Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors

Yıl 2023, Cilt: 35 Sayı: 2, 237 - 245, 03.07.2023
https://doi.org/10.7240/jeps.1240654

Öz

Yb/Er codoped Gd3Ga5O12 nanocrystalline upconverting phosphors were produced by the sol-gel pechini method at 1000 °C annealing temperature. The phosphor structure, morphological features, and luminescent properties of the fabricated material were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and photoluminescence measurements (PL). Upconversion luminescence characteristics were investigated in the range of 450-850 nm by a 975 nm laser source. Emission, optical, and theoretical thermal behaviors were analyzed with respect to Er3+ ion content and the increasing excitation power. Temperature sensitivity calculations based on the fluorescence intensity ratio were performed by employing the thermally-coupled levels of Er3+. The maximum sensitivity was calculated with the optimal value of 0.83x10-2 K-1 for Gd3Ga5O12:2%Yb3+,0.5%Er3+ nanophosphor. The results pointed out that Yb/Er codoped Gd3Ga5O12 may be a potential candidate for optical temperature sensors and lighting.

Kaynakça

  • Referans1 Daldosso, M., Falcomer, D., Speghini, A., Bettinelli, M., Enzo, S., Lasio, B., & Polizzi, S. (2008). Synthesis, structural investigation and luminescence spectroscopy of nanocrystalline Gd3Ga5O12 doped with lanthanide ions. J. Alloys Compd., 451(1–2), 553–556.
  • Referans2 Venkatramu, V., León-Luis, S. F., Rodríguez-Mendoza, U. R., Monteseguro, V., Manjón, F. J., Lozano-Gorrín, A. D., Valiente, R., Navarro-Urrios, D., Jayasankar, C. K., Muñoz, A., & Lavín, V. (2012). Synthesis, structure and luminescence of Er 3+-doped Y3Ga5O12 nano-garnets. J. Mater. Chem., 22(27), 13788–13799.
  • Referans3 Singh, S. K., Lee, D. G., Yi, S. S., Jang, K., Shin, D. S., & Jeong, J. H. (2013). Probing dual mode emission of Eu3+ in garnet phosphor. J. Appl. Phys., 113(17).
  • Referans4 Wang, X., Li, X., Xu, S., Cheng, L., Sun, J., Zhang, J., Li, L., & Chen, B. (2019). A comparative study of spectral and temperature sensing properties of Er3+ mono-doped LnNbO4 (Ln = Lu, Y, Gd) phosphors under 980 and 1500 nm excitations. Mater. Res. Bull., 111, 177–182.
  • Referans5 Ranjan, S. K., Mondal, M., & Rai, V. K. (2018). Er3+-Yb3+/Er3+-Yb3+-Li+/Er3+-Yb3+-Zn2+:Gd2O3 nanophosphors for efficient frequency upconverter and temperature sensing applications. Mater. Res. Bull., 106, 66–73.
  • Referans6 Liu, X., Lei, R., Huang, F., Deng, D., Wang, H., Zhao, S., & Xu, S. (2019). Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors. J. Lumin., 210, 119–127.
  • Referans7 Du, P., Luo, L., & Yu, J. S. (2015). Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor. Curr. Appl. Phys, 15(12), 1576–1579.
  • Referans8 Lu, H., Hao, H., Gao, Y., Shi, G., Fan, Q., Song, Y., Wang, Y., & Zhang, X. (2017). Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: temperature sensor and optical heater. J. Lumin., 191, 13–17.
  • Referans9 Ćirić, A., Stojadinović, S., & Dramićanin, M. D. (2020). Luminescence temperature sensing using thin-films of undoped Gd2O3 and doped with Ho3+, Eu3+ and Er3+ prepared by plasma electrolytic oxidation. Ceram. Int., 46(14), 23223–23231.
  • Referans10 Vetrone, F., Naccache, R., Zamarrón, A., De La Fuente, A. J., Sanz-Rodríguez, F., Maestro, L. M., Rodriguez, E. M., Jaque, D., Sole, J. G., & Capobianco, J. A. (2010). Temperature sensing using fluorescent nanothermometers. ACS Nano., 4(6), 3254–3258.
  • Referans11 Marciniak, L., & Trejgis, K. (2018). Luminescence lifetime thermometry with Mn3+-Mn4+ co-doped nanocrystals. J. Mater. Chem. C., 6(26), 7092–7100.
  • Referans12 Wade, S.A., Collins, S.F., Baxter, G.W. (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys,. 94, 4743–4756.
  • Referans13 Wang, X., Liu, Q., Bu, Y., Liu, C.S., Liu, T., Yan, X. (2015) Optical temperature sensing of rare-earth ion doped phosphors, RSC Adv., 5, 86219–86236.
  • Referans14 Pang, M., & Lin, J. (2005). Growth and optical properties of nanocrystalline Gd3Ga5O12: Ln (Ln = Eu3+, Tb3+, Er 3+) powders and thin films via Pechini sol-gel process. J. Cryst. Growth., 284(1–2), 262–269.
  • Referans15 Li, Y., Lu, H., Zhang, Y., Ma, J., & Song, G. (2012). Synthesis and luminescence properties of nanocrystalline Gd3Ga5O12:Eu3+ by a homogeneous precipitation method. Rare Met., 31(6), 599–603.
  • Referans16 Erdem, M., Örücü, H., Cantürk, S. B., & Eryürek, G. (2021). Upconversion Yb3+/Er3+:Gadolinium Gallium Garnet Nanocrystals for White-Light Emission and Optical Thermometry. ACS Appl. Nano Mater., 4(7), 7162–7171.
  • Referans17 Kniec, K., Ledwa, K., MacIejewska, K., & Marciniak, L. (2020). Intentional modification of the optical spectral response and relative sensitivity of luminescent thermometers based on Fe3+,Cr3+,Nd3+co-doped garnet nanocrystals by crystal field strength optimization. Mater. Chem. Front., 4(6), 1697–1705.
  • Referans18 Piao, R. Q., Xu, Q., Zhang, Z. B., Wang, Y., Pun, E. Y. B., & Zhang, D. L. (2018). A study on ratiometric thermometry based on upconversion emissions of erbium ions in gadolinium gallium garnet single-crystal. J. Lumin., 204, 116–121.
  • Referans19 Zhang, K., Tong, L., Ma, Y., Wang, J., Xia, Z., & Han, Y. (2019). Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions. J. Alloys Compd., 781, 467–472.
  • Referans20 Sun, H. X., Yuan, N., Zhang, Z. B., Sun, Q., Wang, Y., Wong, W. H., Tu, C. Y., Yu, D. Y., Pun, E. Y. B., & Zhang, D. L. (2017). Temperature characteristics of the green up-conversion fluorescence of Er3+-doped Gd3Ga5O12 single crystal for temperature sensing. Sci. Adv. Mater., 9(5), 727–732.
  • Referans21 Garino, T. J., Voigt, J. A., Spoerke, E. D., Moore, D. L., Lockwood, S. J., Gibson, J. T., & Phifer, C. C. (2007). Development of a Manufacturing Capability for Production of Ceramic Laser Materials. No. SAND2007-7393. Sandia National Laboratoires Report
  • Referans22 Örücü, H. (2022). The effect of molar ratio and annealing on crystal structure of gadolinium-gallium garnet nanopowders synthesized by sol-gel method. J. Ceram. Process. Res., 23(6), 799–805.
  • Referans23 Pielaszek, R. (2004). FW 1/5/4/5 M method for determination of the grain size distribution from powder diffraction line profile. J. Alloys Compd., 382(1–2), 128–132.
  • Referans24 Guo, Y., Wang, D., Zhao, X., & Wang, F. (2016). Fabrication, microstructure and upconversion luminescence of Yb3+/Ln3+ (Ln = Ho, Er, Tm) co-doped Y2Ti2O7 ceramics. Mater. Res. Bull., 73, 84–89.
  • Referans25 Santana-Alonso, A., Méndez-Ramos, J., Yanes, A. C., Del-Castillo, J., & Rodríguez, V. D. (2010). White light up-conversion in transparent sol-gel derived glass-ceramics containing Yb3+-Er3+-Tm3+ triply-doped YF3 nanocrystals. Mater. Chem. Phys., 124(1), 699–703.
  • Referans26 Wang, X., Wang, Y., Jin, L., Bu, Y., Yang, X. L., & Yan, X. (2019). Controlling optical temperature detection of Ca3Al2O6: Yb3+,Er3+ phosphors through doping. J. Alloys Compd., 773, 393–400.
  • Referans27 Liao, J., Wang, Q., Kong, L., Ming, Z., Wang, Y., Li, Y., & Che, L. (2018). Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5:Yb3+/Er3+phosphors. Opt. Mater., 75, 841–849.
  • Referans28 Cheng, X., Dong, X., Peng, K., Zhang, H., Su, Y., & Jiang, L. (2020). Upconversion Luminescence and Optical Temperature-Sensing Properties of LaNbO4:Yb3+/Er3+ Phosphors. , J. Electron. Mater., 49(1), 518–523. Referans29 Lin, M., Xie, L., Wang, Z., Richards, B. S., Gao, G., & Zhong, J. (2019). Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+,Yb3+ upconversion nanoparticles: A new choice for nanothermometry. J. Mater. Chem. C., 7(10), 2971–2977.
  • Referans30 Gao, P., Li, X., Gong, Y., Shen, G., Zhang, S., & Guan, L. (2019). Highly sensitive up-conversion phosphor for optical thermometry: CaLaAl3O7:Er3+/Yb3+. J. Rare Earths., 37(9), 937–942.
  • Referans31 Du, P., Luo, L., & Yu, J. S. (2016). Facile synthesis of Er3+/Yb3+-codoped NaYF4 nanoparticles: A promising multifunctional upconverting luminescent material for versatile applications. RSC Adv., 6(97), 94539–94546.
  • Referans32 Liu, H., Jian, X., Liu, M., Wang, K., Bai, G., & Zhang, Y. (2021). Investigation on the upconversion luminescence and ratiometric thermal sensing of SrWO4:Yb3+/RE3+(RE = Ho/Er) phosphors. RSC Adv., 11(58), 36689–36697.
  • Referans33 Pollnau, M., Gamelin, D., Lüthi, S., Güdel, H., & Hehlen, M. (2000). Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B - Condens. Matter Mater. Phys., 61(5), 3337–3346.
  • Referans34 Liu, X., Chen, Y., Shang, F., Chen, G., & Xu, J. (2019). Wide-range thermometry and up-conversion luminescence of Ca5(PO4 )3 F:Yb 3+ /Er 3+ transparent glass ceramics. J. Mater. Sci. Mater. Electron., 30(6), 5718–5725.
  • Referans35 Fischer, L. H., Harms, G. S., & Wolfbeis, O. S. (2011). Upconverting nanoparticles for nanoscale thermometry. Angew. Chemie - Int. Ed., 50(20), 4546–4551.

Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors

Yıl 2023, Cilt: 35 Sayı: 2, 237 - 245, 03.07.2023
https://doi.org/10.7240/jeps.1240654

Öz

Yb/Er codoped Gd3Ga5O12 nanocrystalline upconverting phosphors were produced by the sol-gel pechini method at 1000 °C annealing temperature. The phosphor structure, morphological features, and luminescent properties of the fabricated material were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and photoluminescence measurements (PL). Upconversion luminescence characteristics were investigated in the range of 450-850 nm by a 975 nm laser source. Emission, optical, and theoretical thermal behaviors were analyzed with respect to Er3+ ion content and the increasing excitation power. Temperature sensitivity calculations based on the fluorescence intensity ratio were performed by employing the thermally-coupled levels of Er3+. The maximum sensitivity was calculated with the optimal value of 0.83x10-2 K-1 for Gd3Ga5O12:2%Yb3+,0.5%Er3+ nanophosphor. The results pointed out that Yb/Er codoped Gd3Ga5O12 may be a potential candidate for optical temperature sensors and lighting.

Kaynakça

  • Referans1 Daldosso, M., Falcomer, D., Speghini, A., Bettinelli, M., Enzo, S., Lasio, B., & Polizzi, S. (2008). Synthesis, structural investigation and luminescence spectroscopy of nanocrystalline Gd3Ga5O12 doped with lanthanide ions. J. Alloys Compd., 451(1–2), 553–556.
  • Referans2 Venkatramu, V., León-Luis, S. F., Rodríguez-Mendoza, U. R., Monteseguro, V., Manjón, F. J., Lozano-Gorrín, A. D., Valiente, R., Navarro-Urrios, D., Jayasankar, C. K., Muñoz, A., & Lavín, V. (2012). Synthesis, structure and luminescence of Er 3+-doped Y3Ga5O12 nano-garnets. J. Mater. Chem., 22(27), 13788–13799.
  • Referans3 Singh, S. K., Lee, D. G., Yi, S. S., Jang, K., Shin, D. S., & Jeong, J. H. (2013). Probing dual mode emission of Eu3+ in garnet phosphor. J. Appl. Phys., 113(17).
  • Referans4 Wang, X., Li, X., Xu, S., Cheng, L., Sun, J., Zhang, J., Li, L., & Chen, B. (2019). A comparative study of spectral and temperature sensing properties of Er3+ mono-doped LnNbO4 (Ln = Lu, Y, Gd) phosphors under 980 and 1500 nm excitations. Mater. Res. Bull., 111, 177–182.
  • Referans5 Ranjan, S. K., Mondal, M., & Rai, V. K. (2018). Er3+-Yb3+/Er3+-Yb3+-Li+/Er3+-Yb3+-Zn2+:Gd2O3 nanophosphors for efficient frequency upconverter and temperature sensing applications. Mater. Res. Bull., 106, 66–73.
  • Referans6 Liu, X., Lei, R., Huang, F., Deng, D., Wang, H., Zhao, S., & Xu, S. (2019). Dependence of upconversion emission and optical temperature sensing behavior on excitation power in Er3+/Yb3+ co-doped BaMoO4 phosphors. J. Lumin., 210, 119–127.
  • Referans7 Du, P., Luo, L., & Yu, J. S. (2015). Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor. Curr. Appl. Phys, 15(12), 1576–1579.
  • Referans8 Lu, H., Hao, H., Gao, Y., Shi, G., Fan, Q., Song, Y., Wang, Y., & Zhang, X. (2017). Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: temperature sensor and optical heater. J. Lumin., 191, 13–17.
  • Referans9 Ćirić, A., Stojadinović, S., & Dramićanin, M. D. (2020). Luminescence temperature sensing using thin-films of undoped Gd2O3 and doped with Ho3+, Eu3+ and Er3+ prepared by plasma electrolytic oxidation. Ceram. Int., 46(14), 23223–23231.
  • Referans10 Vetrone, F., Naccache, R., Zamarrón, A., De La Fuente, A. J., Sanz-Rodríguez, F., Maestro, L. M., Rodriguez, E. M., Jaque, D., Sole, J. G., & Capobianco, J. A. (2010). Temperature sensing using fluorescent nanothermometers. ACS Nano., 4(6), 3254–3258.
  • Referans11 Marciniak, L., & Trejgis, K. (2018). Luminescence lifetime thermometry with Mn3+-Mn4+ co-doped nanocrystals. J. Mater. Chem. C., 6(26), 7092–7100.
  • Referans12 Wade, S.A., Collins, S.F., Baxter, G.W. (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys,. 94, 4743–4756.
  • Referans13 Wang, X., Liu, Q., Bu, Y., Liu, C.S., Liu, T., Yan, X. (2015) Optical temperature sensing of rare-earth ion doped phosphors, RSC Adv., 5, 86219–86236.
  • Referans14 Pang, M., & Lin, J. (2005). Growth and optical properties of nanocrystalline Gd3Ga5O12: Ln (Ln = Eu3+, Tb3+, Er 3+) powders and thin films via Pechini sol-gel process. J. Cryst. Growth., 284(1–2), 262–269.
  • Referans15 Li, Y., Lu, H., Zhang, Y., Ma, J., & Song, G. (2012). Synthesis and luminescence properties of nanocrystalline Gd3Ga5O12:Eu3+ by a homogeneous precipitation method. Rare Met., 31(6), 599–603.
  • Referans16 Erdem, M., Örücü, H., Cantürk, S. B., & Eryürek, G. (2021). Upconversion Yb3+/Er3+:Gadolinium Gallium Garnet Nanocrystals for White-Light Emission and Optical Thermometry. ACS Appl. Nano Mater., 4(7), 7162–7171.
  • Referans17 Kniec, K., Ledwa, K., MacIejewska, K., & Marciniak, L. (2020). Intentional modification of the optical spectral response and relative sensitivity of luminescent thermometers based on Fe3+,Cr3+,Nd3+co-doped garnet nanocrystals by crystal field strength optimization. Mater. Chem. Front., 4(6), 1697–1705.
  • Referans18 Piao, R. Q., Xu, Q., Zhang, Z. B., Wang, Y., Pun, E. Y. B., & Zhang, D. L. (2018). A study on ratiometric thermometry based on upconversion emissions of erbium ions in gadolinium gallium garnet single-crystal. J. Lumin., 204, 116–121.
  • Referans19 Zhang, K., Tong, L., Ma, Y., Wang, J., Xia, Z., & Han, Y. (2019). Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions. J. Alloys Compd., 781, 467–472.
  • Referans20 Sun, H. X., Yuan, N., Zhang, Z. B., Sun, Q., Wang, Y., Wong, W. H., Tu, C. Y., Yu, D. Y., Pun, E. Y. B., & Zhang, D. L. (2017). Temperature characteristics of the green up-conversion fluorescence of Er3+-doped Gd3Ga5O12 single crystal for temperature sensing. Sci. Adv. Mater., 9(5), 727–732.
  • Referans21 Garino, T. J., Voigt, J. A., Spoerke, E. D., Moore, D. L., Lockwood, S. J., Gibson, J. T., & Phifer, C. C. (2007). Development of a Manufacturing Capability for Production of Ceramic Laser Materials. No. SAND2007-7393. Sandia National Laboratoires Report
  • Referans22 Örücü, H. (2022). The effect of molar ratio and annealing on crystal structure of gadolinium-gallium garnet nanopowders synthesized by sol-gel method. J. Ceram. Process. Res., 23(6), 799–805.
  • Referans23 Pielaszek, R. (2004). FW 1/5/4/5 M method for determination of the grain size distribution from powder diffraction line profile. J. Alloys Compd., 382(1–2), 128–132.
  • Referans24 Guo, Y., Wang, D., Zhao, X., & Wang, F. (2016). Fabrication, microstructure and upconversion luminescence of Yb3+/Ln3+ (Ln = Ho, Er, Tm) co-doped Y2Ti2O7 ceramics. Mater. Res. Bull., 73, 84–89.
  • Referans25 Santana-Alonso, A., Méndez-Ramos, J., Yanes, A. C., Del-Castillo, J., & Rodríguez, V. D. (2010). White light up-conversion in transparent sol-gel derived glass-ceramics containing Yb3+-Er3+-Tm3+ triply-doped YF3 nanocrystals. Mater. Chem. Phys., 124(1), 699–703.
  • Referans26 Wang, X., Wang, Y., Jin, L., Bu, Y., Yang, X. L., & Yan, X. (2019). Controlling optical temperature detection of Ca3Al2O6: Yb3+,Er3+ phosphors through doping. J. Alloys Compd., 773, 393–400.
  • Referans27 Liao, J., Wang, Q., Kong, L., Ming, Z., Wang, Y., Li, Y., & Che, L. (2018). Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5:Yb3+/Er3+phosphors. Opt. Mater., 75, 841–849.
  • Referans28 Cheng, X., Dong, X., Peng, K., Zhang, H., Su, Y., & Jiang, L. (2020). Upconversion Luminescence and Optical Temperature-Sensing Properties of LaNbO4:Yb3+/Er3+ Phosphors. , J. Electron. Mater., 49(1), 518–523. Referans29 Lin, M., Xie, L., Wang, Z., Richards, B. S., Gao, G., & Zhong, J. (2019). Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+,Yb3+ upconversion nanoparticles: A new choice for nanothermometry. J. Mater. Chem. C., 7(10), 2971–2977.
  • Referans30 Gao, P., Li, X., Gong, Y., Shen, G., Zhang, S., & Guan, L. (2019). Highly sensitive up-conversion phosphor for optical thermometry: CaLaAl3O7:Er3+/Yb3+. J. Rare Earths., 37(9), 937–942.
  • Referans31 Du, P., Luo, L., & Yu, J. S. (2016). Facile synthesis of Er3+/Yb3+-codoped NaYF4 nanoparticles: A promising multifunctional upconverting luminescent material for versatile applications. RSC Adv., 6(97), 94539–94546.
  • Referans32 Liu, H., Jian, X., Liu, M., Wang, K., Bai, G., & Zhang, Y. (2021). Investigation on the upconversion luminescence and ratiometric thermal sensing of SrWO4:Yb3+/RE3+(RE = Ho/Er) phosphors. RSC Adv., 11(58), 36689–36697.
  • Referans33 Pollnau, M., Gamelin, D., Lüthi, S., Güdel, H., & Hehlen, M. (2000). Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B - Condens. Matter Mater. Phys., 61(5), 3337–3346.
  • Referans34 Liu, X., Chen, Y., Shang, F., Chen, G., & Xu, J. (2019). Wide-range thermometry and up-conversion luminescence of Ca5(PO4 )3 F:Yb 3+ /Er 3+ transparent glass ceramics. J. Mater. Sci. Mater. Electron., 30(6), 5718–5725.
  • Referans35 Fischer, L. H., Harms, G. S., & Wolfbeis, O. S. (2011). Upconverting nanoparticles for nanoscale thermometry. Angew. Chemie - Int. Ed., 50(20), 4546–4551.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Karmaşık Fiziksel Sistemler
Bölüm Araştırma Makaleleri
Yazarlar

Hümeyra Örücü 0000-0001-9793-4528

Yayımlanma Tarihi 3 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 35 Sayı: 2

Kaynak Göster

APA Örücü, H. (2023). Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors. International Journal of Advances in Engineering and Pure Sciences, 35(2), 237-245. https://doi.org/10.7240/jeps.1240654
AMA Örücü H. Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors. JEPS. Temmuz 2023;35(2):237-245. doi:10.7240/jeps.1240654
Chicago Örücü, Hümeyra. “Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors”. International Journal of Advances in Engineering and Pure Sciences 35, sy. 2 (Temmuz 2023): 237-45. https://doi.org/10.7240/jeps.1240654.
EndNote Örücü H (01 Temmuz 2023) Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors. International Journal of Advances in Engineering and Pure Sciences 35 2 237–245.
IEEE H. Örücü, “Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors”, JEPS, c. 35, sy. 2, ss. 237–245, 2023, doi: 10.7240/jeps.1240654.
ISNAD Örücü, Hümeyra. “Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors”. International Journal of Advances in Engineering and Pure Sciences 35/2 (Temmuz 2023), 237-245. https://doi.org/10.7240/jeps.1240654.
JAMA Örücü H. Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors. JEPS. 2023;35:237–245.
MLA Örücü, Hümeyra. “Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors”. International Journal of Advances in Engineering and Pure Sciences, c. 35, sy. 2, 2023, ss. 237-45, doi:10.7240/jeps.1240654.
Vancouver Örücü H. Effect of Doping Concentration and Excitation Power on Upconversion and Temperature Sensitivity of Gd3Ga5O12:Yb3+/Er3+ Phosphors. JEPS. 2023;35(2):237-45.