Derleme
BibTex RIS Kaynak Göster

A Review of Biomedical Engineering Research in Turkey During 2008-2018

Yıl 2019, Cilt: 31 Sayı: 4, 316 - 327, 01.11.2019
https://doi.org/10.7240/jeps.578024

Öz

Biomedical engineering is one of the fastest developing research disciplines in the past 60 years with the aid of rapid advances in technology. Biomedical engineering has emerged in Turkey in late 1970s but the research conducted in this area has been developing only in the past 15 years. The aim of this review is to summarize the problems regarding biomedical engineering in Turkey; to present the main subjects that are conducted in biomedical field in Turkey; and to summarize the prominent research papers conducted by Turkish Institutes published during 2008-2018 that contribute and/or have a potential to contribute to research and development (R&D) in biomedical engineering field in Turkey. These studies were divided into categories of tissue engineering, biosensors and biomedical devices; and summarized in this review

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] Enderle JD, Bronzino JD (2012). Biomedical Engineering. Introd to Biomed Eng. doi: 10.1016/B978-0-12-374979-6.00001-0
  • [2] Saltzman WM (2015). Biomedical engineering: bridging medicine and technology, Second. Cambridge University Press
  • [3] Nebeker F (2002). Golden accomplishments in biomedical engineering. IEEE Eng Med Biol Mag 21:17–47
  • [4] Humpolíček P, Radaszkiewicz KA, Capáková Z, Pacherník J, Bober P, Kašpárková V, Rejmontová P, Lehocký M, Ponížil P, Stejskal J (2018). Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci Rep 8:1–12
  • [5] Leder RS (2009). The Natural History of the Engineering in Medicine and Biology Society from a Modern Perspective. Eng Med Biol 1086–1088
  • [6] Schwan HP (1991). Biomedical engineering: University of Pennsylvania-from research laboratory to a leader in educational institutions for bioengineering. IEEE Eng Med Biol Mag 10:47–49
  • [7] Sun HH (1991). Biomedical engineering: Drexel University-pioneer in a formal MS degree training program for doctors. IEEE Eng Med Biol Mag 10:44–46
  • [8] Çamurcu YA, Alsan S (1998). Türkiye' de ve dünyada biyomedikal mühendislik ve biyomedikal cihaz teknolojisi eğitimi. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, Sayı: 10 Sayfa: 51 -58.
  • [9] Sezdi M, Akan A, Kalkandelen C (2009). Biyomedikal ve Klinik Mühendisliği Eğitimi ve Ülkemizin Bu Alandaki İhtiyaçlarının İncelenmesi Elektrik-Elektronik Mühendisliği Bölümü. In: EEBB09 Elektr. Mühendislikleri Eğitimi 4. Ulus. Sempozyumu. Eskişehir, pp 199–202
  • [10] Yükseköğretim Kurulu Yükseköğretim Program Atlası. https://yokatlas.yok.gov.tr/#. Accessed 29 Apr 2018
  • [11] World University Rankings & Reviews | uniRank. https://www.4icu.org/tr/.
  • [12] European Research Area Progress Report 2016. https://ec.europa.eu/research/era/pdf/era_progress_report2016/era_progress_report_2016_com.pdf.
  • [13] Taşgetiren S, Yuran F, Özmen N, Özkan N (2015). Biyomedikal Ar-Ge 2015: 2015 İtibariyle Türkiye’de Biyomedikal Teknolojileri Alanında Yapılan Araştıırma Faaliyetlerinin Mevcut Durumu. Afyon Kocatepe Üniversitesi, Afyon Türkiye. doi: 10.13140/2.1.3053.9043
  • [14] Bozer A, Ağırbaş İ (2016). Tıbbi Görüntüleme Cihazlarının Sayısal Durumu ve Kullanımlarının Değerlendirilmesi Quantitative Evaluation of the Status and Use of Medical Imaging Devices. Ankara Üniversitesi Tıp Fakültesi Macmuası. doi: DOI: 10.1501/Tıpfak_000000943
  • [15] Kiper M (2013). Türkiye’de tıbbi cihaz sektörü ve strateji önerisi. Türkiye Teknol Geliştirme Vakfı 1–226
  • [16] Mertler AA, Karadoğan N, Tatarhan G (2015). TÜRKİYE’DE TIBBİ CİHAZLARIN SAYISAL DURUMU VE OECD ÜLKELERİ İLE KARŞILAŞTIRMA LARI. Int J Heal Manag Strateg Res 1:52–70
  • [17] T.C. Sağlık Bakanlığı (2013). Sağlık İstatistikleri Yıllığı 2013. Sentez Matbaacılık ve Yayıncılık, Ankara
  • [18] Türkiye Istatistik Kurumu Türkiye İstatistik Kurumu. http://www.tuik.gov.tr/PreTablo.do?alt_id=1084. Accessed 20 Mar 2018
  • [19] We P, Party D, Project HT Ministry of Health of the Republic of Turkey.
  • [20] Bakker E (2015). THE TURKISH LIFE SCIENCE AND HEALTH SECTOR Identifying opportunities to exchange knowledge and products between the Netherlands and Turkey. 1–34
  • [21] Dundar M, Akbarova Y (2011). Current State of Biotechnology in Turkey. Curr Opin Biotechnol. doi: 10.1016/j.copbio.2011.05.509
  • [22] Eurostat Research Projects under Framework Programmes - European Commission. https://ec.europa.eu/eurostat/cros/content/research-projects-under-framework-programmes-0_en. Accessed 1 May 2018
  • [23] European Commission - PRESS RELEASES - Press release - Turkey joins Horizon 2020 research and innovation programme. http://europa.eu/rapid/press-release_IP-14-631_en.htm. Accessed 1 May 2018
  • [24] Yaşar T (2017) TÜBİTAK Türkiye Adresli Uluslararası Bilimsel Yayınları Teşvik (UBYT) Programının Değerlendirilmes. TÜBİTAK Ulakbim[25] SciVerse
  • [25] SCOPUS. http.www.scopus.com. Accessed January 22, 2019
  • [26] Health - European Commission. https://ec.europa.eu/programmes/horizon2020/en/area/health. Accessed 1 May 2018
  • [27] Morouço P, Biscaia S, Viana T, Franco M, Malça C, Mateus A, Moura C, Ferreira FC, Mitchell G, Alves NM (2016). Fabrication of poly(ϵ-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. Biomed Res Int. doi: 10.1155/2016/1596157
  • [28] Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials (Basel) 8:5154–5193
  • [29] O’Brien FJ (2011). Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95
  • [30] Langer R, Tirrell DA (2004). Designing materials for biology and medicine. Nature 428:487–492
  • [31] Kulkarni RK, Pani KC, Neuman C, Leonard F (1966). Polylactic acid for surgical implants. Arch Surg 93:839–843
  • [32] Vert M, Mauduit J, Li S (1994). Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15:1209–13
  • [33] Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A (2004). Processing, annealing and sterilisation of poly-L-lactide. Biomaterials 25:3939–3949
  • [34] Zaman HU, Islam JMM, Khan MA, Khan RA (2011). Physico-mechanical properties of wound dressing material and its biomedical application. J Mech Behav Biomed Mater 4:1369–1375
  • [35] Zorlutuna P, Yilgör P, Başmanav FB, Hasirci V (2009). Biomaterials and tissue engineering research in Turkey: The METU biomat center experience. Biotechnol J 4:965–980
  • [36] Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559
  • [37] Basmanav FB, Kose GT, Hasirci V (2008). Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29:4195–4204
  • [38] Irimia‐Vladu M, Troshin PA, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus JW (2010). Biocompatible and biodegradable materials for organic field‐effect transistors. Adv Funct Mater 20:4069–4076
  • [39] Doǧan A, Yalvaç ME, Şahin F, Kabanov A V., Palotás A, Rizvanov AA (2012). Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 7:4849–4860
  • [40] Işiklan N, Küçükbalci G (2012). Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharm Biopharm 82:316–331
  • [41] Saber-Samandari S, Alamara K, Saber-Samandari S, Gross KA (2013). Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater 9:9538–9546
  • [42] Akin H, Tugut F, Akin GE, Guney U, Mutaf B (2012). Effect of Er:YAG laser application on the shear bond strength and microleakage between resin cements and Y-TZP ceramics. Lasers Med Sci 27:333–338
  • [43] Erdal E, Kavaz D, Şam M, Demirbilek M, Demirbilek ME, Saǧlam N, Denkbaş EB (2012). Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J Biomed Nanotechnol 8:800–808
  • [44] Mavis B, Demirtaş TT, Gümüşderelioğlu M, Gündüz G, Çolak Ü (2009). Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater 5:3098–3111
  • [45] Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, Taralp A, Koc B (2015). 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng 112:811–821
  • [46] Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO (2014). Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophys 9:145–157
  • [47] Sahiner N, Sagbas S, Aktas N (2015). Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Mater Sci Eng C 49:824–834
  • [48] Karahaliloǧlu Z, Demirbilek M, Şam M, Erol-Demirbilek M, Saǧlam N, Denkbaş EB (2013). Plasma polymerization-modified bacterial polyhydroxybutyrate nanofibrillar scaffolds. J Appl Polym Sci 128:1904–1912
  • [49] Karahaliloglu Z, Ercan B, Taylor EN, Chung S, Denkbaş EB, Webster TJ (2015). Antibacterial Nanostructured Polyhydroxybutyrate Membranes for Guided Bone Regeneration. J Biomed Nanotechnol 11:2253–2263
  • [50] Erol M, Özyuĝuran A, Özarpat Ö, Küçükbayrak S (2012). 3D Composite scaffolds using strontium containing bioactive glasses. J Eur Ceram Soc 32:2747–2755
  • [51] Algi MP, Okay O (2014). Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121
  • [52] Gunduz O, Gode C, Ahmad Z, Gökçe H, Yetmez M, Kalkandelen C, Sahin YM, Oktar FN (2014). Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mech Behav Biomed Mater 35:70–76
  • [53] Deliormanli AM (2014). Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers. Ceram Int 41:417–425
  • [54] Yucel D, Kose GT, Hasirci V (2010). Polyester based nerve guidance conduit design. Biomaterials 31:1596–1603
  • [55] Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012). Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthetic Surg 65:1712–1719
  • [56] Wang W, Xu Y, Li A, Li T, Liu M, von Klitzing R, Ober CK, Kayitmazer AB, Li L, Guo X (2015). Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. Rsc Adv 5:66871–66878
  • [57] Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198
  • [58] Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011). Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112:279–288
  • [59] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim DK, Akçaalan Ö, Yavaş S, Aşık MD, Öktem B, Hoogland H (2016). Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537:84
  • [60] Nazli C, Ergenc TI, Yar Y, Acar HY, Kizilel S (2012). RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells. Int J Nanomedicine 7:1903–1920
  • [61] Silan C, Akcali A, Otkun MT, Ozbey N, Butun S, Ozay O, Sahiner N (2012). Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surfaces B Biointerfaces 89:248–253
  • [62] Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012). Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanoparticle Res 14:964
  • [63] Xu F, Inci F, Mullick O, Atakan U, Sung Y, Kavaz D (2012). Release of Magnetic Nanoparticles from Cell- Encapsulating Biodegradable Nanobiomaterials. ACS Nano, 1–8
  • [64] Umut E, Pineider F, Arosio P, Sangregorio C, Corti M, Tabak F, Lascialfari A, Ghigna P (2012). Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe 3O 4) hybrid nanoparticles for potential use in biomedical applications. J Magn Magn Mater 324:2373–2379
  • [65] Tamer U, Gündoǧdu Y, Boyaci IH, Pekmez K (2010). Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanoparticle Res 12:1187–1196
  • [66] Şen Ö, Culha M (2016). Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties. Colloids Surfaces B Biointerfaces 138:41–49
  • [67] Ercan B, Taylor E, Alpaslan E, Webster TJ (2011). Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22:295102
  • [68] Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, Aytac Z, Uyar T, Jun M, Ramalingam M (2017) Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater Sci Eng C 81:334–340
  • [69] Mammadov R, Mammadov B, Toksoz S, Aydin B, Yagci R, Tekinay AB, Guler MO (2011). Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 12:3508–3519
  • [70] Uzunalli G, Mammadov R, Yesildal F, Alhan D, Ozturk S, Ozgurtas T, Guler MO, Tekinay AB (2016). Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds. ACS Biomater Sci Eng 3:1296–1303
  • [71] Demirci S, Ustaoǧlu Z, Yilmazer GA, Sahin F, Baç N (2014). Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl Biochem Biotechnol 172:1652–1662
  • [72] Subasi A, Gursoy MI (2010) .EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666
  • [73] Acar E, Dunlavy DM, Kolda TG, Mørup M (2011). Scalable tensor factorizations for incomplete data. Chemom Intell Lab Syst 106:41–56
  • [74] Ince T, Kiranyaz S, Gabbouj M (2009). A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56:1415–1426
  • [75] Kiranyaz S, Ince T, Gabbouj M (2016). Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans Biomed Eng 63:664–675
  • [76] Tabar YR, Halici U (2016). A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14:16003
  • [77] Alkan A, Günay M (2012). Identification of EMG signals using discriminant analysis and SVM classifier. Expert Syst Appl 39:44–47
  • [78] Dincer F, Karaaslan M, Unal E, Sabah C (2013). Dual-band polarization independent meta-material absorber based on omega resonator and octastarstrip configuration. Prog Electromagn Res 141:219–231
  • [79] Sabah C, Dincer F, Karaaslan M, Unal E, Akgol O, Demirel E (2014) Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt Commun 322:137–142
  • [80] Ergen B, Tatar Y, Gulcur HO (2012). Time-frequency analysis of phonocardiogram signals using wavelet transform: A comparative study. Comput Methods Biomech Biomed Engin 15:371–381
  • [81] Gurun G, Zahorian JS, Sisman A, Karaman M, Hasler PE, Levent Degertekin F (2012). An analog integrated circuit beamformer for high-frequency medical ultrasound imaging. IEEE Trans Biomed Circuits Syst 6:454–467
  • [82] Perk OY, Şeşen M, Gozuacik D, Koşar A (2012). Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment. Ann Biomed Eng 40:1895–1902
  • [83] Oflaz H, Baran O (2014). A new medical device to measure a stiffness of soft materials. Acta Bioeng Biomech 16:125–131
  • [84] Yen P-L, Chen D-R, Yeh K-T, Chu P-Y (2008). Lateral exploration strategy for differentiating the stiffness ratio of an inclusion in soft tissue. Med Eng Phys 30:1013–1019
  • [85] Khandpur RS (2003) Handbook of biomedical instrumentation, Second Edi. Tata McGraw-Hill Education
  • [86] Turner APF (2013). Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196
  • [87] Alwarappan S, Erdem A, Liu C, Li C-Z (2009). Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857
  • [88] Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015). A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind Eng Chem Res 54:3634–3639
  • [89] Dinçkaya E, Kinik Ö, Sezgintürk MK, Altuĝ Ç, Akkoca A (2011). Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles. Biosens Bioelectron 26:3806–3811
  • [90] Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47
  • [91] Yola ML, Eren T, Atar N (2014). Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285
  • [92] Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015). Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5:65953–65962
  • [93] Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015). Correction: Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5:72590–72591
  • [94] Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP (2013). In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873
  • [95] Parlak O, İncel A, Uzun L, Turner APF, Tiwari A (2017). Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89:545–550
  • [96] Koskun Y, Şavk A, Şen B, Şen F (2018). Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta 1010:37–43
  • [97] Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O (2012). Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens Bioelectron 38:195–201
  • [98] Kilic T, Nur Topkaya S, Ozsoz M (2013). A new insight into electrochemical microRNA detection: A molecular caliper, p19 protein. Biosens Bioelectron 48:165–171
  • [99] Şenel M, Nergiz C (2012). Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite. Curr Appl Phys 12:1118–1124
  • [100] Yilmaz Ö, Demirkol DO, Gülcemal S, Kilinç A, Timur S, Çetinkaya B (2012). Chitosan-ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids Surfaces B Biointerfaces 100:62–68
  • [101] Kesik M, Akbulut H, Söylemez S, Cevher ŞC, Hızalan G, Udum YA, Endo T, Yamada S, Çırpan A, Yağcı Y (2014). Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym Chem 5:6295–6306
  • [102] Can F, Korkut Ozoner S, Ergenekon P, Erhan E (2012). Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater Sci Eng C 32:18–23
  • [103] Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014). An amperometric hydrogen peroxide biosensor based on Co3O4nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci 311:139–146
  • [104] Dalkiran B, Kaçar C, Erden PE, Kiliç E (2014). Amperometric xanthine biosensors based on chitosan-Co3O 4-multiwall carbon nanotube modified glassy carbon electrode. Sensors Actuators, B Chem 200:83–91
  • [105] Dervisevic M, Dervisevic E, Şenel M (2018). Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sensors Actuators B Chem 254:93–101
  • [106] Atar N, Eren T, Yola ML (2015). A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem 184:7–11
  • [107] Korkut S, Keskinler B, Erhan E (2008). An amperometric biosensor based on multiwalled carbon nanotube-poly (pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76:1147–1152
  • [108] Çevik E, Şenel M, Baykal A, Abasiyanik MF (2012). A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors Actuators, B Chem 173:396–405
  • [109] Ozalp VC, Bayramoglu G, Erdem Z, Arica MY (2015). Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation. Anal Chim Acta 853:533–540
  • [110] Canbay E, Şahin B, Kiran M, Akyilmaz E (2015). MWCNT-cysteamine-Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite. Bioelectrochemistry 101:126–131

Türkiye'de 2008-2018 Döneminde Yapılan Biyomedikal Mühendisliğindeki Araştırmaların Derlemesi

Yıl 2019, Cilt: 31 Sayı: 4, 316 - 327, 01.11.2019
https://doi.org/10.7240/jeps.578024

Öz

Biyomedikal mühendisliği, teknolojideki hızlı
gelişmelerin yardımıyla son 60 yılda en hızlı gelişen araştırma
disiplinlerinden biri olmuştur. Biyomedikal mühendisliği Türkiye'de 1970'lerin
sonunda ortaya çıkmış, ancak bu alanda yapılan araştırmalar sadece son 15 yılda
gelişmeye başlamıştır. Bu derlemenin amacı, Türkiye'de biyomedikal mühendisliği
ile ilgili sorunları özetlemek; Türkiye'de biyomedikal alanında yürütülen ana
konuları sunmak; ve 2008-2018 yılları arasında yayınlanan ve Türkiye’de
biyomedikal mühendisliği alanında araştırma ve geliştirmeye (AR-GE) katkıda
bulunan/bulunma potansiyeline sahip olan ve Türk Enstitüleri tarafından
yürütülen önde gelen araştırma makalelerini özetlemektir. Bu araştırmalar doku
mühendisliği, biyosensörler ve biyomedikal cihazlar konularına ayrılarak
incelenmiştir. 

Proje Numarası

-

Kaynakça

  • [1] Enderle JD, Bronzino JD (2012). Biomedical Engineering. Introd to Biomed Eng. doi: 10.1016/B978-0-12-374979-6.00001-0
  • [2] Saltzman WM (2015). Biomedical engineering: bridging medicine and technology, Second. Cambridge University Press
  • [3] Nebeker F (2002). Golden accomplishments in biomedical engineering. IEEE Eng Med Biol Mag 21:17–47
  • [4] Humpolíček P, Radaszkiewicz KA, Capáková Z, Pacherník J, Bober P, Kašpárková V, Rejmontová P, Lehocký M, Ponížil P, Stejskal J (2018). Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci Rep 8:1–12
  • [5] Leder RS (2009). The Natural History of the Engineering in Medicine and Biology Society from a Modern Perspective. Eng Med Biol 1086–1088
  • [6] Schwan HP (1991). Biomedical engineering: University of Pennsylvania-from research laboratory to a leader in educational institutions for bioengineering. IEEE Eng Med Biol Mag 10:47–49
  • [7] Sun HH (1991). Biomedical engineering: Drexel University-pioneer in a formal MS degree training program for doctors. IEEE Eng Med Biol Mag 10:44–46
  • [8] Çamurcu YA, Alsan S (1998). Türkiye' de ve dünyada biyomedikal mühendislik ve biyomedikal cihaz teknolojisi eğitimi. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, Sayı: 10 Sayfa: 51 -58.
  • [9] Sezdi M, Akan A, Kalkandelen C (2009). Biyomedikal ve Klinik Mühendisliği Eğitimi ve Ülkemizin Bu Alandaki İhtiyaçlarının İncelenmesi Elektrik-Elektronik Mühendisliği Bölümü. In: EEBB09 Elektr. Mühendislikleri Eğitimi 4. Ulus. Sempozyumu. Eskişehir, pp 199–202
  • [10] Yükseköğretim Kurulu Yükseköğretim Program Atlası. https://yokatlas.yok.gov.tr/#. Accessed 29 Apr 2018
  • [11] World University Rankings & Reviews | uniRank. https://www.4icu.org/tr/.
  • [12] European Research Area Progress Report 2016. https://ec.europa.eu/research/era/pdf/era_progress_report2016/era_progress_report_2016_com.pdf.
  • [13] Taşgetiren S, Yuran F, Özmen N, Özkan N (2015). Biyomedikal Ar-Ge 2015: 2015 İtibariyle Türkiye’de Biyomedikal Teknolojileri Alanında Yapılan Araştıırma Faaliyetlerinin Mevcut Durumu. Afyon Kocatepe Üniversitesi, Afyon Türkiye. doi: 10.13140/2.1.3053.9043
  • [14] Bozer A, Ağırbaş İ (2016). Tıbbi Görüntüleme Cihazlarının Sayısal Durumu ve Kullanımlarının Değerlendirilmesi Quantitative Evaluation of the Status and Use of Medical Imaging Devices. Ankara Üniversitesi Tıp Fakültesi Macmuası. doi: DOI: 10.1501/Tıpfak_000000943
  • [15] Kiper M (2013). Türkiye’de tıbbi cihaz sektörü ve strateji önerisi. Türkiye Teknol Geliştirme Vakfı 1–226
  • [16] Mertler AA, Karadoğan N, Tatarhan G (2015). TÜRKİYE’DE TIBBİ CİHAZLARIN SAYISAL DURUMU VE OECD ÜLKELERİ İLE KARŞILAŞTIRMA LARI. Int J Heal Manag Strateg Res 1:52–70
  • [17] T.C. Sağlık Bakanlığı (2013). Sağlık İstatistikleri Yıllığı 2013. Sentez Matbaacılık ve Yayıncılık, Ankara
  • [18] Türkiye Istatistik Kurumu Türkiye İstatistik Kurumu. http://www.tuik.gov.tr/PreTablo.do?alt_id=1084. Accessed 20 Mar 2018
  • [19] We P, Party D, Project HT Ministry of Health of the Republic of Turkey.
  • [20] Bakker E (2015). THE TURKISH LIFE SCIENCE AND HEALTH SECTOR Identifying opportunities to exchange knowledge and products between the Netherlands and Turkey. 1–34
  • [21] Dundar M, Akbarova Y (2011). Current State of Biotechnology in Turkey. Curr Opin Biotechnol. doi: 10.1016/j.copbio.2011.05.509
  • [22] Eurostat Research Projects under Framework Programmes - European Commission. https://ec.europa.eu/eurostat/cros/content/research-projects-under-framework-programmes-0_en. Accessed 1 May 2018
  • [23] European Commission - PRESS RELEASES - Press release - Turkey joins Horizon 2020 research and innovation programme. http://europa.eu/rapid/press-release_IP-14-631_en.htm. Accessed 1 May 2018
  • [24] Yaşar T (2017) TÜBİTAK Türkiye Adresli Uluslararası Bilimsel Yayınları Teşvik (UBYT) Programının Değerlendirilmes. TÜBİTAK Ulakbim[25] SciVerse
  • [25] SCOPUS. http.www.scopus.com. Accessed January 22, 2019
  • [26] Health - European Commission. https://ec.europa.eu/programmes/horizon2020/en/area/health. Accessed 1 May 2018
  • [27] Morouço P, Biscaia S, Viana T, Franco M, Malça C, Mateus A, Moura C, Ferreira FC, Mitchell G, Alves NM (2016). Fabrication of poly(ϵ-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. Biomed Res Int. doi: 10.1155/2016/1596157
  • [28] Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials (Basel) 8:5154–5193
  • [29] O’Brien FJ (2011). Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95
  • [30] Langer R, Tirrell DA (2004). Designing materials for biology and medicine. Nature 428:487–492
  • [31] Kulkarni RK, Pani KC, Neuman C, Leonard F (1966). Polylactic acid for surgical implants. Arch Surg 93:839–843
  • [32] Vert M, Mauduit J, Li S (1994). Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15:1209–13
  • [33] Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A (2004). Processing, annealing and sterilisation of poly-L-lactide. Biomaterials 25:3939–3949
  • [34] Zaman HU, Islam JMM, Khan MA, Khan RA (2011). Physico-mechanical properties of wound dressing material and its biomedical application. J Mech Behav Biomed Mater 4:1369–1375
  • [35] Zorlutuna P, Yilgör P, Başmanav FB, Hasirci V (2009). Biomaterials and tissue engineering research in Turkey: The METU biomat center experience. Biotechnol J 4:965–980
  • [36] Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559
  • [37] Basmanav FB, Kose GT, Hasirci V (2008). Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29:4195–4204
  • [38] Irimia‐Vladu M, Troshin PA, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus JW (2010). Biocompatible and biodegradable materials for organic field‐effect transistors. Adv Funct Mater 20:4069–4076
  • [39] Doǧan A, Yalvaç ME, Şahin F, Kabanov A V., Palotás A, Rizvanov AA (2012). Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 7:4849–4860
  • [40] Işiklan N, Küçükbalci G (2012). Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharm Biopharm 82:316–331
  • [41] Saber-Samandari S, Alamara K, Saber-Samandari S, Gross KA (2013). Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater 9:9538–9546
  • [42] Akin H, Tugut F, Akin GE, Guney U, Mutaf B (2012). Effect of Er:YAG laser application on the shear bond strength and microleakage between resin cements and Y-TZP ceramics. Lasers Med Sci 27:333–338
  • [43] Erdal E, Kavaz D, Şam M, Demirbilek M, Demirbilek ME, Saǧlam N, Denkbaş EB (2012). Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J Biomed Nanotechnol 8:800–808
  • [44] Mavis B, Demirtaş TT, Gümüşderelioğlu M, Gündüz G, Çolak Ü (2009). Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater 5:3098–3111
  • [45] Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, Taralp A, Koc B (2015). 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng 112:811–821
  • [46] Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO (2014). Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophys 9:145–157
  • [47] Sahiner N, Sagbas S, Aktas N (2015). Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Mater Sci Eng C 49:824–834
  • [48] Karahaliloǧlu Z, Demirbilek M, Şam M, Erol-Demirbilek M, Saǧlam N, Denkbaş EB (2013). Plasma polymerization-modified bacterial polyhydroxybutyrate nanofibrillar scaffolds. J Appl Polym Sci 128:1904–1912
  • [49] Karahaliloglu Z, Ercan B, Taylor EN, Chung S, Denkbaş EB, Webster TJ (2015). Antibacterial Nanostructured Polyhydroxybutyrate Membranes for Guided Bone Regeneration. J Biomed Nanotechnol 11:2253–2263
  • [50] Erol M, Özyuĝuran A, Özarpat Ö, Küçükbayrak S (2012). 3D Composite scaffolds using strontium containing bioactive glasses. J Eur Ceram Soc 32:2747–2755
  • [51] Algi MP, Okay O (2014). Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113–121
  • [52] Gunduz O, Gode C, Ahmad Z, Gökçe H, Yetmez M, Kalkandelen C, Sahin YM, Oktar FN (2014). Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mech Behav Biomed Mater 35:70–76
  • [53] Deliormanli AM (2014). Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers. Ceram Int 41:417–425
  • [54] Yucel D, Kose GT, Hasirci V (2010). Polyester based nerve guidance conduit design. Biomaterials 31:1596–1603
  • [55] Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012). Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthetic Surg 65:1712–1719
  • [56] Wang W, Xu Y, Li A, Li T, Liu M, von Klitzing R, Ober CK, Kayitmazer AB, Li L, Guo X (2015). Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. Rsc Adv 5:66871–66878
  • [57] Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198
  • [58] Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011). Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112:279–288
  • [59] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim DK, Akçaalan Ö, Yavaş S, Aşık MD, Öktem B, Hoogland H (2016). Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537:84
  • [60] Nazli C, Ergenc TI, Yar Y, Acar HY, Kizilel S (2012). RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells. Int J Nanomedicine 7:1903–1920
  • [61] Silan C, Akcali A, Otkun MT, Ozbey N, Butun S, Ozay O, Sahiner N (2012). Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surfaces B Biointerfaces 89:248–253
  • [62] Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012). Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanoparticle Res 14:964
  • [63] Xu F, Inci F, Mullick O, Atakan U, Sung Y, Kavaz D (2012). Release of Magnetic Nanoparticles from Cell- Encapsulating Biodegradable Nanobiomaterials. ACS Nano, 1–8
  • [64] Umut E, Pineider F, Arosio P, Sangregorio C, Corti M, Tabak F, Lascialfari A, Ghigna P (2012). Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe 3O 4) hybrid nanoparticles for potential use in biomedical applications. J Magn Magn Mater 324:2373–2379
  • [65] Tamer U, Gündoǧdu Y, Boyaci IH, Pekmez K (2010). Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanoparticle Res 12:1187–1196
  • [66] Şen Ö, Culha M (2016). Boron nitride nanotubes included thermally cross-linked gelatin-glucose scaffolds show improved properties. Colloids Surfaces B Biointerfaces 138:41–49
  • [67] Ercan B, Taylor E, Alpaslan E, Webster TJ (2011). Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22:295102
  • [68] Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, Aytac Z, Uyar T, Jun M, Ramalingam M (2017) Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater Sci Eng C 81:334–340
  • [69] Mammadov R, Mammadov B, Toksoz S, Aydin B, Yagci R, Tekinay AB, Guler MO (2011). Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 12:3508–3519
  • [70] Uzunalli G, Mammadov R, Yesildal F, Alhan D, Ozturk S, Ozgurtas T, Guler MO, Tekinay AB (2016). Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds. ACS Biomater Sci Eng 3:1296–1303
  • [71] Demirci S, Ustaoǧlu Z, Yilmazer GA, Sahin F, Baç N (2014). Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl Biochem Biotechnol 172:1652–1662
  • [72] Subasi A, Gursoy MI (2010) .EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666
  • [73] Acar E, Dunlavy DM, Kolda TG, Mørup M (2011). Scalable tensor factorizations for incomplete data. Chemom Intell Lab Syst 106:41–56
  • [74] Ince T, Kiranyaz S, Gabbouj M (2009). A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56:1415–1426
  • [75] Kiranyaz S, Ince T, Gabbouj M (2016). Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans Biomed Eng 63:664–675
  • [76] Tabar YR, Halici U (2016). A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14:16003
  • [77] Alkan A, Günay M (2012). Identification of EMG signals using discriminant analysis and SVM classifier. Expert Syst Appl 39:44–47
  • [78] Dincer F, Karaaslan M, Unal E, Sabah C (2013). Dual-band polarization independent meta-material absorber based on omega resonator and octastarstrip configuration. Prog Electromagn Res 141:219–231
  • [79] Sabah C, Dincer F, Karaaslan M, Unal E, Akgol O, Demirel E (2014) Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt Commun 322:137–142
  • [80] Ergen B, Tatar Y, Gulcur HO (2012). Time-frequency analysis of phonocardiogram signals using wavelet transform: A comparative study. Comput Methods Biomech Biomed Engin 15:371–381
  • [81] Gurun G, Zahorian JS, Sisman A, Karaman M, Hasler PE, Levent Degertekin F (2012). An analog integrated circuit beamformer for high-frequency medical ultrasound imaging. IEEE Trans Biomed Circuits Syst 6:454–467
  • [82] Perk OY, Şeşen M, Gozuacik D, Koşar A (2012). Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment. Ann Biomed Eng 40:1895–1902
  • [83] Oflaz H, Baran O (2014). A new medical device to measure a stiffness of soft materials. Acta Bioeng Biomech 16:125–131
  • [84] Yen P-L, Chen D-R, Yeh K-T, Chu P-Y (2008). Lateral exploration strategy for differentiating the stiffness ratio of an inclusion in soft tissue. Med Eng Phys 30:1013–1019
  • [85] Khandpur RS (2003) Handbook of biomedical instrumentation, Second Edi. Tata McGraw-Hill Education
  • [86] Turner APF (2013). Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196
  • [87] Alwarappan S, Erdem A, Liu C, Li C-Z (2009). Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857
  • [88] Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015). A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind Eng Chem Res 54:3634–3639
  • [89] Dinçkaya E, Kinik Ö, Sezgintürk MK, Altuĝ Ç, Akkoca A (2011). Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles. Biosens Bioelectron 26:3806–3811
  • [90] Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47
  • [91] Yola ML, Eren T, Atar N (2014). Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285
  • [92] Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015). Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5:65953–65962
  • [93] Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015). Correction: Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5:72590–72591
  • [94] Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP (2013). In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873
  • [95] Parlak O, İncel A, Uzun L, Turner APF, Tiwari A (2017). Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89:545–550
  • [96] Koskun Y, Şavk A, Şen B, Şen F (2018). Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta 1010:37–43
  • [97] Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O (2012). Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens Bioelectron 38:195–201
  • [98] Kilic T, Nur Topkaya S, Ozsoz M (2013). A new insight into electrochemical microRNA detection: A molecular caliper, p19 protein. Biosens Bioelectron 48:165–171
  • [99] Şenel M, Nergiz C (2012). Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite. Curr Appl Phys 12:1118–1124
  • [100] Yilmaz Ö, Demirkol DO, Gülcemal S, Kilinç A, Timur S, Çetinkaya B (2012). Chitosan-ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids Surfaces B Biointerfaces 100:62–68
  • [101] Kesik M, Akbulut H, Söylemez S, Cevher ŞC, Hızalan G, Udum YA, Endo T, Yamada S, Çırpan A, Yağcı Y (2014). Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym Chem 5:6295–6306
  • [102] Can F, Korkut Ozoner S, Ergenekon P, Erhan E (2012). Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater Sci Eng C 32:18–23
  • [103] Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014). An amperometric hydrogen peroxide biosensor based on Co3O4nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci 311:139–146
  • [104] Dalkiran B, Kaçar C, Erden PE, Kiliç E (2014). Amperometric xanthine biosensors based on chitosan-Co3O 4-multiwall carbon nanotube modified glassy carbon electrode. Sensors Actuators, B Chem 200:83–91
  • [105] Dervisevic M, Dervisevic E, Şenel M (2018). Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sensors Actuators B Chem 254:93–101
  • [106] Atar N, Eren T, Yola ML (2015). A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem 184:7–11
  • [107] Korkut S, Keskinler B, Erhan E (2008). An amperometric biosensor based on multiwalled carbon nanotube-poly (pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta 76:1147–1152
  • [108] Çevik E, Şenel M, Baykal A, Abasiyanik MF (2012). A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors Actuators, B Chem 173:396–405
  • [109] Ozalp VC, Bayramoglu G, Erdem Z, Arica MY (2015). Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation. Anal Chim Acta 853:533–540
  • [110] Canbay E, Şahin B, Kiran M, Akyilmaz E (2015). MWCNT-cysteamine-Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite. Bioelectrochemistry 101:126–131
Toplam 110 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derleme
Yazarlar

Mehlika Karamanlioglu 0000-0002-4814-6346

Proje Numarası -
Yayımlanma Tarihi 1 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 31 Sayı: 4

Kaynak Göster

APA Karamanlioglu, M. (2019). A Review of Biomedical Engineering Research in Turkey During 2008-2018. International Journal of Advances in Engineering and Pure Sciences, 31(4), 316-327. https://doi.org/10.7240/jeps.578024
AMA Karamanlioglu M. A Review of Biomedical Engineering Research in Turkey During 2008-2018. JEPS. Kasım 2019;31(4):316-327. doi:10.7240/jeps.578024
Chicago Karamanlioglu, Mehlika. “A Review of Biomedical Engineering Research in Turkey During 2008-2018”. International Journal of Advances in Engineering and Pure Sciences 31, sy. 4 (Kasım 2019): 316-27. https://doi.org/10.7240/jeps.578024.
EndNote Karamanlioglu M (01 Kasım 2019) A Review of Biomedical Engineering Research in Turkey During 2008-2018. International Journal of Advances in Engineering and Pure Sciences 31 4 316–327.
IEEE M. Karamanlioglu, “A Review of Biomedical Engineering Research in Turkey During 2008-2018”, JEPS, c. 31, sy. 4, ss. 316–327, 2019, doi: 10.7240/jeps.578024.
ISNAD Karamanlioglu, Mehlika. “A Review of Biomedical Engineering Research in Turkey During 2008-2018”. International Journal of Advances in Engineering and Pure Sciences 31/4 (Kasım 2019), 316-327. https://doi.org/10.7240/jeps.578024.
JAMA Karamanlioglu M. A Review of Biomedical Engineering Research in Turkey During 2008-2018. JEPS. 2019;31:316–327.
MLA Karamanlioglu, Mehlika. “A Review of Biomedical Engineering Research in Turkey During 2008-2018”. International Journal of Advances in Engineering and Pure Sciences, c. 31, sy. 4, 2019, ss. 316-27, doi:10.7240/jeps.578024.
Vancouver Karamanlioglu M. A Review of Biomedical Engineering Research in Turkey During 2008-2018. JEPS. 2019;31(4):316-27.