Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation

Yıl 2023, Cilt: 35 Sayı: 1, 18 - 26, 30.03.2023
https://doi.org/10.7240/jeps.1141264

Öz

The mechanical and elastic properties of SbSeI compound under hydrostatic pressure of 0-40 kBar were investigated for the first time. Quantum Espresso software (QE) was used for all calculations. Elastic constants (Cij) were calculated using the ElaStic package distributed with the QE software and using the energy calculation method in this package. According to the elastic constants obtained, the SbSeI compound was found to be mechanically stable. The results obtained at ambient pressure were found to be in perfect agreement with the literature data. Mechanical properties (bulk modulus, shear modulus, Young's modulus, and Poisson’s ratio), anisotropy, linear compressibility, Debye temperatures, Vickers hardness, and minimum thermal conductivity of the SbSeI compound were calculated using these constants. As a result of the calculations, it was seen that the SbSeI compound is a soft (Vickers hardness < 10 GPa) and anisotropic material.

Destekleyen Kurum

Scientific Research Projects Unit of Osmaniye Korkut Ata University

Proje Numarası

OKÜBAP2018-PT2-001

Teşekkür

This work was supported by OKÜBAP (Scientific Research Projects Unit of Osmaniye Korkut Ata University) with the project number OKÜBAP2018-PT2-001.

Kaynakça

  • [1] B. Peng vd., “Atomically sharp 1D SbSeI, SbSI and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications”, Mar. 2017, Erişim: 10 Şubat 2021. [Çevrimiçi]. Available at: http://arxiv.org/abs/1703.05732
  • [2] Z. S. Aliev, S. S. Musaeva, D. M. Babanly, A. V. Shevelkov, ve M. B. Babanly, “Phase diagram of the Sb-Se-I system and thermodynamic properties of SbSeI”, J. Alloys Compd., c. 505, sayı 2, ss. 450–455, Eyl. 2010, doi: 10.1016/j.jallcom.2010.06.103.
  • [3] W. Khan, S. Hussain, J. Minar, ve S. Azam, “Electronic and Thermoelectric Properties of Ternary Chalcohalide Semiconductors: First Principles Study”, J. Electron. Mater., c. 47, sayı 2, ss. 1131–1139, Şub. 2018, doi: 10.1007/s11664-017-5884-z.
  • [4] K. Mistewicz vd., “Nanogenerator for determination of acoustic power in ultrasonic reactors”, Ultrason. Sonochem., c. 78, s. 105718, Eki. 2021, doi: 10.1016/j.ultsonch.2021.105718.
  • [5] A. Starczewska, “New Approach to Well-Known Compounds — Fabrication and Characterization of A V B VI C VII Nanomaterials”, Acta Phys. Pol. A, c. 139, sayı 4, ss. 394–400, Nis. 2021, doi: 10.12693/APhysPolA.139.394.
  • [6] R. Nie, M. Hu, A. M. Risqi, Z. Li, ve S. Il Seok, “Efficient and Stable Antimony Selenoiodide Solar Cells”, Adv. Sci., c. 8, sayı 8, Nis. 2021, doi: 10.1002/ADVS.202003172.
  • [7] S. K. Balakrishnan, P. C. Parambil, ve E. Edri, “Mechanistic Insight into the Topotactic Transformation of Trichalcogenides to Chalcohalides”, Chem. Mater., c. 34, sayı 7, ss. 3468–3478, Nis. 2022, doi: 10.1021/ACS.CHEMMATER.2C00306/SUPPL_FILE/CM2C00306_SI_001.PDF.
  • [8] A. Ibanez, J. C. Jumas, J. Olivier-Fourcade, E. Philippot, ve M. Maurin, “Sur les chalcogeno-iodures d’antimoine SbXI(X =S, Se, Te): Structures et spectroscopie Mössbauer de121Sb”, J. Solid State Chem., c. 48, sayı 2, ss. 272–283, Tem. 1983, doi: 10.1016/0022-4596(83)90082-8.
  • [9] Y. Shiozaki, E. Nakamura, ve T. Mitsu, Ed., Ferroelektrics and related substances, Inorganic substances other the oxides. Part 1 : SbSI family. Londalt-Börnstein- Group III condensed matter, 2002.
  • [10] A. Audzijonis, R. Sereika, ve R. Žaltauskas, “Antiferroelectric phase transition in SbSI and SbSeI crystals”, Solid State Commun., c. 147, sayı 3–4, ss. 88–89, Tem. 2008, doi: 10.1016/j.ssc.2008.05.008.
  • [11] G. P. Voutsas ve P. J. Rentzeperis, “The crystal structure of antimony selenoiodide, SbSel”, Zeitschrift fur Krist. - New Cryst. Struct., c. 161, sayı 1–2, ss. 111–118, 1982, doi: 10.1524/zkri.1982.161.1-2.111.
  • [12] D. V. Chepur, D. M. Bercha, I. D. Turyanitsa, ve V. Y. Slivka, “Peculiarities of the Energy Spectrum and Edge Absorption in the Chain Compounds AVBVICVII”, Phys. Status Solidi, c. 30, sayı 2, ss. 461–468, Oca. 1968, doi: 10.1002/pssb.19680300206.
  • [13] V. V. Sobolev, E. V. Pesterev, ve V. V. Sobolev, “Absorption spectra of SbSeI and BiSeI crystals”, Inorg. Mater., c. 40, sayı 1, ss. 16–19, Oca. 2004, doi: 10.1023/B:INMA.0000012172.80204.9d.
  • [14] K. Zickus ve A. Audzijonis, “The Absorption Edge of SbSeI and BiSeI”, Phys. Status Solidi B, c. 121, sayı 1, ss. 51–53, 1984.
  • [15] H. Akkus, A. Kazempour, H. Akbarzadeh, ve A. M. Mamedov, “Band structure and optical properties of SbSeI: density-functional calculation”, Phys. status solidi, c. 244, sayı 10, ss. 3673–3683, Eki. 2007, doi: 10.1002/pssb.200642615.
  • [16] T. Ozer ve S. Cabuk, “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, J. Mol. Model., c. 24, sayı 3, s. 66, Mar. 2018, doi: 10.1007/s00894-018-3608-9.
  • [17] T. Ozer ve S. Cabuk, “Ab initio study of the lattice dynamical and thermodynamic properties of SbXI (X= S, Se, Te) compounds”, Comput. Condens. Matter, c. 16, 2018, doi: 10.1016/j.cocom.2018.e00320.
  • [18] Z. Ran vd., “Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials”, npj Comput. Mater., c. 4, sayı 1, s. 14, Ara. 2018, doi: 10.1038/s41524-018-0071-1.
  • [19] O. Agboola vd., “A Short Overview on the Role of Nanotechnology in Different Sectors of Energy System”, A. O. Ayeni, O. Oladokun, ve O. david Orodu, Ed. Cham, Switzerland: Springer, 2022, ss. 99–115. doi: 10.1007/978-3-030-95820-6_9.
  • [20] J. W. Choi, B. Shin, P. Gorai, R. L. Z. Hoye, ve R. Palgrave, “Emerging Earth-Abundant Solar Absorbers”, ACS Energy Lett., c. 7, sayı 4, ss. 1553–1557, Nis. 2022, doi: 10.1021/acsenergylett.2c00516.
  • [21] W. Everhart ve J. Newkirk, “Mechanical properties of Heusler alloys”, Heliyon, c. 5, sayı 5, s. e01578, May. 2019, doi: 10.1016/j.heliyon.2019.e01578.
  • [22] P. Hohenberg ve W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., c. 136, sayı 3B, 1964, doi: 10.1103/PhysRev.136.B864.
  • [23] W. Kohn ve L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev., c. 140, sayı 4A, 1965, doi: 10.1103/PhysRev.140.A1133.
  • [24] P. Giannozzi vd., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter, c. 21, sayı 39, 2009, doi: 10.1088/0953-8984/21/39/395502.
  • [25] R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, ve C. Draxl, “ElaStic: A tool for calculating second-order elastic constants from first principles”, Comput. Phys. Commun., c. 184, sayı 8, ss. 1861–1873, Ağu. 2013, doi: 10.1016/j.cpc.2013.03.010.
  • [26] K. Momma ve F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, J. Appl. Crystallogr., c. 44, sayı 6, ss. 1272–1276, Ara. 2011, doi: 10.1107/S0021889811038970.
  • [27] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, ve O. Eriksson, “Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2”, J. Appl. Phys., c. 84, sayı 9, ss. 4891–4904, Kas. 1998, doi: 10.1063/1.368733.
  • [28] O. Beckstein, J. E. Klepeis, G. L. W. Hart, ve O. Pankratov, “First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi”, Phys. Rev. B, c. 63, sayı 13, s. 134112, Mar. 2001, doi: 10.1103/PhysRevB.63.134112.
  • [29] D. Connétable ve O. Thomas, “First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi”, Phys. Rev. B, c. 79, sayı 9, s. 094101, Mar. 2009, doi: 10.1103/PhysRevB.79.094101.
  • [30] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, London, Edinburgh, Dublin Philos. Mag. J. Sci., c. 45, sayı 367, ss. 823–843, Ağu. 1954, doi: 10.1080/14786440808520496.
  • [31] G. K. Arusei, M. Chepkoech, G. O. Amolo, ve N. Wambua, “The elastic properties and lattice dynamics for selected 211 MAX phases: A DFT study”, Kas. 2020, Erişim: 23 Ocak 2021. [Çevrimiçi]. Available at: http://arxiv.org/abs/2011.07102
  • [32] U. Koroglu, S. Cabuk, ve E. Deligoz, “First-principles study of structural, elastic, electronic and vibrational properties of BiCoO3”, Solid State Sci., c. 34, ss. 1–7, Ağu. 2014, doi: 10.1016/j.solidstatesciences.2014.04.015.
  • [33] X.-Q. Chen, H. Niu, D. Li, ve Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses”, Intermetallics, c. 19, sayı 9, ss. 1275–1281, Eyl. 2011, doi: 10.1016/j.intermet.2011.03.026.
  • [34] E. S. Yousef, A. El-Adawy, ve N. El-KheshKhany, “Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system”, Solid State Commun., c. 139, sayı 3, ss. 108–113, Tem. 2006, doi: 10.1016/J.SSC.2006.05.022.
  • [35] Y. Tian, B. Xu, ve Z. Zhao, “Microscopic theory of hardness and design of novel superhard crystals”, Int. J. Refract. Met. Hard Mater., c. 33, ss. 93–106, Tem. 2012, doi: 10.1016/J.IJRMHM.2012.02.021.
  • [36] W. Liu, Y. Niu, ve W. Li, “Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations”, Ceram. Int., c. 46, sayı 16, ss. 25359–25365, Kas. 2020, doi: 10.1016/j.ceramint.2020.07.003.
  • [37] S. I. Ranganathan ve M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index”, APS, c. 101, sayı 5, Ağu. 2008, doi: 10.1103/PhysRevLett.101.055504.
  • [38] D. H. Buessem ve W. R. Chung, Anisotropy in Single-Crystal Refractory Compounds, 1st editio. Boston, MA: Springer US, 1968. doi: 10.1007/978-1-4899-5307-0.
  • [39] R. Gaillac, P. Pullumbi, ve F.-X. Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors”, J. Phys. Condens. Matter, c. 28, sayı 27, s. 275201, Tem. 2016, doi: 10.1088/0953-8984/28/27/275201.
  • [40] Y. Duan, Y. Wang, M. Peng, ve K. Wang, “Insight into anisotropies in mechanical and thermal properties of AGdS2 (A = alkali metals) ternary gadolinium sulfides”, Mater. Today Commun., c. 26, s. 101991, Mar. 2021, doi: 10.1016/j.mtcomm.2020.101991.
  • [41] Y. Wang, Y. Wu, X. Wang, Y. Duan, ve M. Peng, “Insights into structural stability, electronic structure, and elastic and thermodynamic properties of A15-type Mo3X (X = Si, Ge, and Sn) compounds based on first-principles predictions”, J. Phys. Chem. Solids, c. 151, s. 109925, Nis. 2021, doi: 10.1016/j.jpcs.2020.109925.
  • [42] W. Zuo, V. Pelenovich, D. Neena, X. Zeng, C. Liu, ve D. Fu, “Determination of Debye temperatures in SmFe1-xCoxAsO superconductors by Mӧssbauer spectroscopy and effect of cobalt doping”, J. Phys. Chem. Solids, c. 146, s. 109621, Kas. 2020, doi: 10.1016/j.jpcs.2020.109621.
  • [43] D. N. Blaschke, “Velocity dependent dislocation drag from phonon wind and crystal geometry”, J. Phys. Chem. Solids, c. 124, ss. 24–35, Oca. 2019, doi: 10.1016/j.jpcs.2018.08.032.
  • [44] J. Kou, Y. Zhou, K.-L. Li, ve L.-H. Gan, “The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals”, Comput. Mater. Sci., c. 182, s. 109758, Eyl. 2020, doi: 10.1016/j.commatsci.2020.109758.
  • [45] C. M. I. Okoye, “Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds”, Comput. Mater. Sci., c. 92, ss. 141–148, Eyl. 2014, doi: 10.1016/j.commatsci.2014.05.016.
  • [46] F. Arab, F. A. Sahraoui, K. Haddadi, A. Bouhemadou, ve L. Louail, “Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study”, Phase Transitions, c. 89, sayı 5, ss. 480–513, May. 2016, doi: 10.1080/01411594.2015.1089574.
  • [47] G. Surucu ve A. Erkisi, “The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds”, J. Boron, Mar. 2018, doi: 10.30728/boron.333855.
  • [48] D. R. Clarke, “Materials selections guidelines for low thermal conductivity thermal barrier coatings”, Surf. Coatings Technol., c. 163–164, ss. 67–74, Oca. 2003, doi: 10.1016/S0257-8972(02)00593-5.
  • [49] D. G. Cahill, S. K. Watson, ve R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals”, Phys. Rev. B, c. 46, sayı 10, s. 6131, Eyl. 1992, doi: 10.1103/PhysRevB.46.6131.
  • [50] J. Long, C. Shu, L. Yang, ve M. Yang, “Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation”, J. Alloys Compd., c. 644, ss. 638–644, Eyl. 2015, doi: 10.1016/J.JALLCOM.2015.04.229.
  • [51] D. Wang vd., “Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure”, Sci. China Mater., c. 63, sayı 9, ss. 1759–1768, Eyl. 2020, doi: 10.1007/S40843-020-1407-X.

SbSeI'nin Anizotropik Elastik Özelliklerine Basıncın Etkileri: DFT Hesaplaması

Yıl 2023, Cilt: 35 Sayı: 1, 18 - 26, 30.03.2023
https://doi.org/10.7240/jeps.1141264

Öz

SbSeI bileşiğinin 0-40 kBar hidrostatik basınç altında mekanik ve elastik özellikleri ilk kez incelenmiştir. Tüm hesaplamalar için Quantum Espresso yazılımı (QE) kullanıldı. Elastik sabitler (Cij), QE yazılımı ile dağıtılan ElaStic paketi ve bu paketteki enerji hesaplama yöntemi kullanılarak hesaplanmıştır. Elde edilen elastik sabitlere göre SbSeI bileşiğinin mekanik olarak kararlı olduğu söylenebilir. Ortam basıncında elde edilen sonuçların literatür verileriyle mükemmel bir uyum içinde olduğu bulundu. SbSeI bileşiğinin mekanik özellikleri (yığın modülü, kesme modülü, Young modülü ve Poisson oranı), anizotropi, doğrusal sıkıştırılabilirlik, Debye sıcaklıkları, Vicker sertliği ve minimum termal iletkenliği bu sabitler kullanılarak hesaplandı.

Proje Numarası

OKÜBAP2018-PT2-001

Kaynakça

  • [1] B. Peng vd., “Atomically sharp 1D SbSeI, SbSI and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications”, Mar. 2017, Erişim: 10 Şubat 2021. [Çevrimiçi]. Available at: http://arxiv.org/abs/1703.05732
  • [2] Z. S. Aliev, S. S. Musaeva, D. M. Babanly, A. V. Shevelkov, ve M. B. Babanly, “Phase diagram of the Sb-Se-I system and thermodynamic properties of SbSeI”, J. Alloys Compd., c. 505, sayı 2, ss. 450–455, Eyl. 2010, doi: 10.1016/j.jallcom.2010.06.103.
  • [3] W. Khan, S. Hussain, J. Minar, ve S. Azam, “Electronic and Thermoelectric Properties of Ternary Chalcohalide Semiconductors: First Principles Study”, J. Electron. Mater., c. 47, sayı 2, ss. 1131–1139, Şub. 2018, doi: 10.1007/s11664-017-5884-z.
  • [4] K. Mistewicz vd., “Nanogenerator for determination of acoustic power in ultrasonic reactors”, Ultrason. Sonochem., c. 78, s. 105718, Eki. 2021, doi: 10.1016/j.ultsonch.2021.105718.
  • [5] A. Starczewska, “New Approach to Well-Known Compounds — Fabrication and Characterization of A V B VI C VII Nanomaterials”, Acta Phys. Pol. A, c. 139, sayı 4, ss. 394–400, Nis. 2021, doi: 10.12693/APhysPolA.139.394.
  • [6] R. Nie, M. Hu, A. M. Risqi, Z. Li, ve S. Il Seok, “Efficient and Stable Antimony Selenoiodide Solar Cells”, Adv. Sci., c. 8, sayı 8, Nis. 2021, doi: 10.1002/ADVS.202003172.
  • [7] S. K. Balakrishnan, P. C. Parambil, ve E. Edri, “Mechanistic Insight into the Topotactic Transformation of Trichalcogenides to Chalcohalides”, Chem. Mater., c. 34, sayı 7, ss. 3468–3478, Nis. 2022, doi: 10.1021/ACS.CHEMMATER.2C00306/SUPPL_FILE/CM2C00306_SI_001.PDF.
  • [8] A. Ibanez, J. C. Jumas, J. Olivier-Fourcade, E. Philippot, ve M. Maurin, “Sur les chalcogeno-iodures d’antimoine SbXI(X =S, Se, Te): Structures et spectroscopie Mössbauer de121Sb”, J. Solid State Chem., c. 48, sayı 2, ss. 272–283, Tem. 1983, doi: 10.1016/0022-4596(83)90082-8.
  • [9] Y. Shiozaki, E. Nakamura, ve T. Mitsu, Ed., Ferroelektrics and related substances, Inorganic substances other the oxides. Part 1 : SbSI family. Londalt-Börnstein- Group III condensed matter, 2002.
  • [10] A. Audzijonis, R. Sereika, ve R. Žaltauskas, “Antiferroelectric phase transition in SbSI and SbSeI crystals”, Solid State Commun., c. 147, sayı 3–4, ss. 88–89, Tem. 2008, doi: 10.1016/j.ssc.2008.05.008.
  • [11] G. P. Voutsas ve P. J. Rentzeperis, “The crystal structure of antimony selenoiodide, SbSel”, Zeitschrift fur Krist. - New Cryst. Struct., c. 161, sayı 1–2, ss. 111–118, 1982, doi: 10.1524/zkri.1982.161.1-2.111.
  • [12] D. V. Chepur, D. M. Bercha, I. D. Turyanitsa, ve V. Y. Slivka, “Peculiarities of the Energy Spectrum and Edge Absorption in the Chain Compounds AVBVICVII”, Phys. Status Solidi, c. 30, sayı 2, ss. 461–468, Oca. 1968, doi: 10.1002/pssb.19680300206.
  • [13] V. V. Sobolev, E. V. Pesterev, ve V. V. Sobolev, “Absorption spectra of SbSeI and BiSeI crystals”, Inorg. Mater., c. 40, sayı 1, ss. 16–19, Oca. 2004, doi: 10.1023/B:INMA.0000012172.80204.9d.
  • [14] K. Zickus ve A. Audzijonis, “The Absorption Edge of SbSeI and BiSeI”, Phys. Status Solidi B, c. 121, sayı 1, ss. 51–53, 1984.
  • [15] H. Akkus, A. Kazempour, H. Akbarzadeh, ve A. M. Mamedov, “Band structure and optical properties of SbSeI: density-functional calculation”, Phys. status solidi, c. 244, sayı 10, ss. 3673–3683, Eki. 2007, doi: 10.1002/pssb.200642615.
  • [16] T. Ozer ve S. Cabuk, “First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals”, J. Mol. Model., c. 24, sayı 3, s. 66, Mar. 2018, doi: 10.1007/s00894-018-3608-9.
  • [17] T. Ozer ve S. Cabuk, “Ab initio study of the lattice dynamical and thermodynamic properties of SbXI (X= S, Se, Te) compounds”, Comput. Condens. Matter, c. 16, 2018, doi: 10.1016/j.cocom.2018.e00320.
  • [18] Z. Ran vd., “Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials”, npj Comput. Mater., c. 4, sayı 1, s. 14, Ara. 2018, doi: 10.1038/s41524-018-0071-1.
  • [19] O. Agboola vd., “A Short Overview on the Role of Nanotechnology in Different Sectors of Energy System”, A. O. Ayeni, O. Oladokun, ve O. david Orodu, Ed. Cham, Switzerland: Springer, 2022, ss. 99–115. doi: 10.1007/978-3-030-95820-6_9.
  • [20] J. W. Choi, B. Shin, P. Gorai, R. L. Z. Hoye, ve R. Palgrave, “Emerging Earth-Abundant Solar Absorbers”, ACS Energy Lett., c. 7, sayı 4, ss. 1553–1557, Nis. 2022, doi: 10.1021/acsenergylett.2c00516.
  • [21] W. Everhart ve J. Newkirk, “Mechanical properties of Heusler alloys”, Heliyon, c. 5, sayı 5, s. e01578, May. 2019, doi: 10.1016/j.heliyon.2019.e01578.
  • [22] P. Hohenberg ve W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., c. 136, sayı 3B, 1964, doi: 10.1103/PhysRev.136.B864.
  • [23] W. Kohn ve L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev., c. 140, sayı 4A, 1965, doi: 10.1103/PhysRev.140.A1133.
  • [24] P. Giannozzi vd., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter, c. 21, sayı 39, 2009, doi: 10.1088/0953-8984/21/39/395502.
  • [25] R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, ve C. Draxl, “ElaStic: A tool for calculating second-order elastic constants from first principles”, Comput. Phys. Commun., c. 184, sayı 8, ss. 1861–1873, Ağu. 2013, doi: 10.1016/j.cpc.2013.03.010.
  • [26] K. Momma ve F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, J. Appl. Crystallogr., c. 44, sayı 6, ss. 1272–1276, Ara. 2011, doi: 10.1107/S0021889811038970.
  • [27] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, ve O. Eriksson, “Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2”, J. Appl. Phys., c. 84, sayı 9, ss. 4891–4904, Kas. 1998, doi: 10.1063/1.368733.
  • [28] O. Beckstein, J. E. Klepeis, G. L. W. Hart, ve O. Pankratov, “First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi”, Phys. Rev. B, c. 63, sayı 13, s. 134112, Mar. 2001, doi: 10.1103/PhysRevB.63.134112.
  • [29] D. Connétable ve O. Thomas, “First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi”, Phys. Rev. B, c. 79, sayı 9, s. 094101, Mar. 2009, doi: 10.1103/PhysRevB.79.094101.
  • [30] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, London, Edinburgh, Dublin Philos. Mag. J. Sci., c. 45, sayı 367, ss. 823–843, Ağu. 1954, doi: 10.1080/14786440808520496.
  • [31] G. K. Arusei, M. Chepkoech, G. O. Amolo, ve N. Wambua, “The elastic properties and lattice dynamics for selected 211 MAX phases: A DFT study”, Kas. 2020, Erişim: 23 Ocak 2021. [Çevrimiçi]. Available at: http://arxiv.org/abs/2011.07102
  • [32] U. Koroglu, S. Cabuk, ve E. Deligoz, “First-principles study of structural, elastic, electronic and vibrational properties of BiCoO3”, Solid State Sci., c. 34, ss. 1–7, Ağu. 2014, doi: 10.1016/j.solidstatesciences.2014.04.015.
  • [33] X.-Q. Chen, H. Niu, D. Li, ve Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses”, Intermetallics, c. 19, sayı 9, ss. 1275–1281, Eyl. 2011, doi: 10.1016/j.intermet.2011.03.026.
  • [34] E. S. Yousef, A. El-Adawy, ve N. El-KheshKhany, “Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system”, Solid State Commun., c. 139, sayı 3, ss. 108–113, Tem. 2006, doi: 10.1016/J.SSC.2006.05.022.
  • [35] Y. Tian, B. Xu, ve Z. Zhao, “Microscopic theory of hardness and design of novel superhard crystals”, Int. J. Refract. Met. Hard Mater., c. 33, ss. 93–106, Tem. 2012, doi: 10.1016/J.IJRMHM.2012.02.021.
  • [36] W. Liu, Y. Niu, ve W. Li, “Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations”, Ceram. Int., c. 46, sayı 16, ss. 25359–25365, Kas. 2020, doi: 10.1016/j.ceramint.2020.07.003.
  • [37] S. I. Ranganathan ve M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index”, APS, c. 101, sayı 5, Ağu. 2008, doi: 10.1103/PhysRevLett.101.055504.
  • [38] D. H. Buessem ve W. R. Chung, Anisotropy in Single-Crystal Refractory Compounds, 1st editio. Boston, MA: Springer US, 1968. doi: 10.1007/978-1-4899-5307-0.
  • [39] R. Gaillac, P. Pullumbi, ve F.-X. Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors”, J. Phys. Condens. Matter, c. 28, sayı 27, s. 275201, Tem. 2016, doi: 10.1088/0953-8984/28/27/275201.
  • [40] Y. Duan, Y. Wang, M. Peng, ve K. Wang, “Insight into anisotropies in mechanical and thermal properties of AGdS2 (A = alkali metals) ternary gadolinium sulfides”, Mater. Today Commun., c. 26, s. 101991, Mar. 2021, doi: 10.1016/j.mtcomm.2020.101991.
  • [41] Y. Wang, Y. Wu, X. Wang, Y. Duan, ve M. Peng, “Insights into structural stability, electronic structure, and elastic and thermodynamic properties of A15-type Mo3X (X = Si, Ge, and Sn) compounds based on first-principles predictions”, J. Phys. Chem. Solids, c. 151, s. 109925, Nis. 2021, doi: 10.1016/j.jpcs.2020.109925.
  • [42] W. Zuo, V. Pelenovich, D. Neena, X. Zeng, C. Liu, ve D. Fu, “Determination of Debye temperatures in SmFe1-xCoxAsO superconductors by Mӧssbauer spectroscopy and effect of cobalt doping”, J. Phys. Chem. Solids, c. 146, s. 109621, Kas. 2020, doi: 10.1016/j.jpcs.2020.109621.
  • [43] D. N. Blaschke, “Velocity dependent dislocation drag from phonon wind and crystal geometry”, J. Phys. Chem. Solids, c. 124, ss. 24–35, Oca. 2019, doi: 10.1016/j.jpcs.2018.08.032.
  • [44] J. Kou, Y. Zhou, K.-L. Li, ve L.-H. Gan, “The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals”, Comput. Mater. Sci., c. 182, s. 109758, Eyl. 2020, doi: 10.1016/j.commatsci.2020.109758.
  • [45] C. M. I. Okoye, “Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds”, Comput. Mater. Sci., c. 92, ss. 141–148, Eyl. 2014, doi: 10.1016/j.commatsci.2014.05.016.
  • [46] F. Arab, F. A. Sahraoui, K. Haddadi, A. Bouhemadou, ve L. Louail, “Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study”, Phase Transitions, c. 89, sayı 5, ss. 480–513, May. 2016, doi: 10.1080/01411594.2015.1089574.
  • [47] G. Surucu ve A. Erkisi, “The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds”, J. Boron, Mar. 2018, doi: 10.30728/boron.333855.
  • [48] D. R. Clarke, “Materials selections guidelines for low thermal conductivity thermal barrier coatings”, Surf. Coatings Technol., c. 163–164, ss. 67–74, Oca. 2003, doi: 10.1016/S0257-8972(02)00593-5.
  • [49] D. G. Cahill, S. K. Watson, ve R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals”, Phys. Rev. B, c. 46, sayı 10, s. 6131, Eyl. 1992, doi: 10.1103/PhysRevB.46.6131.
  • [50] J. Long, C. Shu, L. Yang, ve M. Yang, “Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation”, J. Alloys Compd., c. 644, ss. 638–644, Eyl. 2015, doi: 10.1016/J.JALLCOM.2015.04.229.
  • [51] D. Wang vd., “Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure”, Sci. China Mater., c. 63, sayı 9, ss. 1759–1768, Eyl. 2020, doi: 10.1007/S40843-020-1407-X.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Tahsin Özer 0000-0003-0344-7118

Proje Numarası OKÜBAP2018-PT2-001
Erken Görünüm Tarihi 29 Mart 2023
Yayımlanma Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 35 Sayı: 1

Kaynak Göster

APA Özer, T. (2023). The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation. International Journal of Advances in Engineering and Pure Sciences, 35(1), 18-26. https://doi.org/10.7240/jeps.1141264
AMA Özer T. The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation. JEPS. Mart 2023;35(1):18-26. doi:10.7240/jeps.1141264
Chicago Özer, Tahsin. “The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation”. International Journal of Advances in Engineering and Pure Sciences 35, sy. 1 (Mart 2023): 18-26. https://doi.org/10.7240/jeps.1141264.
EndNote Özer T (01 Mart 2023) The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation. International Journal of Advances in Engineering and Pure Sciences 35 1 18–26.
IEEE T. Özer, “The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation”, JEPS, c. 35, sy. 1, ss. 18–26, 2023, doi: 10.7240/jeps.1141264.
ISNAD Özer, Tahsin. “The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation”. International Journal of Advances in Engineering and Pure Sciences 35/1 (Mart 2023), 18-26. https://doi.org/10.7240/jeps.1141264.
JAMA Özer T. The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation. JEPS. 2023;35:18–26.
MLA Özer, Tahsin. “The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation”. International Journal of Advances in Engineering and Pure Sciences, c. 35, sy. 1, 2023, ss. 18-26, doi:10.7240/jeps.1141264.
Vancouver Özer T. The Effect of Pressure on Anisotropic Elastic Properties of SbSeI: DFT Calculation. JEPS. 2023;35(1):18-26.