Araştırma Makalesi
BibTex RIS Kaynak Göster

Işık–Madde Etkileşimini İyileştirmek İçin Hibrit Fotonik–Plazmonik Rezonatörde Kuvvetlice Sınırlandırılmış Elektromanyetik Dalgalar

Yıl 2023, Cilt: 35 Sayı: 1, 81 - 88, 30.03.2023
https://doi.org/10.7240/jeps.1210031

Öz

Bu makalede; ışık–madde etkileşimini iyileştirmek için, bir boyutlu fotonik kristal dalga klavuzu ve plazmonik bileşik nano-sistemden oluşan hibrit fotonik-plazmonik bir yapı dizaynı sunulmaktadır. Fotonik kristal nanohüzme, ışık dalgalarının zamansal olarak yüksek derecede hapsedilmesini sağlarken; altın nano-parçacığın yüzey plazmonlarının rezonatörün kavite modu ile eşleşmesi sonucu; çok küçük bir hacimde güçlü bir şekilde sınırlandırılmış ışık dalgalarının optik alanı yoğunlaştırdığı gösterilmektedir. Işık–madde etkileşimindeki iyileşme faktörü; nümerik olarak elde edilmiş sonuçlar kullanılarak, tek-atom pekişim parametreleri aracılığı ile incelenmiş, plazmonik nanoparçacığın varlığında önemli ölçüde azalan mod hacminin sonucunda 14 olarak hesaplanmıştır. Buna ek olarak, bu makalede sunulan teorik model ve hesaplama prosedürlerinin, hibrit fotonik-plazmonik rezonatörlere dayalı verimli kuantum cihazların üretimine öncülük ettiği gösterilmektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120F323

Kaynakça

  • REFERENCES [1] Giannini, V., Fernández‐Domínguez, A.I., Sonnefraud, Y., Roschuk, T., Fernández‐García, R. and Maier, S.A. (2010). Controlling light localization and light–matter interactions with nanoplasmonics. Small, 6, 2498–2507.
  • [2] Xu, Y., Ji, D., Song, H., Zhang, N., Hu, Y., Anthopoulos, T.D., Di Fabrizio, E.M., Xiao, S. and Gan, Q. (2018). Light–matter interaction within extreme dimensions: From nanomanufacturing to applications. Advanced Optical Materials, 6, 1800444.
  • [3] Koenderink, A.F., Alù, A. and Polman, A. (2015). Nanophotonics: Shrinking light-based technology. Science, 348, 516–521.
  • [4] Feng, L., Zhang, M., Wang, J., Zhou, X., Qiang, X., Guo, G., and Ren, X. (2022). Silicon photonic devices for scalable quantum information applications. Photonics Research, 10, A135–A153.
  • [5] Bekele, D., Yu, Y., Yvind, K. and Mork, J. (2019). In-plane photonic crystal devices using Fano resonances. Laser & Photonics Reviews, 13, 1900054.
  • [6] Zhang, Y., Zhao, Y. and Lv, R. (2015). A review for optical sensors based on photonic crystal cavities. Sensors and Actuators A: Physical, 233, 374–389.
  • [7] Javadi, A., Söllner, I., Arcari, M., Lindskov Hansen, S., Midolo, L., Mahmoodian, S., Kiršanskė, G., Pregnolato, T, Lee, E.H, Song, J.D., Stobbe, S. And Lodahl, P. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.
  • [8] Zhang, Z. and Qiu, M. (2004). Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Optics Express, 12, 3988–3995.
  • [9] Liu, F., Brash, A.J., O’Hara, J., Martins, L.M.P.P., Phillips, C.L., Coles, R.J., Royall, B., Clarke, E., Bentham, C., Prtljaga, N., Itskevich, I. E., Wilson, L. R., Skolnick, M. S. and Fox, A. M. (2018). High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology, 13, 835–840.
  • [10] Noda, S., Fujita, M. and Asano, T. (2007). Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 1, 449–458.
  • [11] Yang, D., Tian, H. and Ji, Y. (2015). High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Applied Optics, 54,1–5.
  • [12] Yang, D., Zhang, P., Tian, H., Ji, Y., Quan, Q. (2015). Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing. IEEE Photonics Journal, 7, 1–8.
  • [13] McCutcheon, M.W. and Loncar, M. (2008). Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Optics Express, 16, 19136–19145.
  • [14] Gupta, S. and Waks, E. (2013). Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity. Optics Express, 21, 29612–29619.
  • [15] Yang, D., Wang, C. and Ji, Y. (2016). Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Optics Express, 24, 16267–16279.
  • [16] Fryett, T.K, Chen, Y., Whitehead, J., Peycke, Z.M., Xu, X. And Majumdar, A. (2018). Encapsulated silicon nitride nanobeam cavity for hybrid nanophotonics. ACS Photonics, 5, 2176–2181.
  • [17] Chen, Y., Ryou, A., Friedfeld, M.R., Fryett, T., Whitehead, J., Cossairt, B.M. and Majumdar, A. (2018). Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities. Nano Letters, 18, 6404–6410.
  • [18] Mandal, S., Serey, X. and Erickson, D. Nanomanipulation using silicon photonic crystal resonators. (2009). Nano Letters, 10, 99–104.
  • [19] Liang, F., Clarke, N., Patel, P., Loncar, M. and Quan, Q. (2013). Scalable photonic crystal chips for high sensitivity protein detection. Optics Express, 21, 32306–32312.
  • [20] Hendrickson, J., Soref, R., Sweet, J. and Buchwald, W. (2014). Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Optics Express, 22, 3271–3283.
  • [21] Dutta, H.S., Goyal, A.K., Srivastava, V. and Pal, S. (2016). Coupling light in photonic crystal waveguides: A review. Photonics and Nanostructures - Fundamentals and Applications, 20, 41–58.
  • [22] Quan, Q., Deotare, P.B. and Marko, L. (2010). Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Applied Physics Letters, 96, 203102.
  • [23] Gramotnev, D.K. and Bozhevolnyi, S.I. (2014). Nanofocusing of electromagnetic radiation. Nature Photonics, 8, 13–22.
  • [24] Song, M., Wang, C., Zhao, Z., Pu, M., Liu, L., Zhang, W., Yub, H. and Luo, X. (2016). Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 8, 1635–1641.
  • [25] Schuller, J.A., Barnard, E.S., Cai, W., Jun Y.C., White, J.S. and Brongersma, M.L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193–204.
  • [26] Conteduca, D., Reardon, C., Scullion, M.G., Dell’Olio, F. and Armenise, M.N. (2017). Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2, 086101.
  • [27] Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C. and Benson, O. (2010). Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Letters, 10, 891–895. [28] Gökbulut, B. (2022). A hybrid photonic-plasmonic resonator based on a partially encapsulated 1D photonic crystal waveguide and a plasmonic nanoparticle. Heliyon, 8, e12346.
  • [29] Zhang, H., Zhao, W., Liu, Y., Chen, J., Wang, X. and Lu, C. (2021). Photonic-plasmonic hybrid microcavities: Physics and applications. Chinese Physics B, 30, 117801.
  • [30] Hajshahvaladi, L., Kaatuzian, H. and Danaie, M. (2021). Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Physics Letters A, 420, 127754.
  • [31] Hajshahvaladi, L. Kaatuzian, H. Moghaddasi, M. and Danaie, M. (2022). Hybridization of surface plasmons and photonic crystal resonators for high-sensitivity and high-resolution sensing applications. Scientific Reports, 12, 21292.
  • [32] Hajshahvaladi, L., Kaatuzian, H. and Danaie, M. (2022). A very high-resolution refractive index sensor based on hybrid topology of photonic crystal cavity and plasmonic nested split-ring resonator. Photonics and Nanostructures – Fundamentals and Applications, 51, 101042. [33] Bauters, J.F., Heck, M.J.R., John, D., Dai D., Tien, M.C., Barton, J.S., Leinse, A., Heideman, R.G., Blumenthal, D.J. and Bowers, J.E. (2011). Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 19, 3163–3174.
  • [34] Grande, M., Calo, G., Petruzzelli, V. and D'Orazio, A. (2012). High-Q photonic crystal nanobeam cavity based on a silicon nitride membrane incorporating fabrication imperfections and a low-index material layer. Progress in Electromagnetic Research, 37, 191–204.
  • [35] Samanta, A., Zhou, Y., Zou, S., Yan, H. and Liu, Y. (2014). Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Letters, 14, 5052–5057.
  • [36] Purcell, E.M. (1946). Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681.
  • [37] Sauvan, C., Hugonin, J.P., Maksymov, I.S., Lalanne, P. (2013). Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Physical Review Letters, 110, 237401.
  • [38] Walls, D.F. and Milburn, G.J. (2008). Quantum Optics. 2nd edition, Springer, Berlin.
  • [39] Xiao, Y.-F., Liu, Y.-C., Li, B.-B., Chen, Y.-L., Li, Y. and Gong, Q. (2012). Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Physical Review A, 85, 031805(R).
  • [40] Liu, J.N., Huang, Q., Liu, K.K., Singamaneni, S. and Cunningham, B.T. (2010). Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling. Nano Letters, 17, 7569–7577.
  • [41] Do, J., Sediq, K.N., Deasy, K., Coles, D.M., Rodríguez‐Fernández, J., Feldmann, J. and Lidzey, D.G. (2013). Photonic crystal nanocavities containing plasmonic nanoparticles assembled using a laser‐printing technique. Advanced Optical Materials, 1, 946–951.
  • [42] Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C. and Benson, O. (2010). Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Letters, 10, 891–895.

Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction

Yıl 2023, Cilt: 35 Sayı: 1, 81 - 88, 30.03.2023
https://doi.org/10.7240/jeps.1210031

Öz

In this paper, a 1D photonic crystal waveguide and a plasmonic compound nano-system are utilized to design a hybrid photonic-plasmonic device for enhancement of light–matter interaction. Strongly localized light waves in a very small volume intensify the optical field, via surface plasmons due to presence of a gold nanoparticle, which interacts with the resonator’s cavity mode while the photonic crystal nanobeam ensures a high temporal confinement. The enhancement factor of light–matter interaction in the hybrid resonator is investigated through the single-atom cooperativity parameters based on numerically obtained results, which is calculated to be 14 as a result of the considerably reduced optical mode volume in the presence of the plasmonic nanoparticle. Additionally, the theoretical models and calculation procedures, presented in this paper, are demonstrated to be pioneering for the fabrication of efficient quantum devices based on hybrid photonic-plasmonic resonators.

Proje Numarası

120F323

Kaynakça

  • REFERENCES [1] Giannini, V., Fernández‐Domínguez, A.I., Sonnefraud, Y., Roschuk, T., Fernández‐García, R. and Maier, S.A. (2010). Controlling light localization and light–matter interactions with nanoplasmonics. Small, 6, 2498–2507.
  • [2] Xu, Y., Ji, D., Song, H., Zhang, N., Hu, Y., Anthopoulos, T.D., Di Fabrizio, E.M., Xiao, S. and Gan, Q. (2018). Light–matter interaction within extreme dimensions: From nanomanufacturing to applications. Advanced Optical Materials, 6, 1800444.
  • [3] Koenderink, A.F., Alù, A. and Polman, A. (2015). Nanophotonics: Shrinking light-based technology. Science, 348, 516–521.
  • [4] Feng, L., Zhang, M., Wang, J., Zhou, X., Qiang, X., Guo, G., and Ren, X. (2022). Silicon photonic devices for scalable quantum information applications. Photonics Research, 10, A135–A153.
  • [5] Bekele, D., Yu, Y., Yvind, K. and Mork, J. (2019). In-plane photonic crystal devices using Fano resonances. Laser & Photonics Reviews, 13, 1900054.
  • [6] Zhang, Y., Zhao, Y. and Lv, R. (2015). A review for optical sensors based on photonic crystal cavities. Sensors and Actuators A: Physical, 233, 374–389.
  • [7] Javadi, A., Söllner, I., Arcari, M., Lindskov Hansen, S., Midolo, L., Mahmoodian, S., Kiršanskė, G., Pregnolato, T, Lee, E.H, Song, J.D., Stobbe, S. And Lodahl, P. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.
  • [8] Zhang, Z. and Qiu, M. (2004). Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Optics Express, 12, 3988–3995.
  • [9] Liu, F., Brash, A.J., O’Hara, J., Martins, L.M.P.P., Phillips, C.L., Coles, R.J., Royall, B., Clarke, E., Bentham, C., Prtljaga, N., Itskevich, I. E., Wilson, L. R., Skolnick, M. S. and Fox, A. M. (2018). High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology, 13, 835–840.
  • [10] Noda, S., Fujita, M. and Asano, T. (2007). Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 1, 449–458.
  • [11] Yang, D., Tian, H. and Ji, Y. (2015). High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Applied Optics, 54,1–5.
  • [12] Yang, D., Zhang, P., Tian, H., Ji, Y., Quan, Q. (2015). Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing. IEEE Photonics Journal, 7, 1–8.
  • [13] McCutcheon, M.W. and Loncar, M. (2008). Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Optics Express, 16, 19136–19145.
  • [14] Gupta, S. and Waks, E. (2013). Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity. Optics Express, 21, 29612–29619.
  • [15] Yang, D., Wang, C. and Ji, Y. (2016). Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Optics Express, 24, 16267–16279.
  • [16] Fryett, T.K, Chen, Y., Whitehead, J., Peycke, Z.M., Xu, X. And Majumdar, A. (2018). Encapsulated silicon nitride nanobeam cavity for hybrid nanophotonics. ACS Photonics, 5, 2176–2181.
  • [17] Chen, Y., Ryou, A., Friedfeld, M.R., Fryett, T., Whitehead, J., Cossairt, B.M. and Majumdar, A. (2018). Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities. Nano Letters, 18, 6404–6410.
  • [18] Mandal, S., Serey, X. and Erickson, D. Nanomanipulation using silicon photonic crystal resonators. (2009). Nano Letters, 10, 99–104.
  • [19] Liang, F., Clarke, N., Patel, P., Loncar, M. and Quan, Q. (2013). Scalable photonic crystal chips for high sensitivity protein detection. Optics Express, 21, 32306–32312.
  • [20] Hendrickson, J., Soref, R., Sweet, J. and Buchwald, W. (2014). Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Optics Express, 22, 3271–3283.
  • [21] Dutta, H.S., Goyal, A.K., Srivastava, V. and Pal, S. (2016). Coupling light in photonic crystal waveguides: A review. Photonics and Nanostructures - Fundamentals and Applications, 20, 41–58.
  • [22] Quan, Q., Deotare, P.B. and Marko, L. (2010). Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Applied Physics Letters, 96, 203102.
  • [23] Gramotnev, D.K. and Bozhevolnyi, S.I. (2014). Nanofocusing of electromagnetic radiation. Nature Photonics, 8, 13–22.
  • [24] Song, M., Wang, C., Zhao, Z., Pu, M., Liu, L., Zhang, W., Yub, H. and Luo, X. (2016). Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 8, 1635–1641.
  • [25] Schuller, J.A., Barnard, E.S., Cai, W., Jun Y.C., White, J.S. and Brongersma, M.L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193–204.
  • [26] Conteduca, D., Reardon, C., Scullion, M.G., Dell’Olio, F. and Armenise, M.N. (2017). Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2, 086101.
  • [27] Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C. and Benson, O. (2010). Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Letters, 10, 891–895. [28] Gökbulut, B. (2022). A hybrid photonic-plasmonic resonator based on a partially encapsulated 1D photonic crystal waveguide and a plasmonic nanoparticle. Heliyon, 8, e12346.
  • [29] Zhang, H., Zhao, W., Liu, Y., Chen, J., Wang, X. and Lu, C. (2021). Photonic-plasmonic hybrid microcavities: Physics and applications. Chinese Physics B, 30, 117801.
  • [30] Hajshahvaladi, L., Kaatuzian, H. and Danaie, M. (2021). Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Physics Letters A, 420, 127754.
  • [31] Hajshahvaladi, L. Kaatuzian, H. Moghaddasi, M. and Danaie, M. (2022). Hybridization of surface plasmons and photonic crystal resonators for high-sensitivity and high-resolution sensing applications. Scientific Reports, 12, 21292.
  • [32] Hajshahvaladi, L., Kaatuzian, H. and Danaie, M. (2022). A very high-resolution refractive index sensor based on hybrid topology of photonic crystal cavity and plasmonic nested split-ring resonator. Photonics and Nanostructures – Fundamentals and Applications, 51, 101042. [33] Bauters, J.F., Heck, M.J.R., John, D., Dai D., Tien, M.C., Barton, J.S., Leinse, A., Heideman, R.G., Blumenthal, D.J. and Bowers, J.E. (2011). Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 19, 3163–3174.
  • [34] Grande, M., Calo, G., Petruzzelli, V. and D'Orazio, A. (2012). High-Q photonic crystal nanobeam cavity based on a silicon nitride membrane incorporating fabrication imperfections and a low-index material layer. Progress in Electromagnetic Research, 37, 191–204.
  • [35] Samanta, A., Zhou, Y., Zou, S., Yan, H. and Liu, Y. (2014). Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Letters, 14, 5052–5057.
  • [36] Purcell, E.M. (1946). Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681.
  • [37] Sauvan, C., Hugonin, J.P., Maksymov, I.S., Lalanne, P. (2013). Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Physical Review Letters, 110, 237401.
  • [38] Walls, D.F. and Milburn, G.J. (2008). Quantum Optics. 2nd edition, Springer, Berlin.
  • [39] Xiao, Y.-F., Liu, Y.-C., Li, B.-B., Chen, Y.-L., Li, Y. and Gong, Q. (2012). Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Physical Review A, 85, 031805(R).
  • [40] Liu, J.N., Huang, Q., Liu, K.K., Singamaneni, S. and Cunningham, B.T. (2010). Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling. Nano Letters, 17, 7569–7577.
  • [41] Do, J., Sediq, K.N., Deasy, K., Coles, D.M., Rodríguez‐Fernández, J., Feldmann, J. and Lidzey, D.G. (2013). Photonic crystal nanocavities containing plasmonic nanoparticles assembled using a laser‐printing technique. Advanced Optical Materials, 1, 946–951.
  • [42] Barth, M., Schietinger, S., Fischer, S., Becker, J., Nüsse, N., Aichele, T., Löchel, B., Sönnichsen, C. and Benson, O. (2010). Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Letters, 10, 891–895.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Belkıs Gökbulut 0000-0003-2782-9356

Proje Numarası 120F323
Erken Görünüm Tarihi 29 Mart 2023
Yayımlanma Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 35 Sayı: 1

Kaynak Göster

APA Gökbulut, B. (2023). Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction. International Journal of Advances in Engineering and Pure Sciences, 35(1), 81-88. https://doi.org/10.7240/jeps.1210031
AMA Gökbulut B. Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction. JEPS. Mart 2023;35(1):81-88. doi:10.7240/jeps.1210031
Chicago Gökbulut, Belkıs. “Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction”. International Journal of Advances in Engineering and Pure Sciences 35, sy. 1 (Mart 2023): 81-88. https://doi.org/10.7240/jeps.1210031.
EndNote Gökbulut B (01 Mart 2023) Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction. International Journal of Advances in Engineering and Pure Sciences 35 1 81–88.
IEEE B. Gökbulut, “Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction”, JEPS, c. 35, sy. 1, ss. 81–88, 2023, doi: 10.7240/jeps.1210031.
ISNAD Gökbulut, Belkıs. “Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction”. International Journal of Advances in Engineering and Pure Sciences 35/1 (Mart 2023), 81-88. https://doi.org/10.7240/jeps.1210031.
JAMA Gökbulut B. Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction. JEPS. 2023;35:81–88.
MLA Gökbulut, Belkıs. “Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction”. International Journal of Advances in Engineering and Pure Sciences, c. 35, sy. 1, 2023, ss. 81-88, doi:10.7240/jeps.1210031.
Vancouver Gökbulut B. Stongly Confined Electromagnetic Waves in a Hybrid Photonic–Plasmonic Resonator for Enhancing Light–Matter Interaction. JEPS. 2023;35(1):81-8.