Araştırma Makalesi
BibTex RIS Kaynak Göster

İpek Serisin Kaplı Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu ve Antibakteriyel Aktiviteleri

Yıl 2024, Cilt: 36 Sayı: 2, 150 - 159, 01.07.2024
https://doi.org/10.7240/jeps.1447385

Öz

Son yıllarda mikroorganizmaların antibiyotiklere karşı direnç kazanması nedeniyle metal bazlı antibakteriyel malzemelere olan ilgi artmıştır. Bombyx mori kozasından elde edilen ipek serisin, biyouyumluluğu, hidrofilik karakteri ve biyolojik olarak parçalanabilirliği sayesinde birçok farklı alanda kullanım alanı bulmuştur. Çeşitli çinko tuzlarından elde edilen çinko oksit nanopartikülleri (ZnONP’ler), geniş spektrumlu antibakteriyel özellikler sergilemektedir. Bu çalışmada, metal bazlı antibakteriyel malzeme üretmek amacıyla, ZnONP elde etmek için ipek serisin proteini hem indirgeyici hem de kaplayıcı madde olarak kullanılarak yeşil ve ölçeklenebilir bir yöntemle ipek serisin kaplı ZnONP’lerin (SS-ZnONP’ler) sentezi araştırılmıştır. SS-ZnONP'lerin üretimi için %2’lik ipek serisin çözeltisi Zn(NO3)2 çözeltisi ile karıştırılmış ve karışım çözeltisi 100 °C’de belirli bir süre ısıtılmıştır. SS-ZnONP’lerin UV-vis spektrumunda 380 nm’de spesifik yüzey plazmon rezonansı (SPR) zirvesinin gözlemlenmesi, ZnONP’lerin oluşumunu göstermektedir. Daha sonra sentezlenen SS-ZnONP’lerin kimyasal, morfolojik, kristal, termal ve antibakteriyel özellikleri incelenmiştir. Zn-O bandının karakteristik zirvesi, SS-ZnONP’lerin fourier transform kızılötesi spektroskopisi (FTIR) analizinde görülmüştür. Taramalı elektron mikroskobu (SEM) analizlerine göre ZnONP’lerin kübik/altıgen şekle benzer bir morfolojiye sahip olduğu, tekdüze bir yapı gösterdiği ve herhangi bir topaklanma göstermediği görülmüştür. SS-ZnONP’lerin enerji dağılımlı spektroskopi (EDS) analizlerinde karbon, azot, oksijen, kükürt ve çinko elementlerine ait pikler görülmüştür. Zn zirvesinin oluşması çinko iyonlarının ZnONP’lere dönüştüğünü göstermektedir. Ek olarak, SS-ZnONP’lerin X-ışını difraktometresi (XRD) sonucunda karakteristik çinko zirveleri vardır. Termogravimetrik analiz (TGA), ZnONP oluşumu nedeniyle SS-ZnONP’lerin termal stabilitesinin ve kalan miktarının saf ipek serisin tozuna kıyasla daha yüksek olduğunu göstermektedir. Son olarak Staphylococcus aureus (ATCC 6538) ve Escherichia coli (ATCC 25922) bakterileri ile agar kuyucuk difüzyon testi yapılmış ve SS-ZnONP’ler S. aureus’a karşı antibakteriyel etki göstermiştir. Elde edilen SS-ZnONP’lerin antibakteriyel ajan olarak kullanılabileceği görülmüştür. Ancak bu çalışmada ZnONP konsantrasyonunun yüksek antibakteriyel aktivite nedeniyle düşük olduğu da anlaşılmıştır.

Kaynakça

  • Railean-Plugaru, V., Pomastowski, P., Wypij, M., Szultka-Mlynska, M., Rafinska, K., Golinska, P., Dahm, H., Buszewski, B. (2016). Study of silver NPs synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. J. Appl. Microbiol., 120, 1250-1263. https://doi.org/10.1111/jam.13093
  • Krol, A., Pomastowski, P., Rafinska, K., Railean-Plugaru, V., Buszewski, B. (2017) Zinc oxide NPs: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci., 249, 37-52. https://doi.org/10.1016/j.cis.2017.07.033
  • Buzea, C., Pacheco, I.I., Robbie, K. (2007) Nanomaterials and NPs: sources and toxicity. Biointerphases, 2, 17-71. https://doi.org/10.1116/1.2815690
  • Jayachandran, A., Aswathy. T.R., Achuthsankar, S.N. (2021) Green synthesis and characterization of zinc oxide NPs using Cayratia pedata leaf extract. Biochem. Biophys. Rep., 26, 100995. https://doi.org/10.1016/j.bbrep.2021.100995
  • Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M., Vargel, İ. (2020) Coating of modified poly(ethylene terephthalate) fibers with sericin‑capped silver NPs for antimicrobial application. Polym. Bullet., 77, 649-1665. https://doi.org/10.1007/s00289-019-02820-0
  • Bozkaya, O., Arat, E., Gün Gök, Z., Yiğitoğlu, M., Vargel, İ. (2022) Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver NPs by mutual electrospinning method. Eur. Polym. J., 166, 111023. https://doi.org/10.1016/j.eurpolymj.2022.111023
  • Gün Gök, Z. (2022), Synthesis and characterization of polyvinyl alcohol–silk sericin nanofibers containing gelatin‑capped silver NPs for antibacterial applications. Polym. Bull., 79, 10357-10376. https://doi.org/10.1007/s00289-022-04455-0
  • Chauhan, N., Thakur, B., Kumari, A., Khatana, C., Sharma, R. (2023) Mushroom and silk sericin extract mediated ZnONPs for removal of organic pollutants and microorganisms. S. Afr. J. Bot., 153, 370-381. https://doi.org/10.1016/j.sajb.2023.01.001
  • Sadhasivam, S., Shanmugam, M., Umamaheswaran, P.D., Venkattappan, A., Shanmugam, A. (2021) Zinc Oxide NPs: Green Synthesis and Biomedical Applications. J. Clust. Sci., 32, 1441-1455. https://doi.org/10.1007/s10876-020-01918-0
  • Tapiero, H., Tew, K.D. (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother., 57, 299-411 (2003). https://doi.org/10.1016/s0753-3322(03)00081-7
  • Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P.K. (2021) A Novel Approach of Synthesis Zinc Oxide NPs by Bergenia ciliata Rhizome Extract: Antibacterial and Anticancer Potential. J. Inorg. Organomet. Polym. Mater., 31, 180-190. https://doi.org/10.1007/s10904-020-01684-6
  • Calestani, D., Zha, M., Mosca, R., Zappettini, A., Carotta, M.C., Di Natale, V., Zanotti, L. (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B, 144(2), 472-478. https://doi.org/10.1016/j.snb.2009.11.009
  • Mandal, A.K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Bhandari, D.P., Shah, A.K., Bhattarai, N., Parajuli, N. (2022) Current Research on Zinc Oxide NPs: Synthesis, Characterization, and Biomedical Applications. Nanomaterials, 12, 3066. https://doi.org/10.3390/nano12173066
  • Aramwit, P., Siritientong, T., Srichana, T. (2012) Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag. Res., 30, 212-224. https://doi.org/10.1177/07342 42X11 404733
  • Akturk, O., Kismet, K., Yasti, A.C., Kuru, S., Duymus, M.E., Kaya, F., Caydere, M., Hucumenoglu, D., Keskin, D. (2016) Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. RSC Adv., 6, 13234-13250. https://doi.org/10.1039/C5RA24225H
  • Aramwit, P., Keongamaroon, O., Siritientong, T., Bang, N., Supasyndh, O. (2012) Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrol., 13, 119. https://doi.org/10.1186/1471-2369-13-119
  • Yang, M., Mandal, N., Shuai, Y., Zhou, G., Min, S., Zhu, L. (2014) Mineralization and Biocompatibility of Antheraea pernyi (A. pernyi) Silk Sericin Film for Potential Bone Tissue Engineering. Bio-Med. Mater. Eng., 24, 815-824 (2014). https://doi.org/10.3233/bme-130873
  • Tao, G., Cai, R., Wang, Y., Liu, L., Zuo, H., Zhao, P., Umar, A., Mao, C., Xia, Q., He, H. (2019) Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater. Des., 180, 107940. https://doi.org/10.1016/j.matdes.2019.107940
  • Liu, L., Cai, R., Wang, Y., Tao, G., Ai, L., Wang, P., Yang, M., Zuo, H., Zhao, P., He, H. (2018) Polydopamine-Assisted Silver Nanoparticle Self-Assembly on Sericin/Agar Film for Potential Wound Dressing Application. Int. J. Mol. Sci., 19(10), 2875. https://doi.org/10.3390%2Fijms19102875
  • Li, X., Hou, S., Chen, J., He, C.E., Gao, Y.E., Lu, Y., Jia, D., Ma, X., Xue, P., Kang, Y. (2021) Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids Surf. B, 200, 111594. https://doi.org/10.1016/j.colsurfb.2021.111594
  • Zhang, Y., Liu, J., Huang, L., Wang, Z., Wang, L. (2015) Design and performance of a sericin alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep., 5, 12374. https://doi.org/10.1038/srep12374
  • Sheng, J.Y., Xu, J., Zhuang, Y., Sun, D.Q., Xing, T.L., Chen, G.Q. (2013) Study on the application of sericin in cosmetics. Adv. Mater. Res., 796, 416-423. https://doi.org/10.4028/www.scientific.net/AMR.796.416
  • Padamwa,r M.N., Pawar, A.P., Daithankar, A.V., Mahadik, K. (2005) Silk sericin as a moisturizer: an in vivo study. J. Cosmet. Dermatol., 4(4), 250-257. https://doi.org/10.1111/j.1473-2165.2005.00200.x
  • Takechi, T., Takamura, H. (2014) Development of bread supplemented with the silk protein sericin. Food Sci. Technol. Res., 20(5), 1021-1026. https://doi.org/10.3136/fstr.20.1021
  • Gün Gök, Z., Yiğitoğlu, M., Vargel, İ., Sahin, Y., Alçıgır, M.E. (2021) Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver NPs. Mater. Chem. Phys., 259, 124043. https://doi.org/10.1016/j.matchemphys.2020.124043
  • Akturk, O., Gün Gök, Z., Erdemli, Ö., Yiğitoğlu, M. (2019) One-pot facile synthesis of silk sericin-capped gold NPs by UVC radiation: investigation of stability, biocompatibility, and antibacterial activity. J. Biomed. Mater. Res., 107A, 2667-2679. https://doi.org/10.1002/jbm.a.36771
  • Akturk, O., Gün Gök, Z., Daş, M.T., Erdemli, Ö. (2018) Synthesis and characterization of sericin-capped gold NPs. J. Fac. Eng. Archit. Gazi Univ., 33, 675-684. https://doi.org/10.17341/gazimmfd.416377
  • Aramwit, P., Bang, N., Ratanavaraporn, J., Ekgasit, S. (2014) Green synthesis of silk sericin-capped silver NPs and their potent anti-bacterial activity. Nanoscale Res. Lett., 9, 79-86 (2014). https://doi.org/10.1186/1556-276X-9-79
  • Purwar, R., Sharma, S., Sahoo, P., Srivastava, C.M. (2015) Flexible sericin/polyvinyl alcohol/clay blend films. Fibers Polym., 16, 761-768. https://doi.org/10.1007/s12221-015-0761-y
  • Kwak, H.W., Lee, K.H. (2018) Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere, 207, 507-516. https://doi.org/10.1016/j.chemosphere.2018.04.158
  • Chuang, C.C., Prasannan, A., Huang, B.R., Hong, P.D., Chiang, M.Y. (2017). Simple synthesis of eco-friendly multifunctional silk-sericin capped zinc oxide nanorods and their potential for fabrication of hydrogen sensors and UV photodetectors. ACS Sustain. Chem. Eng. 5(5), 4002-4010. https://doi.org/10.1021/acssuschemeng.7b00012
  • Gün Gök, Z., Karayel, M., Yiğitoğlu, M. (2021) Synthesis of carrageenan coated silver NPs by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed., 47, 1843-1864. https://doi.org/10.1007/s11164-021-04399-6
  • Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S. (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour.-Effic. Technol., 3(4), 459-465. https://doi.org/10.1016/j.reffit.2017.05.001
  • Suresh, D., Nethravathi, P.C., Rajanaika, H., Nagabhushana, H., Sharma, S.C. (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process., 31, 446-454. https://doi.org/10.1016/j.mssp.2014.12.023
  • Rajapriya, M., Sharmili, S.A., Baskar, R., Balaji, R., Alharbi, N.S., Kadaikunnan., S., Khaled, J.M., Alanzi, K.F., Vaseeharan, B. (2020) Synthesis and characterization of zinc zxide nanoparticles using Cynara scolymus Leaves: Enhanced hemolytic, antimicrobial, antiproliferative, and photocatalytic activity. J. Cluster Sci., 31, 791-801. https://doi.org/10.1007/s10876-019-01686-6
  • Karthik, S., Siva, P., Balu, K.S., Suriyaprabha, R., Rajendran, V., Maaza, M. (2017) Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv. Powder Technol., 28(12), 3184-3194. https://doi.org/10.1016/j.apt.2017.09.033
  • Wooten, A.J., Werder, D.J., Williams, D.J., Casson, J.L., Hollingsworth, J.A. (2009) Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors. J. Am. Chem. Soc., 131, 16177-1618. https://doi.org/10.1021/ja905730n
  • Pudukudy, M., Yaakob, Z. (2015) Facile Synthesis of Quasi Spherical ZnO NPs with Excellent Photocatalytic Activity. J. Clust. Sci., 26, 1187-1201. https://doi.org/10.1007/s10876-014-0806-1
  • Farhadi, S., Ajerloo, B., Mohammadi, A. (2017) Green Biosynthesis of Spherical Silver NPs by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta. Chim. Slov., 64, 129-143. https://doi.org/10.17344/acsi.2016.2956
  • Mumtaz, S., Ali, S., Tahir, H.M., Mumtaz, S., · Mughal, T.A., Kazmi, S.A.R., Hassan, A., Summer, M., Zulfiqar, A., Kazmi, S. (2024) Biological applications of biogenic silk fibroin–chitosan blend zinc oxide nanoparticles. Polym. Bull., 81, 2933-2956. https://doi.org/10.1007/s00289-023-04865-8
  • Patrón-Romero, L., Luque, P.A., Soto-Robles, C.A., Nava, O., Vilchis-Nestor, A.R., Barajas-Carrillo, V.W., Martínez-Ramírez, C.E., Chávez Méndez, J.R., Alvelais Palacios, J.A., Leal Ávila, M.A., Almanza-Reyes, H. (2020) Synthesis, characterization and cytotoxicity of zinc oxide NPs by green synthesis method. J. Drug Deliv. Sci. Technol., 60, 101925. https://doi.org/10.1016/j.jddst.2020.101925
  • Indubala, E., Dhanasekar, M., Sudha, V., Padma Malar, E.J., Divya, P., Sherine, J., Rajagopal, R., Bhat, S.V., Harinipriya, S. (2018) l-Alanine capping of ZnO nanorods: increased carrier concentration in ZnO/CuI heterojunction diode. RSC Adv., 8, 5350-5361. https://doi.org/10.1039/C7RA12385J
  • Stankovic´ A., Dimitrijevic´, S., Uskokovic´, D. (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf., B, 102, 21-28. https://doi.org/10.1016/j.colsurfb.2012.07.033
  • Menazea, A.A., Ismail, A.M., Samy, A. (2021) Novel Green Synthesis of Zinc Oxide NPs Using Orange Waste and Its Thermal and Antibacterial Activity. J. Inorg. Organomet. Polym. Mater., 31, 4250-4259. https://doi.org/10.1007/s10904-021-02074-2
  • Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K. (2015) Antimicrobial Activity of Carbon-Based NPs. Adv. Pharm. Bull., 5, 19-23. https://doi.org/10.5681/apb.2015.003
  • Akbar, S., Tauseef, I., Subhan, H., Sultana, N., Khan, I., Ahmed, U., Syed Haleem, K. (2020) An overview of the plant-mediated synthesis of zinc oxide NPs and their antimicrobial potential. Inorg. Nano-Met. Chem., 50, 257-271. https://doi.org/10.1080/24701556.2019.1711121
  • Rana, S., Kalaichelvan, P. (2011) Antibacterial Activities of Metal NPs. Adv. Bio. Tech., 11, 21-23.
  • Yamamoto, O. (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater., 3, 643-646. https://doi.org/10.1016/S1466-6049(01)00197-0
  • Wahab, R., Siddiqui, M.A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., Al-Khedhairy, A.A., Shin, H.-S. (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf., B, 117, 267-276. https://doi.org/10.1016/j.colsurfb.2014.02.038
  • Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., Jurga, S. (2022) ZnO size and shape effect on antibacterial activity and cytotoxicity profile, Scientific Reports, 12(1), 8148. https://doi.org/10.1038/s41598-022-12134-3
  • Yusof, N.A.A., Zain, N.M., Pauzi, N. (2019) Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol., 124, 1132-1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228
  • Yu, Y.C., Hu, M.H., Zhuang, H.Z., Phan, T.H.M., Jiang, Y.S., Jan, J.S. (2023) Antibacterial Gelatin Composite Hydrogels Comprised of In Situ Formed Zinc Oxide Nanoparticles. Polymers, 15(19), 3978. https://doi.org/10.3390/polym15193978

Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles

Yıl 2024, Cilt: 36 Sayı: 2, 150 - 159, 01.07.2024
https://doi.org/10.7240/jeps.1447385

Öz

In recent years, interest in metal-based antibacterial materials has increased due to microorganisms gaining resistance to antibiotics. Silk sericin obtained from Bombyx mori cocoon has found use in many different areas thanks to its biocompatibility, hydrophilic character and biodegradability. Zinc oxide nanoparticles (ZnONPs) obtained in various zinc salts exhibit broad-spectrum antibacterial properties. In this study, to be produce metal based antibacterial materials, synthesis of silk sericin-coated ZnONPs (SS-ZnONPs) in a green and scalable method was investigated by using silk sericin protein as both reducing and capping agent to obtain ZnONPs. For producing SS-ZnONPs, 2% silk sericin solution was mixed with Zn(NO3)2 solution and the blend solution was heated at 100 °C for a certain period of time. Observing surface plasmon resonance (SPR) peak specific at 380 nm in the UV-vis spectrum of SS-ZnONPs represented the formation of ZnONPs. Then, the chemical, morphological, crystalline, thermal, and antibacterial properties of the synthesized SS-ZnONPs were examined. Characteristic peak of the Zn-O band was found in fourier transform infrared spectroscopy (FTIR) analysis of SS-ZnONPs. According to scanning electron microscopy (SEM) analyses, ZnONPs had morphology similar to cubic/hexagonal shape, showed a uniform structure, and did not represent any agglomerations. In energy dispersive spectroscopy (EDS) analyses of SS-ZnONPs, peaks belonging to carbon, nitrogen, oxygen, sulphur, and zinc elements were observed. The formation of Zn peak indicated that the zinc ions were transformed into ZnONPs. In addition, characteristic peaks of zinc were seen in the X-ray diffractometer (XRD) result of SS-ZnONPs. Thermogravimetric analysis (TGA) showed that the thermal stability and remaining amount of SS-ZnONPs was higher compared to pure silk sericin powder due to the formation of ZnONPs. Lastly, agar well diffusion test was carried out with Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 25922) bacteria and SS-ZnONPs showed antibacterial action against S. aureus. It has been observed that the obtained SS-ZnONPs can be used as antibacterial agents. However, it was also understood that the ZnONPs concentration in this study was low for high antibacterial activity.

Teşekkür

This study was carried out at Kırıkkale University. We would like to thank Kırıkkale University for providing us with every opportunity to carry out our study.

Kaynakça

  • Railean-Plugaru, V., Pomastowski, P., Wypij, M., Szultka-Mlynska, M., Rafinska, K., Golinska, P., Dahm, H., Buszewski, B. (2016). Study of silver NPs synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. J. Appl. Microbiol., 120, 1250-1263. https://doi.org/10.1111/jam.13093
  • Krol, A., Pomastowski, P., Rafinska, K., Railean-Plugaru, V., Buszewski, B. (2017) Zinc oxide NPs: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci., 249, 37-52. https://doi.org/10.1016/j.cis.2017.07.033
  • Buzea, C., Pacheco, I.I., Robbie, K. (2007) Nanomaterials and NPs: sources and toxicity. Biointerphases, 2, 17-71. https://doi.org/10.1116/1.2815690
  • Jayachandran, A., Aswathy. T.R., Achuthsankar, S.N. (2021) Green synthesis and characterization of zinc oxide NPs using Cayratia pedata leaf extract. Biochem. Biophys. Rep., 26, 100995. https://doi.org/10.1016/j.bbrep.2021.100995
  • Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M., Vargel, İ. (2020) Coating of modified poly(ethylene terephthalate) fibers with sericin‑capped silver NPs for antimicrobial application. Polym. Bullet., 77, 649-1665. https://doi.org/10.1007/s00289-019-02820-0
  • Bozkaya, O., Arat, E., Gün Gök, Z., Yiğitoğlu, M., Vargel, İ. (2022) Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver NPs by mutual electrospinning method. Eur. Polym. J., 166, 111023. https://doi.org/10.1016/j.eurpolymj.2022.111023
  • Gün Gök, Z. (2022), Synthesis and characterization of polyvinyl alcohol–silk sericin nanofibers containing gelatin‑capped silver NPs for antibacterial applications. Polym. Bull., 79, 10357-10376. https://doi.org/10.1007/s00289-022-04455-0
  • Chauhan, N., Thakur, B., Kumari, A., Khatana, C., Sharma, R. (2023) Mushroom and silk sericin extract mediated ZnONPs for removal of organic pollutants and microorganisms. S. Afr. J. Bot., 153, 370-381. https://doi.org/10.1016/j.sajb.2023.01.001
  • Sadhasivam, S., Shanmugam, M., Umamaheswaran, P.D., Venkattappan, A., Shanmugam, A. (2021) Zinc Oxide NPs: Green Synthesis and Biomedical Applications. J. Clust. Sci., 32, 1441-1455. https://doi.org/10.1007/s10876-020-01918-0
  • Tapiero, H., Tew, K.D. (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother., 57, 299-411 (2003). https://doi.org/10.1016/s0753-3322(03)00081-7
  • Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P.K. (2021) A Novel Approach of Synthesis Zinc Oxide NPs by Bergenia ciliata Rhizome Extract: Antibacterial and Anticancer Potential. J. Inorg. Organomet. Polym. Mater., 31, 180-190. https://doi.org/10.1007/s10904-020-01684-6
  • Calestani, D., Zha, M., Mosca, R., Zappettini, A., Carotta, M.C., Di Natale, V., Zanotti, L. (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B, 144(2), 472-478. https://doi.org/10.1016/j.snb.2009.11.009
  • Mandal, A.K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Bhandari, D.P., Shah, A.K., Bhattarai, N., Parajuli, N. (2022) Current Research on Zinc Oxide NPs: Synthesis, Characterization, and Biomedical Applications. Nanomaterials, 12, 3066. https://doi.org/10.3390/nano12173066
  • Aramwit, P., Siritientong, T., Srichana, T. (2012) Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag. Res., 30, 212-224. https://doi.org/10.1177/07342 42X11 404733
  • Akturk, O., Kismet, K., Yasti, A.C., Kuru, S., Duymus, M.E., Kaya, F., Caydere, M., Hucumenoglu, D., Keskin, D. (2016) Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. RSC Adv., 6, 13234-13250. https://doi.org/10.1039/C5RA24225H
  • Aramwit, P., Keongamaroon, O., Siritientong, T., Bang, N., Supasyndh, O. (2012) Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrol., 13, 119. https://doi.org/10.1186/1471-2369-13-119
  • Yang, M., Mandal, N., Shuai, Y., Zhou, G., Min, S., Zhu, L. (2014) Mineralization and Biocompatibility of Antheraea pernyi (A. pernyi) Silk Sericin Film for Potential Bone Tissue Engineering. Bio-Med. Mater. Eng., 24, 815-824 (2014). https://doi.org/10.3233/bme-130873
  • Tao, G., Cai, R., Wang, Y., Liu, L., Zuo, H., Zhao, P., Umar, A., Mao, C., Xia, Q., He, H. (2019) Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater. Des., 180, 107940. https://doi.org/10.1016/j.matdes.2019.107940
  • Liu, L., Cai, R., Wang, Y., Tao, G., Ai, L., Wang, P., Yang, M., Zuo, H., Zhao, P., He, H. (2018) Polydopamine-Assisted Silver Nanoparticle Self-Assembly on Sericin/Agar Film for Potential Wound Dressing Application. Int. J. Mol. Sci., 19(10), 2875. https://doi.org/10.3390%2Fijms19102875
  • Li, X., Hou, S., Chen, J., He, C.E., Gao, Y.E., Lu, Y., Jia, D., Ma, X., Xue, P., Kang, Y. (2021) Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids Surf. B, 200, 111594. https://doi.org/10.1016/j.colsurfb.2021.111594
  • Zhang, Y., Liu, J., Huang, L., Wang, Z., Wang, L. (2015) Design and performance of a sericin alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep., 5, 12374. https://doi.org/10.1038/srep12374
  • Sheng, J.Y., Xu, J., Zhuang, Y., Sun, D.Q., Xing, T.L., Chen, G.Q. (2013) Study on the application of sericin in cosmetics. Adv. Mater. Res., 796, 416-423. https://doi.org/10.4028/www.scientific.net/AMR.796.416
  • Padamwa,r M.N., Pawar, A.P., Daithankar, A.V., Mahadik, K. (2005) Silk sericin as a moisturizer: an in vivo study. J. Cosmet. Dermatol., 4(4), 250-257. https://doi.org/10.1111/j.1473-2165.2005.00200.x
  • Takechi, T., Takamura, H. (2014) Development of bread supplemented with the silk protein sericin. Food Sci. Technol. Res., 20(5), 1021-1026. https://doi.org/10.3136/fstr.20.1021
  • Gün Gök, Z., Yiğitoğlu, M., Vargel, İ., Sahin, Y., Alçıgır, M.E. (2021) Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver NPs. Mater. Chem. Phys., 259, 124043. https://doi.org/10.1016/j.matchemphys.2020.124043
  • Akturk, O., Gün Gök, Z., Erdemli, Ö., Yiğitoğlu, M. (2019) One-pot facile synthesis of silk sericin-capped gold NPs by UVC radiation: investigation of stability, biocompatibility, and antibacterial activity. J. Biomed. Mater. Res., 107A, 2667-2679. https://doi.org/10.1002/jbm.a.36771
  • Akturk, O., Gün Gök, Z., Daş, M.T., Erdemli, Ö. (2018) Synthesis and characterization of sericin-capped gold NPs. J. Fac. Eng. Archit. Gazi Univ., 33, 675-684. https://doi.org/10.17341/gazimmfd.416377
  • Aramwit, P., Bang, N., Ratanavaraporn, J., Ekgasit, S. (2014) Green synthesis of silk sericin-capped silver NPs and their potent anti-bacterial activity. Nanoscale Res. Lett., 9, 79-86 (2014). https://doi.org/10.1186/1556-276X-9-79
  • Purwar, R., Sharma, S., Sahoo, P., Srivastava, C.M. (2015) Flexible sericin/polyvinyl alcohol/clay blend films. Fibers Polym., 16, 761-768. https://doi.org/10.1007/s12221-015-0761-y
  • Kwak, H.W., Lee, K.H. (2018) Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere, 207, 507-516. https://doi.org/10.1016/j.chemosphere.2018.04.158
  • Chuang, C.C., Prasannan, A., Huang, B.R., Hong, P.D., Chiang, M.Y. (2017). Simple synthesis of eco-friendly multifunctional silk-sericin capped zinc oxide nanorods and their potential for fabrication of hydrogen sensors and UV photodetectors. ACS Sustain. Chem. Eng. 5(5), 4002-4010. https://doi.org/10.1021/acssuschemeng.7b00012
  • Gün Gök, Z., Karayel, M., Yiğitoğlu, M. (2021) Synthesis of carrageenan coated silver NPs by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed., 47, 1843-1864. https://doi.org/10.1007/s11164-021-04399-6
  • Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S. (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour.-Effic. Technol., 3(4), 459-465. https://doi.org/10.1016/j.reffit.2017.05.001
  • Suresh, D., Nethravathi, P.C., Rajanaika, H., Nagabhushana, H., Sharma, S.C. (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process., 31, 446-454. https://doi.org/10.1016/j.mssp.2014.12.023
  • Rajapriya, M., Sharmili, S.A., Baskar, R., Balaji, R., Alharbi, N.S., Kadaikunnan., S., Khaled, J.M., Alanzi, K.F., Vaseeharan, B. (2020) Synthesis and characterization of zinc zxide nanoparticles using Cynara scolymus Leaves: Enhanced hemolytic, antimicrobial, antiproliferative, and photocatalytic activity. J. Cluster Sci., 31, 791-801. https://doi.org/10.1007/s10876-019-01686-6
  • Karthik, S., Siva, P., Balu, K.S., Suriyaprabha, R., Rajendran, V., Maaza, M. (2017) Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv. Powder Technol., 28(12), 3184-3194. https://doi.org/10.1016/j.apt.2017.09.033
  • Wooten, A.J., Werder, D.J., Williams, D.J., Casson, J.L., Hollingsworth, J.A. (2009) Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors. J. Am. Chem. Soc., 131, 16177-1618. https://doi.org/10.1021/ja905730n
  • Pudukudy, M., Yaakob, Z. (2015) Facile Synthesis of Quasi Spherical ZnO NPs with Excellent Photocatalytic Activity. J. Clust. Sci., 26, 1187-1201. https://doi.org/10.1007/s10876-014-0806-1
  • Farhadi, S., Ajerloo, B., Mohammadi, A. (2017) Green Biosynthesis of Spherical Silver NPs by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta. Chim. Slov., 64, 129-143. https://doi.org/10.17344/acsi.2016.2956
  • Mumtaz, S., Ali, S., Tahir, H.M., Mumtaz, S., · Mughal, T.A., Kazmi, S.A.R., Hassan, A., Summer, M., Zulfiqar, A., Kazmi, S. (2024) Biological applications of biogenic silk fibroin–chitosan blend zinc oxide nanoparticles. Polym. Bull., 81, 2933-2956. https://doi.org/10.1007/s00289-023-04865-8
  • Patrón-Romero, L., Luque, P.A., Soto-Robles, C.A., Nava, O., Vilchis-Nestor, A.R., Barajas-Carrillo, V.W., Martínez-Ramírez, C.E., Chávez Méndez, J.R., Alvelais Palacios, J.A., Leal Ávila, M.A., Almanza-Reyes, H. (2020) Synthesis, characterization and cytotoxicity of zinc oxide NPs by green synthesis method. J. Drug Deliv. Sci. Technol., 60, 101925. https://doi.org/10.1016/j.jddst.2020.101925
  • Indubala, E., Dhanasekar, M., Sudha, V., Padma Malar, E.J., Divya, P., Sherine, J., Rajagopal, R., Bhat, S.V., Harinipriya, S. (2018) l-Alanine capping of ZnO nanorods: increased carrier concentration in ZnO/CuI heterojunction diode. RSC Adv., 8, 5350-5361. https://doi.org/10.1039/C7RA12385J
  • Stankovic´ A., Dimitrijevic´, S., Uskokovic´, D. (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf., B, 102, 21-28. https://doi.org/10.1016/j.colsurfb.2012.07.033
  • Menazea, A.A., Ismail, A.M., Samy, A. (2021) Novel Green Synthesis of Zinc Oxide NPs Using Orange Waste and Its Thermal and Antibacterial Activity. J. Inorg. Organomet. Polym. Mater., 31, 4250-4259. https://doi.org/10.1007/s10904-021-02074-2
  • Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K. (2015) Antimicrobial Activity of Carbon-Based NPs. Adv. Pharm. Bull., 5, 19-23. https://doi.org/10.5681/apb.2015.003
  • Akbar, S., Tauseef, I., Subhan, H., Sultana, N., Khan, I., Ahmed, U., Syed Haleem, K. (2020) An overview of the plant-mediated synthesis of zinc oxide NPs and their antimicrobial potential. Inorg. Nano-Met. Chem., 50, 257-271. https://doi.org/10.1080/24701556.2019.1711121
  • Rana, S., Kalaichelvan, P. (2011) Antibacterial Activities of Metal NPs. Adv. Bio. Tech., 11, 21-23.
  • Yamamoto, O. (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater., 3, 643-646. https://doi.org/10.1016/S1466-6049(01)00197-0
  • Wahab, R., Siddiqui, M.A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., Al-Khedhairy, A.A., Shin, H.-S. (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf., B, 117, 267-276. https://doi.org/10.1016/j.colsurfb.2014.02.038
  • Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., Jurga, S. (2022) ZnO size and shape effect on antibacterial activity and cytotoxicity profile, Scientific Reports, 12(1), 8148. https://doi.org/10.1038/s41598-022-12134-3
  • Yusof, N.A.A., Zain, N.M., Pauzi, N. (2019) Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol., 124, 1132-1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228
  • Yu, Y.C., Hu, M.H., Zhuang, H.Z., Phan, T.H.M., Jiang, Y.S., Jan, J.S. (2023) Antibacterial Gelatin Composite Hydrogels Comprised of In Situ Formed Zinc Oxide Nanoparticles. Polymers, 15(19), 3978. https://doi.org/10.3390/polym15193978
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Aleyna Temel Bu kişi benim 0009-0000-0657-5073

Zehra Gün Gök 0000-0001-6426-0395

Erken Görünüm Tarihi 27 Haziran 2024
Yayımlanma Tarihi 1 Temmuz 2024
Gönderilme Tarihi 5 Mart 2024
Kabul Tarihi 26 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 2

Kaynak Göster

APA Temel, A., & Gün Gök, Z. (2024). Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles. International Journal of Advances in Engineering and Pure Sciences, 36(2), 150-159. https://doi.org/10.7240/jeps.1447385
AMA Temel A, Gün Gök Z. Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles. JEPS. Temmuz 2024;36(2):150-159. doi:10.7240/jeps.1447385
Chicago Temel, Aleyna, ve Zehra Gün Gök. “Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 36, sy. 2 (Temmuz 2024): 150-59. https://doi.org/10.7240/jeps.1447385.
EndNote Temel A, Gün Gök Z (01 Temmuz 2024) Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles. International Journal of Advances in Engineering and Pure Sciences 36 2 150–159.
IEEE A. Temel ve Z. Gün Gök, “Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles”, JEPS, c. 36, sy. 2, ss. 150–159, 2024, doi: 10.7240/jeps.1447385.
ISNAD Temel, Aleyna - Gün Gök, Zehra. “Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 36/2 (Temmuz 2024), 150-159. https://doi.org/10.7240/jeps.1447385.
JAMA Temel A, Gün Gök Z. Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles. JEPS. 2024;36:150–159.
MLA Temel, Aleyna ve Zehra Gün Gök. “Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences, c. 36, sy. 2, 2024, ss. 150-9, doi:10.7240/jeps.1447385.
Vancouver Temel A, Gün Gök Z. Green Synthesis, Characterization and Antibacterial Activities of Silk Sericin Capped Zinc Oxide Nanoparticles. JEPS. 2024;36(2):150-9.