Araştırma Makalesi
BibTex RIS Kaynak Göster

Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı

Yıl 2021, Cilt: 33 Sayı: 4, 651 - 659, 30.12.2021
https://doi.org/10.7240/jeps.938953

Öz

Sağkalım ve güvenilirlik analizleri; bir makinenin, malzemenin ya da bir canlının “ömrünü sürdürme ihtimali” ve “bu ömrün sonlanmasına kadar geçen süre” ile ilgilenilir. Bu analizlerde, verinin en iyi şekilde temsil edilebilmesi için veriyi modelleyecek olasılık dağılımının brlirlenmesi çok önemlidir. Bu çalışmada, bu alanda kullanılabilecek yeni bir olasılık dağılımı tanımlanmış ve bu dağılıma ilişkin istatistiksel özellikler elde edilmiştir. Uygulama iki farklı, gerçek güvenilirlik veri seti üzerinde gerçekleştirilmiş ve bu verileri modellemede daha önce kullanılmış olasılık dağılımları ile karşılaştırılmıştır. Önerilen dağılımın veriyi diğer dağılımlardan çok daha iyi modellediği gösterilmiştir.

Kaynakça

  • [1] A. N. Marshall, and I. Olkin, A New method for adding a parameter to a family of distributions with applications to the exponential and Weibull families”, Biometrika vol. 84, pp. 641-552, 1997.
  • [2] N. Eugene, C. Lee, and F,. Famoye, Beta-normal distribution and its applications, Communications in Statistics: Theory and Methods ,vol. 31, pp. 497-512, 2002.
  • [3] K. Zografos, K. and N. Balakrishnan, On families of beta- and generalized gamma-generated distributions and associated inference, Statistical Methodology, vol. 6, pp. 344-362, 2009.
  • [4] A. Alzaghal, F. Famoye, and C. Lee, Exponentiated T-X family of distributions with some applications, International Journal of Probability and Statistics vol. 2, pp. 31–49, 2013.
  • [5] G. M. Cordeiro, and M. de Castro, A new family of generalized distributions, Journal of Statistical Computation and Simulation vol. 81, pp. 883-893, 2011.
  • [6] A. Alzaatreh, C. Lee, and F. Famoye, A new method for generating families of distributions, Metron vol. 71, pp. 63-79, 2013.
  • [7] A. S. Hassan, and S. E. Hemeda, The additive Weibull-g family of probability distributions, International Journals of Mathematics and Its Applications, vol. 4, pp. 151-164, 2016.
  • [8] S Cakmakyapan,. and G. Ozel, The Lindley Family of Distributions: Properties and Applications, vol. 46, no.1, pp. 1113-1137, 2016.
  • [9] F. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos , R. Venancio, and G. Cordeiro, The Odd Lindley-G Family of Distributions, Austrian Journal of Statistics, vol. 46, pp. 65-87, 2017.
  • [10] M. Mead, G. Cordeiro, A. Afify, H. Al-Mofleh, The Alpha Power Transformation Family: Properties and Applications. Pakistan Journal of Statistics and Operation Research. vol. 15. pp. 525-545, 2019. 10.18187/pjsor.v15i3.2969.
  • [11] H. Reyad, M. C. Korkmaz, A.Z., Afify, G. G. Hamedani, and S. Othman, The Frechet Topp Leone-G family of distributions: Properties, characterizations and applications. Annals of Data Science, 2019. https://doi.org/10.1007/s40745-019-00212-9.
  • [12] D. V. Lindley Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society Series B vol. 20, pp. 102-107, 1958.
  • [13] J. Mazucheliand and J. A: Achcar, The Lindley distribution applied to competing risks lifetime data, Computer Methods and Programs in Biomedicine vol. 104, pp. 188-92, 2011.
  • [14] M. Chahkandi, and M. Ganjali, On some lifetime distributions with decrasing failure rate, Computational Statistics and Data Analysis vol. 53, pp. 4433–4440, 2009.
  • [15] M.C. Bryson, Heavy-tailed distribution: properties and tests, Technometrics vol. 16, pp. 161–68, 1974.
  • [16] P.R. Tadikamalla, A look at the Burr and realted distributions, International Statistical Review vol. 48, pp. 337–344, 1980.
  • [17] S.D. Durbey, Compound gamma, beta and F distributions, Metrika vol. 16, pp. 27–31, 1970.
  • [18] A.B. Atkinson, and A.J. Harrison, Distribution of Personal Wealth in Britain Cambridge University Press, Cambridge, 1978.
  • [19] C.M. Harris, The Pareto distribution as a queue service descipline, Operations Research vol. 16, pp. 307–313, 1968.
  • [20] A. Corbellini, L. Crosato, P. Ganugi, and M. Mazzoli, Fitting Pareto II distributions on firm size: Statistical methodology and economic puzzles. Paper presented at the International Conference on Applied Stochastic Models and Data Analysis, Chania, Crete, 2007.
  • [21] O. Holland, A. Golaup, and A. H. Aghvami, Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration, IEEE proceedings on Communications vol. 135, pp. 683–690, 2006.
  • [22] A. S. Hassan, and A. S Al-Ghamdi. Optimum step stress accelerated life testing for Lomax distribution, Journal of Applied Sciences Research vol. 5, 2153-2164, 2009.
  • [23] I. S Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 2007.
  • [24] E.T. Lee, and J.W. Wang, Statistical Methods for Survival Data Analysis, 3rd ed., Wiley, New York, 2003.
  • [25] A.J. Lemonte, and G.M. Cordeiro, An extended Lomax distribution, Statistics, 2011.
  • [26] R.S. Chhikara, and J.L. Folks The inverse Gaussian distribution as a lifetime model. Technometrics vol. 19, pp. 461-468, 1977.
  • [27] S Shrestha, and K. V. Kumar, Bayesian Analysis of Extended Lomax Distribution, International Journal of Mathematics Trends and Technology vol. 7 no. 1, 2014.
Yıl 2021, Cilt: 33 Sayı: 4, 651 - 659, 30.12.2021
https://doi.org/10.7240/jeps.938953

Öz

Kaynakça

  • [1] A. N. Marshall, and I. Olkin, A New method for adding a parameter to a family of distributions with applications to the exponential and Weibull families”, Biometrika vol. 84, pp. 641-552, 1997.
  • [2] N. Eugene, C. Lee, and F,. Famoye, Beta-normal distribution and its applications, Communications in Statistics: Theory and Methods ,vol. 31, pp. 497-512, 2002.
  • [3] K. Zografos, K. and N. Balakrishnan, On families of beta- and generalized gamma-generated distributions and associated inference, Statistical Methodology, vol. 6, pp. 344-362, 2009.
  • [4] A. Alzaghal, F. Famoye, and C. Lee, Exponentiated T-X family of distributions with some applications, International Journal of Probability and Statistics vol. 2, pp. 31–49, 2013.
  • [5] G. M. Cordeiro, and M. de Castro, A new family of generalized distributions, Journal of Statistical Computation and Simulation vol. 81, pp. 883-893, 2011.
  • [6] A. Alzaatreh, C. Lee, and F. Famoye, A new method for generating families of distributions, Metron vol. 71, pp. 63-79, 2013.
  • [7] A. S. Hassan, and S. E. Hemeda, The additive Weibull-g family of probability distributions, International Journals of Mathematics and Its Applications, vol. 4, pp. 151-164, 2016.
  • [8] S Cakmakyapan,. and G. Ozel, The Lindley Family of Distributions: Properties and Applications, vol. 46, no.1, pp. 1113-1137, 2016.
  • [9] F. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos , R. Venancio, and G. Cordeiro, The Odd Lindley-G Family of Distributions, Austrian Journal of Statistics, vol. 46, pp. 65-87, 2017.
  • [10] M. Mead, G. Cordeiro, A. Afify, H. Al-Mofleh, The Alpha Power Transformation Family: Properties and Applications. Pakistan Journal of Statistics and Operation Research. vol. 15. pp. 525-545, 2019. 10.18187/pjsor.v15i3.2969.
  • [11] H. Reyad, M. C. Korkmaz, A.Z., Afify, G. G. Hamedani, and S. Othman, The Frechet Topp Leone-G family of distributions: Properties, characterizations and applications. Annals of Data Science, 2019. https://doi.org/10.1007/s40745-019-00212-9.
  • [12] D. V. Lindley Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society Series B vol. 20, pp. 102-107, 1958.
  • [13] J. Mazucheliand and J. A: Achcar, The Lindley distribution applied to competing risks lifetime data, Computer Methods and Programs in Biomedicine vol. 104, pp. 188-92, 2011.
  • [14] M. Chahkandi, and M. Ganjali, On some lifetime distributions with decrasing failure rate, Computational Statistics and Data Analysis vol. 53, pp. 4433–4440, 2009.
  • [15] M.C. Bryson, Heavy-tailed distribution: properties and tests, Technometrics vol. 16, pp. 161–68, 1974.
  • [16] P.R. Tadikamalla, A look at the Burr and realted distributions, International Statistical Review vol. 48, pp. 337–344, 1980.
  • [17] S.D. Durbey, Compound gamma, beta and F distributions, Metrika vol. 16, pp. 27–31, 1970.
  • [18] A.B. Atkinson, and A.J. Harrison, Distribution of Personal Wealth in Britain Cambridge University Press, Cambridge, 1978.
  • [19] C.M. Harris, The Pareto distribution as a queue service descipline, Operations Research vol. 16, pp. 307–313, 1968.
  • [20] A. Corbellini, L. Crosato, P. Ganugi, and M. Mazzoli, Fitting Pareto II distributions on firm size: Statistical methodology and economic puzzles. Paper presented at the International Conference on Applied Stochastic Models and Data Analysis, Chania, Crete, 2007.
  • [21] O. Holland, A. Golaup, and A. H. Aghvami, Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration, IEEE proceedings on Communications vol. 135, pp. 683–690, 2006.
  • [22] A. S. Hassan, and A. S Al-Ghamdi. Optimum step stress accelerated life testing for Lomax distribution, Journal of Applied Sciences Research vol. 5, 2153-2164, 2009.
  • [23] I. S Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 2007.
  • [24] E.T. Lee, and J.W. Wang, Statistical Methods for Survival Data Analysis, 3rd ed., Wiley, New York, 2003.
  • [25] A.J. Lemonte, and G.M. Cordeiro, An extended Lomax distribution, Statistics, 2011.
  • [26] R.S. Chhikara, and J.L. Folks The inverse Gaussian distribution as a lifetime model. Technometrics vol. 19, pp. 461-468, 1977.
  • [27] S Shrestha, and K. V. Kumar, Bayesian Analysis of Extended Lomax Distribution, International Journal of Mathematics Trends and Technology vol. 7 no. 1, 2014.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Selen Çakmakyapan 0000-0002-1878-2181

Gamze Özel 0000-0003-3886-3074

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 33 Sayı: 4

Kaynak Göster

APA Çakmakyapan, S., & Özel, G. (2021). Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı. International Journal of Advances in Engineering and Pure Sciences, 33(4), 651-659. https://doi.org/10.7240/jeps.938953
AMA Çakmakyapan S, Özel G. Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı. JEPS. Aralık 2021;33(4):651-659. doi:10.7240/jeps.938953
Chicago Çakmakyapan, Selen, ve Gamze Özel. “Sağkalım Ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı”. International Journal of Advances in Engineering and Pure Sciences 33, sy. 4 (Aralık 2021): 651-59. https://doi.org/10.7240/jeps.938953.
EndNote Çakmakyapan S, Özel G (01 Aralık 2021) Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı. International Journal of Advances in Engineering and Pure Sciences 33 4 651–659.
IEEE S. Çakmakyapan ve G. Özel, “Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı”, JEPS, c. 33, sy. 4, ss. 651–659, 2021, doi: 10.7240/jeps.938953.
ISNAD Çakmakyapan, Selen - Özel, Gamze. “Sağkalım Ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı”. International Journal of Advances in Engineering and Pure Sciences 33/4 (Aralık 2021), 651-659. https://doi.org/10.7240/jeps.938953.
JAMA Çakmakyapan S, Özel G. Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı. JEPS. 2021;33:651–659.
MLA Çakmakyapan, Selen ve Gamze Özel. “Sağkalım Ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı”. International Journal of Advances in Engineering and Pure Sciences, c. 33, sy. 4, 2021, ss. 651-9, doi:10.7240/jeps.938953.
Vancouver Çakmakyapan S, Özel G. Sağkalım ve Güvenilirlik Analizlerinde Yeni Bir Olasılık Dağılımı. JEPS. 2021;33(4):651-9.