.
  • Leich, L., Röttger, A., Kuchenbecker, R., Theisen, W. (2020). Electro-discharge sintering of nanocrystalline NdFeB magnets: process parameters, microstructure, and the resulting magnetic properties. J. Mater. Sci.: Mater. Electron., 31, 20431-20443.
  • Balice, L., Cologna, M., Audubert, F., Hazemann, J. L. (2021). Densification mechanisms of UO2 consolidated by spark plasma sintering. J. Eur. Ceram. Soc., 41(1), 719-728.
  • Schmidt, R., Martin Scholze, H., Stolle, A. (2016). Temperature progression in a mixer ball mill. Int. J. Ind. Chem., 7, 181-186.
  • Calin, R., Pul, M., Pehlivanli, Z.O., (2012). The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-MgO composites. Mater. Res., 15(6), 1057-1063.
  • Davis, L.C., Artz, B.E. (1995). Thermal conductivity of metal‐matrix composites. J. Appl. Phys., 77(10), 4954-4960.
  • Ast, D.G. (1974). Evidence for percolation-controlled conductivity in amorphous AsxTe1-x films. Phys. Rev. Lett., 33(17), 1042-1045.
  • Weber, L., Dorn, J., Mortensen, A. (2003). On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater., 51, 3199-3211.
  • Beni, H.A., Alizadeh, M., Ghaffari, M., Amini, R. (2014). Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Compos. B. Eng., 58, 438-442, 2014.
  • Miller, W.S., Humphreys, F.J. (1991). Strengthening mechanisms in particulate metal matrix composites. Scr. Mater., 25(1), 33-38.
  • Iqbal, A.K.M.A., Arai, Y., Araki, W. (2013). Effect of hybrid reinforcement on crack initiation and early propagation mechanisms in cast metal matrix composites during low cycle fatigue. Mater. Des., 45, 241-252.
  • Manohar, G., Pandey, K.M., Maity, S.R. (2021). Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram. Int., 47(11), 15147-15154.
  • Senthilkumar, P., Manimaran, R., and Y.K., Reddy. (2021). Evaluation of mechanical properties of hybrid Al7009 nanocomposite. Energy Sources A: Recovery Util. Environ. Eff., 43(2), 216-224.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ege Anıl Diler 0000-0002-1667-5737

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Diler, E. A. (2021). Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering. International Journal of Advances in Engineering and Pure Sciences, 33(4), 526-536. https://doi.org/10.7240/jeps.862794
AMA Diler EA. Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering. JEPS. Aralık 2021;33(4):526-536. doi:10.7240/jeps.862794
Chicago Diler, Ege Anıl. “Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering”. International Journal of Advances in Engineering and Pure Sciences 33, sy. 4 (Aralık 2021): 526-36. https://doi.org/10.7240/jeps.862794.
EndNote Diler EA (01 Aralık 2021) Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering. International Journal of Advances in Engineering and Pure Sciences 33 4 526–536.
IEEE E. A. Diler, “Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering”, JEPS, c. 33, sy. 4, ss. 526–536, 2021, doi: 10.7240/jeps.862794.
ISNAD Diler, Ege Anıl. “Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering”. International Journal of Advances in Engineering and Pure Sciences 33/4 (Aralık 2021), 526-536. https://doi.org/10.7240/jeps.862794.
JAMA Diler EA. Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering. JEPS. 2021;33:526–536.
MLA Diler, Ege Anıl. “Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering”. International Journal of Advances in Engineering and Pure Sciences, c. 33, sy. 4, 2021, ss. 526-3, doi:10.7240/jeps.862794.
Vancouver Diler EA. Electrical, Thermal, and Mechanical Properties of Mg-TiB2 Nanocomposites Produced by Spark Plasma Sintering. JEPS. 2021;33(4):526-3.