Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites

Yıl 2025, Cilt: 37 Sayı: 1, 1 - 7, 25.03.2025
https://doi.org/10.7240/jeps.1582763

Öz

This study investigates the effect of UV aging on the hardness properties of hybrid composite materials configured with glass and aramid fibers in four designs: pure glass fiber (S1), pure aramid fiber (S4), and two hybrid structures (S2 and S3) with varied fiber layering. Samples were exposed to UV light for 0, 20, and 40 days, and hardness values were recorded to evaluate how UV exposure and fiber hybridization influence material durability. Initially, the pure aramid composite (S4) exhibited the highest hardness at 28 HV, a 26.13% increase over the pure glass configuration (S1) at 22.2 HV. The hybrid configurations demonstrated intermediate values (between pure glass and pure aramid), with S3 (aramid exterior) reaching 25.1 HV, indicating the influence of fiber hybridization. UV exposure further increased hardness in all configurations; after 20 days UV aging, values rose to 24.4 HV for S1, 27.3 HV for S2, 30.4 HV for S3, and 31.6 HV for S4. By 40 days UV aging, hardness reached 28.8 HV for S1, 30.1 HV for S2, 31.6 HV for S3, and 34.9 HV for S4, showing cumulative increases of 29.7% to 24.6% across the samples. These results demonstrate that UV aging enhances hardness, with hybrid models-particularly those with aramid fibers on the exterior-exhibiting improved UV resistance, suggesting their suitability for applications requiring both UV durability and hardness.

Kaynakça

  • Alsaadi, M., Bulut, M., Erkliğ, A., & Jabbar, A. (2018). Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Composites Part B: Engineering, 152, 169-179.
  • Kosedag, E., Caliskan, U., & Ekici, R. (2022). The effect of artificial aging on the impact behavior of SiC nanoparticle‐glass fiber‐reinforced polymer matrix composites. Polymer Composites, 43(2), 964-976.
  • Kirar, E., Demircan, G., Kisa, M., Ozen, M., & Guven, C. (2024). Quasi-static punch shear behavior of glass/epoxy composite: Experimental and numerical study in artificial seawater environment. Applied Ocean Research, 153, 104262
  • Kosedag, E. (2023). Effect of artificial aging on 3-point bending behavior of glass fiber/epoxy composites. Journal of Reinforced Plastics and Composites, 42(21-22), 1147-1153.
  • Ovalı, S., & Sancak, E. (2022). Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials, 35(11), 1921-1939.
  • Celebi, M., Altun, M., & Ovali, S. (2022). The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polymers and Polymer Composites, 30, 09673911221081700.
  • Wu, C., Meng, B. C., Tam, L. H., & He, L. (2022). Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods. Polymer Testing, 114, 107708.
  • Raajeshkrishna, C. R., & Chandramohan, P. (2020). Effect of reinforcements and processing method on mechanical properties of glass and basalt epoxy composites. SN Applied Sciences, 2(5), 959.
  • Ramesh, M., Bhoopathi, R., Deepa, C., & Sasikala, G. (2018). Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. Journal of the Chinese Advanced Materials Society, 6(4), 640-654.
  • Suryawan, I. G. P. A., Suardana, N. P. G., Winaya, I. S., & Suyasa, I. (2020). Hardness analysis of epoxy composite reinforced with glass fiber compared to nettle fibers. Int. J. Eng. Emerg. Technol, 5(1), 2020.
  • Rout, S., Nayak, R. K., Patnaik, S. C., & Yazdani Nezhad, H. (2022). Development of improved flexural and impact performance of kevlar/carbon/glass fibers reinforced polymer hybrid composites. Journal of Composites Science, 6(9), 245.
  • Markovičová, L., & Zatkalíková, V. (2019). The effect of UV aging on structural polymers. In IOP Conference Series: Materials Science and Engineering (Vol. 465, No. 1, p. 012004). IOP Publishing.
  • Shi, Z., Zou, C., Zhou, F., & Zhao, J. (2022). Analysis of the mechanical properties and damage mechanism of carbon fiber/epoxy composites under UV aging. Materials, 15(8), 2919.
  • Ramli, J., Jeefferie, A. R., & Mahat, M. M. (2011). Effects of UV curing exposure time to the mechanical and physical properties of the epoxy and vinyl ester fiber glass laminates composites. ARPN J. Eng. Appl. Sci, 6, 104-109.
  • Di Pietro, A., & Compston, P. (2009). Resin hardness and interlaminar shear strength of a glass-fibre/vinylester composite cured with high intensity ultraviolet (UV) light. Journal of Materials Science, 44, 4188-4190.
  • ASTM G154 Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials.
  • Jesthi, D. K., & Nayak, R. K. (2019). Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application. Composites Part B: Engineering, 168, 467-475.
  • Özbek, Ö., Oğuz, Z. A., Bozkurt, Ö. Y., & Erkliğ, A. (2024). Crashworthiness characteristics of hydrothermally aged intraply glass/basalt composite pipes. Marine Structures, 97, 103656.
  • Oğuz, Z. A., Özbek, Ö., Erkliğ, A., & Bozkurt, Ö. Y. (2023). Hydrothermal aging effect on crushing characteristics of intraply hybrid composite pipes. Engineering Structures, 297, 117011.
  • Doğan, N. F., Oğuz, Z. A., & Erkliğ, A. (2023). An experimental study on the hydrothermal aging effect on the free vibration properties of hybrid aramid/glass/epoxy composites: comparison of sea water and distilled water. Polymer Composites, 44(10), 6902-6912.
  • Alagumalai, V., Shanmugam, V., Balasubramanian, N. K., Krishnamoorthy, Y., Ganesan, V., Försth, M., ... & Das, O. (2021). Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites. Polymers, 13(16), 2591.
  • Demir, S., & Kemiklioğlu, U. (2023). A Comparison of Force Distribution Effects of Ductile and Brittle Adhesives at Different Hole Positioning. International Journal of Advances in Engineering and Pure Sciences, 35(4), 523-530.
  • Cebe, E., & İrez, A. B. (2024). Elektrikli araçlarda batarya kutusu imali için termal özellikleri iyileştirilmiş hibrit polimer kompozitlerin geliştirilmesi ve mekanik özelliklerinin incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 36(3), 224-234.

UV Yaşlanmasının Cam ve Aramid Elyaf Takviyeli Interply Hibrit Kompozitlerin Sertlik Özellikleri Üzerindeki Etkisi

Yıl 2025, Cilt: 37 Sayı: 1, 1 - 7, 25.03.2025
https://doi.org/10.7240/jeps.1582763

Öz

Bu çalışma, dört tasarımda cam ve aramid elyaflarla konfügre edilmiş hibrit kompozit malzemelerin sertlik özellikleri üzerinde UV yaşlanmasının etkisini araştırmaktadır: saf cam elyaf (S1), saf aramid elyaf (S4) ve çeşitli elyaf katmanlarına sahip iki hibrit yapı (S2 ve S3). Numuneler 0, 20 ve 40 gün boyunca UV ışığına maruz bırakılmış ve sertlik değerleri, UV maruziyetinin ve elyaf hibriditasyonunun malzeme dayanıklılığını nasıl etkilediğini değerlendirmek için ölçülmüştür. İlk olarak, saf aramid kompozit (S4), 28 HV'de en yüksek sertliği göstermiştir ve 22.2 HV'deki saf cam konfigürasyonuna (S1) göre %26.13'lük bir artış göstermiştir. Hibrit konfigürasyonlar, S3'ün (aramid dışarda) 25.1 HV'ye ulaşmasıyla ara değerleri (saf cam ve saf aramid arası) göstermiştir ve bu, elyaf hibriditasyonunun etkisini göstermiştir. UV maruziyeti, tüm konfigürasyonlarda sertliği daha da artırmıştır; 20 günlük UV yaşlanma sonrası değerler S1 için 24.4 HV, S2 için 27.3 HV, S3 için 30.4 HV ve S4 için 31.6 HV'ye yükselmiştir. 40 günlük UV yaşlanma sonrası sertlik S1 için 28.8 HV, S2 için 30.1 HV, S3 için 31.6 HV ve S4 için 34.9 HV'ye ulaşmış ve numunelerde %29.7 ile %24.6 arasında kümülatif artışlar göstermiştir. Bu sonuçlar UV yaşlanmasının sertliği artırdığını, özellikle dış yüzeyinde aramid elyaf bulunan hibrit modellerin UV direncini artırdığını ve hem UV dayanıklılığı hem de sertlik gerektiren uygulamalar için uygun olduklarını göstermektedir.

Kaynakça

  • Alsaadi, M., Bulut, M., Erkliğ, A., & Jabbar, A. (2018). Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Composites Part B: Engineering, 152, 169-179.
  • Kosedag, E., Caliskan, U., & Ekici, R. (2022). The effect of artificial aging on the impact behavior of SiC nanoparticle‐glass fiber‐reinforced polymer matrix composites. Polymer Composites, 43(2), 964-976.
  • Kirar, E., Demircan, G., Kisa, M., Ozen, M., & Guven, C. (2024). Quasi-static punch shear behavior of glass/epoxy composite: Experimental and numerical study in artificial seawater environment. Applied Ocean Research, 153, 104262
  • Kosedag, E. (2023). Effect of artificial aging on 3-point bending behavior of glass fiber/epoxy composites. Journal of Reinforced Plastics and Composites, 42(21-22), 1147-1153.
  • Ovalı, S., & Sancak, E. (2022). Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials, 35(11), 1921-1939.
  • Celebi, M., Altun, M., & Ovali, S. (2022). The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polymers and Polymer Composites, 30, 09673911221081700.
  • Wu, C., Meng, B. C., Tam, L. H., & He, L. (2022). Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods. Polymer Testing, 114, 107708.
  • Raajeshkrishna, C. R., & Chandramohan, P. (2020). Effect of reinforcements and processing method on mechanical properties of glass and basalt epoxy composites. SN Applied Sciences, 2(5), 959.
  • Ramesh, M., Bhoopathi, R., Deepa, C., & Sasikala, G. (2018). Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. Journal of the Chinese Advanced Materials Society, 6(4), 640-654.
  • Suryawan, I. G. P. A., Suardana, N. P. G., Winaya, I. S., & Suyasa, I. (2020). Hardness analysis of epoxy composite reinforced with glass fiber compared to nettle fibers. Int. J. Eng. Emerg. Technol, 5(1), 2020.
  • Rout, S., Nayak, R. K., Patnaik, S. C., & Yazdani Nezhad, H. (2022). Development of improved flexural and impact performance of kevlar/carbon/glass fibers reinforced polymer hybrid composites. Journal of Composites Science, 6(9), 245.
  • Markovičová, L., & Zatkalíková, V. (2019). The effect of UV aging on structural polymers. In IOP Conference Series: Materials Science and Engineering (Vol. 465, No. 1, p. 012004). IOP Publishing.
  • Shi, Z., Zou, C., Zhou, F., & Zhao, J. (2022). Analysis of the mechanical properties and damage mechanism of carbon fiber/epoxy composites under UV aging. Materials, 15(8), 2919.
  • Ramli, J., Jeefferie, A. R., & Mahat, M. M. (2011). Effects of UV curing exposure time to the mechanical and physical properties of the epoxy and vinyl ester fiber glass laminates composites. ARPN J. Eng. Appl. Sci, 6, 104-109.
  • Di Pietro, A., & Compston, P. (2009). Resin hardness and interlaminar shear strength of a glass-fibre/vinylester composite cured with high intensity ultraviolet (UV) light. Journal of Materials Science, 44, 4188-4190.
  • ASTM G154 Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials.
  • Jesthi, D. K., & Nayak, R. K. (2019). Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application. Composites Part B: Engineering, 168, 467-475.
  • Özbek, Ö., Oğuz, Z. A., Bozkurt, Ö. Y., & Erkliğ, A. (2024). Crashworthiness characteristics of hydrothermally aged intraply glass/basalt composite pipes. Marine Structures, 97, 103656.
  • Oğuz, Z. A., Özbek, Ö., Erkliğ, A., & Bozkurt, Ö. Y. (2023). Hydrothermal aging effect on crushing characteristics of intraply hybrid composite pipes. Engineering Structures, 297, 117011.
  • Doğan, N. F., Oğuz, Z. A., & Erkliğ, A. (2023). An experimental study on the hydrothermal aging effect on the free vibration properties of hybrid aramid/glass/epoxy composites: comparison of sea water and distilled water. Polymer Composites, 44(10), 6902-6912.
  • Alagumalai, V., Shanmugam, V., Balasubramanian, N. K., Krishnamoorthy, Y., Ganesan, V., Försth, M., ... & Das, O. (2021). Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites. Polymers, 13(16), 2591.
  • Demir, S., & Kemiklioğlu, U. (2023). A Comparison of Force Distribution Effects of Ductile and Brittle Adhesives at Different Hole Positioning. International Journal of Advances in Engineering and Pure Sciences, 35(4), 523-530.
  • Cebe, E., & İrez, A. B. (2024). Elektrikli araçlarda batarya kutusu imali için termal özellikleri iyileştirilmiş hibrit polimer kompozitlerin geliştirilmesi ve mekanik özelliklerinin incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 36(3), 224-234.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Zeynal Abidin Oğuz 0000-0002-8566-2331

Erken Görünüm Tarihi 19 Mart 2025
Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 12 Kasım 2024
Kabul Tarihi 19 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Oğuz, Z. A. (2025). Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites. International Journal of Advances in Engineering and Pure Sciences, 37(1), 1-7. https://doi.org/10.7240/jeps.1582763
AMA Oğuz ZA. Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites. JEPS. Mart 2025;37(1):1-7. doi:10.7240/jeps.1582763
Chicago Oğuz, Zeynal Abidin. “Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 1 (Mart 2025): 1-7. https://doi.org/10.7240/jeps.1582763.
EndNote Oğuz ZA (01 Mart 2025) Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites. International Journal of Advances in Engineering and Pure Sciences 37 1 1–7.
IEEE Z. A. Oğuz, “Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites”, JEPS, c. 37, sy. 1, ss. 1–7, 2025, doi: 10.7240/jeps.1582763.
ISNAD Oğuz, Zeynal Abidin. “Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites”. International Journal of Advances in Engineering and Pure Sciences 37/1 (Mart 2025), 1-7. https://doi.org/10.7240/jeps.1582763.
JAMA Oğuz ZA. Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites. JEPS. 2025;37:1–7.
MLA Oğuz, Zeynal Abidin. “Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 1, 2025, ss. 1-7, doi:10.7240/jeps.1582763.
Vancouver Oğuz ZA. Effect of UV Aging on the Hardness Properties of Glass and Aramid Fiber-Reinforced Interply Hybrid Composites. JEPS. 2025;37(1):1-7.