Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys

Yıl 2024, Cilt: 36 Sayı: 1, 50 - 58, 25.03.2024
https://doi.org/10.7240/jeps.1412097

Öz

This study investigates the microstructural evolution and mechanical behavior of severe cold-rolled β-type Ti-29Nb-13Ta-4.6Zr (TNTZ) alloys under systematic solution heat treatments (ST) at 1063 K for durations ranging from 5 to 60 minutes. This comprehensive analysis provides valuable insights into the microstructural and mechanical characteristics of TNTZ alloys under varying solution heat treatment durations, offering a foundational understanding for optimizing their application in engineering contexts. Microstructural analysis reveals that both solution-treated (ST) and cold-rolled (CR) samples exhibit a predominant single body-centered cubic (BCC) β phase, while cold-rolled and solution-treated (CST-Q) samples display a combination of β and martensite orthorhombic α'' phases. ST samples demonstrate equiaxed grains with an average diameter of ~72 μm, albeit with limited clarity. In contrast, CST-Q samples treated for over 10 minutes exhibit finer equiaxed grains within the 7-14 μm range. Hardness values increase with prolonged solution heat treatment, reaching approximately ~183 HV for ST and ~234 HV for CR. Moreover, hardness continues to rise with increasing treatment duration, reaching ~204 HV for CST10Q, ~229 HV for CST30Q, and ~242 HV for CST60Q. Mechanical properties, including tensile strength, yield strength, and elongation, vary across samples. ST shows values of ~710 MPa, ~610 MPa, and ~25%, CR with ~1305 MPa, ~395 MPa, and ~17.5%, CST5Q with ~1042 MPa, ~440 MPa, and 17.5%, CST10Q with ~1010 MPa, ~650 MPa, and 21%, and CST60Q with ~930 MPa, ~660 MPa, and ~21%. Fracture surfaces of all samples exhibit dimple structures and microvoid nucleation, indicative of ductile failure.

Kaynakça

  • [1] Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement: A materials science perspective. Biomaterials, 19(18), 1621-1639. https://doi.org/10.1016/0921-5093(96)10243-4.
  • [2] Welsch, G., Boyer, R., & Collings, E. W. (1994). Materials properties handbook: Titanium alloys (1st ed.). ASM International.
  • [3] Singh, P., Pungotra, H., & Kalsi, N. S. (2017). On the characteristics of titanium alloys for aircraft applications. Materials Today: Proceedings, 4(8), 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249
  • [4] Leyens, C., & Peters, M. (2003). Titanium and titanium alloys: fundamentals and applications. John Wiley and Sons. https://doi.org/10.1002/3527602119
  • [5] Lütjering, G., & Williams, J. C. (2000). Titanium (2nd ed.). Springer: Berlin, Germany.
  • [6] Pesode, P., & Barve, S. (2023). A review—metastable β titanium alloy for biomedical applications. Biomedical Journal, 46(3), 123-129. https://doi.org/10.1016/j.bj.2023.07.001
  • [7] Lan, C., Wu, Y., Guo, L., & Chen, F. (2017). Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications. Materials Science and Engineering: A, 690, 170-176. https://doi.org/10.1016/j.msea.2017.02.045
  • [8] Cotton, J. D., Briggs, R. D., Boyer, R. R., Tamirisakandala, S., Russo, P., Shchetnikov, N., et al. (2015). State of the art in beta titanium alloys for airframe applications. JOM (J Occup Med), 67, 1281-1303. https://doi.org/10.1007/s11837-015-1442-4
  • [9] Yumak, N. & Kayali, Y. (2022). Effect of Aging Applied with the Ultra-Low Heating Rate after CRYO Treatment on the Corrosion Resistance of Metastable β Titanium Alloy’s. Physics of Metals and Metallography, 14. https://doi.org/10.1134/s0031918x22100052
  • [10] Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and materials transactions A, 33(3), 477-486. https://doi.org/10.1007/s11661-002-0109-2
  • [11] Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa, S. (2002). Development of low rigidity β-type titanium alloy for biomedical applications. Materials Transactions, 43(12), 2970-2977.
  • [12] Nakai, M., Niinomi, M., & Oneda, T. (2012). Improvement in fatigue strength of biomedical β-type Ti-Nb-Ta-Zr alloy while maintaining low Young's modulus through optimizing ω-phase precipitation. Metallurgical and Materials Transactions A, 43A, 294-302. https://doi.org/10.1007/s11661-011-0860-3
  • [13] Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T., & Miyazaki, T. (2012). Heterogeneous structure and mechanical hardness of biomedical β-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 10, 235-245. https://doi.org/10.1016/j.jmbbm.2012.02.022
  • [14] Kumar, G.L.G.S.B.S., Chinara, S., Sreetam, D., Tiwari, C., & Prakash, R. G.V.S. N. (2019). Studies on Ti-29Nb-13Ta-4.6Zr alloy for use as a prospective biomaterial. Materials Today: Proceedings, 15(1), 11-20.
  • [15] Yumak, N., Aslantaş, K. (2020). A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. Journal of Materials Research and Technology, 9(6), 15360-15380. https://doi.org/10.1016/j.msea.2018.03.003
  • [16] Srinivasu, G., Natraj, Y., Bhattacharjee, A., Nandy, T. K., & Rao, G. V. S. N. (2013). Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Materials & Design, 47, 323-330. https://doi.org/10.1016/j.matdes.2012.11.053.
  • [17] Kolli, R., & Devaraj, A. (2018). A review of metastable beta titanium alloys. Metals (Basel), 8, 506. https://doi.org/10.3390/met8070506
  • [18] Kirthika, A. M. A., Rao, M. N., & Manivasagam, G. (2022). Duplex aging of metastable beta titanium alloys: A Review. Transactions of the Indian Institute of Metals, 75(12), 2985-2996. https://doi.org/10.1007/s12666-022-02696-1.
  • [19] Tiyyagura, H. R., Kumari, S., Mohan, M. K., Pant, B., & Rao, M. N. (2019). Degradation behavior of metastable β Ti-15-3 alloy for fastener applications. Journal of Alloys and Compounds, 775, 518-523. https://doi.org/10.1016/j.jallcom.2018.09.366
  • [20] Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T., & Miyazaki, T. (2013). Mechanical properties of a medical β-type titanium alloy with specific micro- structural evolution through high - pressure torsion. Materials Science and Engineering: C, 33(5): 2499-2507. https://doi.org/10.1016/j.msec.2013.01.056
  • [21] Akahori, T., Niinomi, M., Fukui, H., Ogawa, M., & Toda, H. (2005). Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Materials Science and Engineering: C, 25(3), 248-254. https://doi.org/10.1016/j.msec.2004.12.007
  • [22] Song, Z. Y., Sun, Q. Y., Xiao, L., Liu, L., & Sun, J. (2010). Effect of prestrain and aging treatment on microstructures and tensile properties of Ti-10Mo-8V-1Fe3.5Al alloy. Materials Science and Engineering A, 527, 691-698. https://doi.org/10.1016/j.msea.2009.09.046
  • [23] Ertorer, O., Topping, T., Lii, Y., Moss, W., & Lavernia, E.J. (2009). Enhanced tensile strength and high ductility in cry milled commercially pure titanium. Scripta Materialia, 60, 586–589. https://doi.org/10.1016/j.scriptamat.2008.12.017
  • [24] Jawed, S. F., Rabadia, C. D., Azim, F., & Khan, S. J. (2021). Effect of Nb on β→α″ martensitic phase transformation and characterization of new biomedical Ti-xNb-3Fe-9Zr alloys. Scanning, 2021, 1-6. https://doi.org/10.1155/2021/8173425
  • [25] Bhattacharjee, A., Varma, V.K., Kamat, S.V., Gogia, A.K., & Bhargava, S. (2006). Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al. Metallurgical and Materials Transactions A, 37, 1423–1433. https://doi.org/10.1007/s12666-008-0071-9

Termo-Mekanik İşlemlerin β-Tip Titanyum Alaşımlarının Mikroyapısı ve Mekanik Özellikleri Üzerindeki Etkileri

Yıl 2024, Cilt: 36 Sayı: 1, 50 - 58, 25.03.2024
https://doi.org/10.7240/jeps.1412097

Öz

Bu çalışma, sistemli çözelti ısıl işlemlere (ST) tabi tutulan şiddetli soğuk haddeleme β-tipi Ti-29Nb-13Ta-4.6Zr (TNTZ) alaşımlarının mikroyapısal evrimini ve mekanik davranışını incelemektedir. 1063 K'deki 5 ila 60 dakika süren çeşitli sürelerde gerçekleştirilen bu kapsamlı analiz, TNTZ alaşımlarının mikroyapısal ve mekanik özellikleri hakkında değerli bilgiler sunmakta olup, mühendislik bağlamında uygulamalarını optimize etmek için temel bir anlayış sağlamaktadır. Mikroyapısal analiz, çözelti işlemli (ST) ve soğuk haddeleme (CR) örneklerinin çoğunlukla tek bir vücut merkezli kübik (BCC) β fazını içerdiğini ortaya koymaktadır, ancak soğuk haddeleme ve çözelti işlemli (CST-Q) örneklerinin β ve martenzit ortorombik α'' fazlarının bir kombinasyonunu sergilediğini göstermektedir. ST örnekleri 72 μm çapında eş eksenli taneler gösterirken, bu taneler sınırlı netlikte bulunmaktadır. Buna karşılık, 10 dakikadan fazla süreyle işlenen CST-Q örnekleri 7-14 μm aralığındaki daha ince eş eksenli taneleri sergilemektedir. Sertlik değerleri, çözelti ısıl işleminin uzamasıyla artmakta olup, ST için yaklaşık ~183 HV ve CR için ~234 HV'ye ulaşmaktadır. Ayrıca, sertlik, işlem süresinin artmasıyla birlikte devam ederek CST10Q için ~204 HV, CST30Q için ~229 HV ve CST60Q için ~242 HV'ye ulaşmaktadır. Mekanik özellikler, çekme dayanımı, akma dayanımı ve uzama gibi özellikler açısından örnekler arasında değişmektedir. ST, ~710 MPa, ~610 MPa ve %25, CR, sırasıyla ~1305 MPa, ~395 MPa ve %17.5, CST5Q, ~1042 MPa, ~440 MPa ve %17.5, CST10Q, ~1010 MPa, ~650 MPa ve %21 ve CST60Q, ~930 MPa, ~660 MPa ve %21 değerlerine sahiptir. Tüm örneklerin kırılma yüzeyleri, dövme başarısızlığını gösteren dimple yapıları ve mikro boşlukların nükleasyonunu sergilemektedir.

Kaynakça

  • [1] Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement: A materials science perspective. Biomaterials, 19(18), 1621-1639. https://doi.org/10.1016/0921-5093(96)10243-4.
  • [2] Welsch, G., Boyer, R., & Collings, E. W. (1994). Materials properties handbook: Titanium alloys (1st ed.). ASM International.
  • [3] Singh, P., Pungotra, H., & Kalsi, N. S. (2017). On the characteristics of titanium alloys for aircraft applications. Materials Today: Proceedings, 4(8), 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249
  • [4] Leyens, C., & Peters, M. (2003). Titanium and titanium alloys: fundamentals and applications. John Wiley and Sons. https://doi.org/10.1002/3527602119
  • [5] Lütjering, G., & Williams, J. C. (2000). Titanium (2nd ed.). Springer: Berlin, Germany.
  • [6] Pesode, P., & Barve, S. (2023). A review—metastable β titanium alloy for biomedical applications. Biomedical Journal, 46(3), 123-129. https://doi.org/10.1016/j.bj.2023.07.001
  • [7] Lan, C., Wu, Y., Guo, L., & Chen, F. (2017). Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications. Materials Science and Engineering: A, 690, 170-176. https://doi.org/10.1016/j.msea.2017.02.045
  • [8] Cotton, J. D., Briggs, R. D., Boyer, R. R., Tamirisakandala, S., Russo, P., Shchetnikov, N., et al. (2015). State of the art in beta titanium alloys for airframe applications. JOM (J Occup Med), 67, 1281-1303. https://doi.org/10.1007/s11837-015-1442-4
  • [9] Yumak, N. & Kayali, Y. (2022). Effect of Aging Applied with the Ultra-Low Heating Rate after CRYO Treatment on the Corrosion Resistance of Metastable β Titanium Alloy’s. Physics of Metals and Metallography, 14. https://doi.org/10.1134/s0031918x22100052
  • [10] Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and materials transactions A, 33(3), 477-486. https://doi.org/10.1007/s11661-002-0109-2
  • [11] Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa, S. (2002). Development of low rigidity β-type titanium alloy for biomedical applications. Materials Transactions, 43(12), 2970-2977.
  • [12] Nakai, M., Niinomi, M., & Oneda, T. (2012). Improvement in fatigue strength of biomedical β-type Ti-Nb-Ta-Zr alloy while maintaining low Young's modulus through optimizing ω-phase precipitation. Metallurgical and Materials Transactions A, 43A, 294-302. https://doi.org/10.1007/s11661-011-0860-3
  • [13] Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T., & Miyazaki, T. (2012). Heterogeneous structure and mechanical hardness of biomedical β-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 10, 235-245. https://doi.org/10.1016/j.jmbbm.2012.02.022
  • [14] Kumar, G.L.G.S.B.S., Chinara, S., Sreetam, D., Tiwari, C., & Prakash, R. G.V.S. N. (2019). Studies on Ti-29Nb-13Ta-4.6Zr alloy for use as a prospective biomaterial. Materials Today: Proceedings, 15(1), 11-20.
  • [15] Yumak, N., Aslantaş, K. (2020). A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. Journal of Materials Research and Technology, 9(6), 15360-15380. https://doi.org/10.1016/j.msea.2018.03.003
  • [16] Srinivasu, G., Natraj, Y., Bhattacharjee, A., Nandy, T. K., & Rao, G. V. S. N. (2013). Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Materials & Design, 47, 323-330. https://doi.org/10.1016/j.matdes.2012.11.053.
  • [17] Kolli, R., & Devaraj, A. (2018). A review of metastable beta titanium alloys. Metals (Basel), 8, 506. https://doi.org/10.3390/met8070506
  • [18] Kirthika, A. M. A., Rao, M. N., & Manivasagam, G. (2022). Duplex aging of metastable beta titanium alloys: A Review. Transactions of the Indian Institute of Metals, 75(12), 2985-2996. https://doi.org/10.1007/s12666-022-02696-1.
  • [19] Tiyyagura, H. R., Kumari, S., Mohan, M. K., Pant, B., & Rao, M. N. (2019). Degradation behavior of metastable β Ti-15-3 alloy for fastener applications. Journal of Alloys and Compounds, 775, 518-523. https://doi.org/10.1016/j.jallcom.2018.09.366
  • [20] Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T., & Miyazaki, T. (2013). Mechanical properties of a medical β-type titanium alloy with specific micro- structural evolution through high - pressure torsion. Materials Science and Engineering: C, 33(5): 2499-2507. https://doi.org/10.1016/j.msec.2013.01.056
  • [21] Akahori, T., Niinomi, M., Fukui, H., Ogawa, M., & Toda, H. (2005). Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Materials Science and Engineering: C, 25(3), 248-254. https://doi.org/10.1016/j.msec.2004.12.007
  • [22] Song, Z. Y., Sun, Q. Y., Xiao, L., Liu, L., & Sun, J. (2010). Effect of prestrain and aging treatment on microstructures and tensile properties of Ti-10Mo-8V-1Fe3.5Al alloy. Materials Science and Engineering A, 527, 691-698. https://doi.org/10.1016/j.msea.2009.09.046
  • [23] Ertorer, O., Topping, T., Lii, Y., Moss, W., & Lavernia, E.J. (2009). Enhanced tensile strength and high ductility in cry milled commercially pure titanium. Scripta Materialia, 60, 586–589. https://doi.org/10.1016/j.scriptamat.2008.12.017
  • [24] Jawed, S. F., Rabadia, C. D., Azim, F., & Khan, S. J. (2021). Effect of Nb on β→α″ martensitic phase transformation and characterization of new biomedical Ti-xNb-3Fe-9Zr alloys. Scanning, 2021, 1-6. https://doi.org/10.1155/2021/8173425
  • [25] Bhattacharjee, A., Varma, V.K., Kamat, S.V., Gogia, A.K., & Bhargava, S. (2006). Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al. Metallurgical and Materials Transactions A, 37, 1423–1433. https://doi.org/10.1007/s12666-008-0071-9
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metaller ve Alaşım Malzemeleri
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Yılmazer 0000-0001-5602-4966

Muhammed Enes İlgazi 0000-0002-5763-6427

Erken Görünüm Tarihi 18 Mart 2024
Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 30 Aralık 2023
Kabul Tarihi 21 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Yılmazer, H., & İlgazi, M. E. (2024). Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys. International Journal of Advances in Engineering and Pure Sciences, 36(1), 50-58. https://doi.org/10.7240/jeps.1412097
AMA Yılmazer H, İlgazi ME. Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys. JEPS. Mart 2024;36(1):50-58. doi:10.7240/jeps.1412097
Chicago Yılmazer, Hakan, ve Muhammed Enes İlgazi. “Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys”. International Journal of Advances in Engineering and Pure Sciences 36, sy. 1 (Mart 2024): 50-58. https://doi.org/10.7240/jeps.1412097.
EndNote Yılmazer H, İlgazi ME (01 Mart 2024) Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys. International Journal of Advances in Engineering and Pure Sciences 36 1 50–58.
IEEE H. Yılmazer ve M. E. İlgazi, “Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys”, JEPS, c. 36, sy. 1, ss. 50–58, 2024, doi: 10.7240/jeps.1412097.
ISNAD Yılmazer, Hakan - İlgazi, Muhammed Enes. “Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys”. International Journal of Advances in Engineering and Pure Sciences 36/1 (Mart 2024), 50-58. https://doi.org/10.7240/jeps.1412097.
JAMA Yılmazer H, İlgazi ME. Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys. JEPS. 2024;36:50–58.
MLA Yılmazer, Hakan ve Muhammed Enes İlgazi. “Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys”. International Journal of Advances in Engineering and Pure Sciences, c. 36, sy. 1, 2024, ss. 50-58, doi:10.7240/jeps.1412097.
Vancouver Yılmazer H, İlgazi ME. Effects of Thermo-Mechanical Processing on the Microstructure and Mechanical Properties of β -Type Titanium Alloys. JEPS. 2024;36(1):50-8.