Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Lojistik Büyüme Eğrisinin Birinci Türevinin Fourier Dönüşümü

Yıl 2020, Cilt: 32 Sayı: 1, 52 - 56, 31.03.2020
https://doi.org/10.7240/jeps.598861

Öz

Genelleştirilmiş
lojistik büyüme eğrisi simetrisi olmayan sigmoid eğrileri için tipik bir
örnektir ve genellikle lineer olmayan regresyon için kullanılır. Bir sigmoid
eğrisinin “kritik noktası” kısaca, türevlerinin mutlak ekstremum noktalarının
(eğer varsa) limiti olarak tanımlanır. Bir sigmoid eğrisinin kritik noktasının
varlığı ve konumu Fourier dönüşümü ile ifade edilebilir. Bu çalışmada,
genelleştirilmiş lojistik büyüme eğrisinin birinci türevinin Gama fonksiyonları
cinsinden Fourier dönüşümü elde edilmiş ve bazı özel durumlar tartışılmıştır. 

Kaynakça

  • Abramowitz, M., Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover, New York, USA.
  • Beukers, F. (2007). Gauss’ Hypergeometric Function. Progress in Mathematics. 260, 23–42.
  • Bilge, A.H., Pekcan, O., Gurol, M.V. (2012). Application of epidemic models to phase transitions. Phase Transitions. 85(11), 1009–1017.
  • Bilge, A.H., Pekcan, O. (2013). A Mathematical Description of the Critical Point in Phase Transitions. Int. J. Mod. Phys. C. 24.
  • Bilge, A.H., Pekcan, O. (2015). A mathematical characterization of the gel point in sol-gel transition, Edited by: Vagenas, EC; Vlachos, DS; Bastos, C; et al., 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014) August 28-31, 2014, Madrid, SPAIN, Journal of Physics Conference Series. 574.
  • Bilge, A.H., Ozdemir, Y. (2016). Determining the Critical Point of a Sigmoidal Curve via its Fourier Transform, Edited by Vagenas, E.C. and Vlachos, D.S., 5th International Conference on Mathematical Modeling in Physical Sciences(IC-MSQUARE 2016) May 23-26, 2016, Athens, GREECE, Journal of Physics Conference Series. 738.
  • Bilge, A.H., Pekcan, O., Kara, S., Ogrenci, S. (2017). Epidemic models for phase transitions: Application to a physical gel, 4th Polish-Lithuanian-Ukrainian Meeting on Ferroelectrics Physics Location: Palanga, LITHUANIA, 05-09 September 2016, Phase Transitions. 90(9), 905–913.
  • Gradshteyn, I.S., Ryzhik I.M. (2007). Table of Integrals, Series, and Products. A. Jeffrey, D. Zwillinger (ed.), Elsevier Inc., USA.
  • Papoulis, A. (1962). The Fourier Integral and its Applications. McGraw-Hill Co., New York, USA.
  • Pearson J. (2009). Computation of Hypergeometric Functions. MSc Thesis, Oxford University, UK.

The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve

Yıl 2020, Cilt: 32 Sayı: 1, 52 - 56, 31.03.2020
https://doi.org/10.7240/jeps.598861

Öz

The “generalized logistic growth
curve” or the “5-point sigmoid” is a typical example for sigmoidal curves
without symmetry and it is commonly used for non-linear regression. The
“critical point” of a sigmoidal curve is defined as the limit, if it exists, of
the points where its derivatives reach their absolute extreme values. The
existence and the location of the critical point of a sigmoidal curve is expressed
in terms of its Fourier transform. In this work, we obtain the Fourier
transform of the first derivative of the generalized logistic growth curve in
terms of Gamma functions and we discuss special cases.

Kaynakça

  • Abramowitz, M., Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover, New York, USA.
  • Beukers, F. (2007). Gauss’ Hypergeometric Function. Progress in Mathematics. 260, 23–42.
  • Bilge, A.H., Pekcan, O., Gurol, M.V. (2012). Application of epidemic models to phase transitions. Phase Transitions. 85(11), 1009–1017.
  • Bilge, A.H., Pekcan, O. (2013). A Mathematical Description of the Critical Point in Phase Transitions. Int. J. Mod. Phys. C. 24.
  • Bilge, A.H., Pekcan, O. (2015). A mathematical characterization of the gel point in sol-gel transition, Edited by: Vagenas, EC; Vlachos, DS; Bastos, C; et al., 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014) August 28-31, 2014, Madrid, SPAIN, Journal of Physics Conference Series. 574.
  • Bilge, A.H., Ozdemir, Y. (2016). Determining the Critical Point of a Sigmoidal Curve via its Fourier Transform, Edited by Vagenas, E.C. and Vlachos, D.S., 5th International Conference on Mathematical Modeling in Physical Sciences(IC-MSQUARE 2016) May 23-26, 2016, Athens, GREECE, Journal of Physics Conference Series. 738.
  • Bilge, A.H., Pekcan, O., Kara, S., Ogrenci, S. (2017). Epidemic models for phase transitions: Application to a physical gel, 4th Polish-Lithuanian-Ukrainian Meeting on Ferroelectrics Physics Location: Palanga, LITHUANIA, 05-09 September 2016, Phase Transitions. 90(9), 905–913.
  • Gradshteyn, I.S., Ryzhik I.M. (2007). Table of Integrals, Series, and Products. A. Jeffrey, D. Zwillinger (ed.), Elsevier Inc., USA.
  • Papoulis, A. (1962). The Fourier Integral and its Applications. McGraw-Hill Co., New York, USA.
  • Pearson J. (2009). Computation of Hypergeometric Functions. MSc Thesis, Oxford University, UK.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Yunus Özdemir 0000-0002-6890-2997

Ayşe Hümeyra Bilge 0000-0002-6043-0833

Yayımlanma Tarihi 31 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 32 Sayı: 1

Kaynak Göster

APA Özdemir, Y., & Bilge, A. H. (2020). The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve. International Journal of Advances in Engineering and Pure Sciences, 32(1), 52-56. https://doi.org/10.7240/jeps.598861
AMA Özdemir Y, Bilge AH. The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve. JEPS. Mart 2020;32(1):52-56. doi:10.7240/jeps.598861
Chicago Özdemir, Yunus, ve Ayşe Hümeyra Bilge. “The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve”. International Journal of Advances in Engineering and Pure Sciences 32, sy. 1 (Mart 2020): 52-56. https://doi.org/10.7240/jeps.598861.
EndNote Özdemir Y, Bilge AH (01 Mart 2020) The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve. International Journal of Advances in Engineering and Pure Sciences 32 1 52–56.
IEEE Y. Özdemir ve A. H. Bilge, “The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve”, JEPS, c. 32, sy. 1, ss. 52–56, 2020, doi: 10.7240/jeps.598861.
ISNAD Özdemir, Yunus - Bilge, Ayşe Hümeyra. “The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve”. International Journal of Advances in Engineering and Pure Sciences 32/1 (Mart 2020), 52-56. https://doi.org/10.7240/jeps.598861.
JAMA Özdemir Y, Bilge AH. The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve. JEPS. 2020;32:52–56.
MLA Özdemir, Yunus ve Ayşe Hümeyra Bilge. “The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve”. International Journal of Advances in Engineering and Pure Sciences, c. 32, sy. 1, 2020, ss. 52-56, doi:10.7240/jeps.598861.
Vancouver Özdemir Y, Bilge AH. The Fourier Transform of the First Derivative of the Generalized Logistic Growth Curve. JEPS. 2020;32(1):52-6.