EEG Sinyallerinin Sınıflandırılmasında Evrimsel Öznitelik Seçim Metotlarının Kullanılması
Yıl 2021,
Cilt: 33 Sayı: 2, 171 - 179, 31.03.2021
Ferda Abbasoğlu
,
Ayla Gülcü
,
Ulvi Başpınar
Öz
Elektroensefalografi beyindeki elektriksel akımın ölçülmesi ile elde edilen sinyallerdir. Bu sinyallerin sınıflandırılması özellikle beyin sinyalleri ile ilgili rahatsızlıkların teşhis, tanı ve tedavisine katkı sağladığı için önemlidir. Ancak bu sinyallerden anlamlı sonuçlar elde edebilmek için öncelikle veri temizleme, öznitelik çıkarma ve öznitelik seçme yöntemleri kullanılmıştır. Daha sonra bu yöntemler sınıflandırma başarısına katkıları açısından kıyaslanmıştır. İlk olarak filtrelenen veriden Ayrık Dalgacık Dönüşümü metodu ile istatistiksel özellikler çıkarılmış, ardından Diferansiyel Evrim Algoritması kullanılarak en iyi sınıflandırma sonucunu veren öznitelik alt kümesi seçilmiştir. Seçilen özniteliklere sahip veri kümesinin sınıflandırma başarısı Destek Vektör Makineleri ile test edilmiştir. Kullanılan yöntem ile bazı sınıfların ayrılmasında benzer çalışmalardan daha iyi sonuçlar elde edilmiştir.
Kaynakça
- [1] Andrzejak RG, L. K. (tarih yok). BONN UNIVERCITY EEG time series download page. 10 2, 2019 tarihinde http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3 adresinden alındı
- [2] LASEFR, Z., AYYALASOMAYAJULA, S. S., & ELLEITHY, K. (2017). Epilepsy seizure detection using EEG signals. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (pp. 162-167),IEEE. IEEE.
- [3] Md. Mamun or Rashid, M. A. (2017). Epileptic Seizure Classification using Statistical Features of EEG Signal. Bazar, Bangladesh: IEEE.
- [4] AHMADI, A., SHALCHYAN, V., & DALIRI, M. R. (2017). A New Method for Epileptic Seizure Classification in EEG Using Adapted Wavelet Packets. İstanbul, Turkey: IEEE.
- [5] Physio Bank. (tarih yok). 11 12, 2018 tarihinde (http://physi onet.org/cgi-bin/atm/ATM adresinden alındı
- [6] RAMAKRISHNAN, S., & MURUGAVEL, A. M. (2018). Epileptic seizure detection using fuzzy rules based sub band specific features and layered multi class SVM. Pattern Analysis and Applications, 16.
- [7] AHAMMAD, N., FATHIMA, T., & JOSEPH, P. (2014). Detection of epileptic seizure event and onset using EEG. BioMed research international 2014, 2014(7).
- [8] SALEM, O., NASEEM, A., & MEHAOUA, A. (2014). Epileptic Seizure Detection From EEG Signal using Discrete Wavelet Transform and Ant Colony classifier Communications (ICC). IEEE International Conference on. IEEE, 2014, 3529-3534.
- [9] MAHAJAN, K., VARGANTWAR, M. R., & RAJPUT, S. M. (2011). Classification of EEG using PCA, ICA and Neural Network. International Journal of Engineering and Advanced Technology, 1(80-83).
- [10] SIULY, S., LI, Y., & ZHANG, Y. (2016, 11). EEG signal analysis and classification. IEEE Transactions on Neural Systems and Rehabilitaiton Engineering, s. 141-4.
- [11] Abdulhamit, S. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, s. Cilt 4, 1084-1093.
- [12] OJALA, T., PIETIKÄINEN, M., & MÄENPÄÄ, T. (2000). Gray scale and rotation invariant texture classification with local binary patterns. European Conference on Computer Vision. Springer, Berlin, Heidelberg, s. 404-420.
- [13] BURÇIN, K., & VASIF, N. V. (2011). Down syndrome recognition using local binary patterns and statistical evaluation of the system. Expert Systems with Applications. 38 2011, Cilt 7, s. 8690-8695.
- [14] PRICE, K., STORN, R. M., & LAMPINEN, J. A. (2006). Differential Evolution A Practical Approach to Global Optimization. Springer Science & Business Media.