Araştırma Makalesi
BibTex RIS Kaynak Göster

PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors

Yıl 2025, Cilt: 37 Sayı: 1, 64 - 72, 25.03.2025
https://doi.org/10.7240/jeps.1638390

Öz

Acute myeloid leukemia (AML) is a bone marrow condition that arises from abnormalities in hematopoietic stem cells due to genetic mutations in progenitor blood cells. These mutations lead to the uncontrolled proliferation of malignant clonal myeloid stem cells. Although extramedullary symptoms such as myeloid sarcomas and leukemia cutis can arise, the main issue continues to be the disturbances in hematologic cell production. Despite the high complete remission rate in elderly patients, a notable number of patients experience relapse within three years. To address this issue, new objectives must be identified. In a previous study, PSMB8 drew our attention due to its elevated expression levels in AML patients exhibiting lower survival rates compared to those with reduced expression levels. PSMB8 was used for drug repurposing studies by performing in silico drug screening, an ADMET analysis which is followed by Molecular Dynamics (MD) simulations. Three ligand molecules were identified as potential treatment options for AML which were Adozelesin, Fiduxosin and Omipalisib. Omipalisib is known as a PI3K/mTOR inhibitor which was taken our attention for cytotoxic analysis due to overexpression of PI3K/mTOR pathway proteins in AML development. In the subsequent phase, we assessed the cytotoxicity of Omipalisib in comparison to ONX-0914, an inhibitor of PSMB8, in the HL60 cell lines. This research indicated that PSMB8 could be a possible target for Acute Myeloid Leukemia and that a potential medication can be utilized for targeted treatment.

Proje Numarası

-

Teşekkür

This study is completed as a part of Master Thesis submitted to İzmir University of Economics, Graduate School, Master's Program in Bioengineering by Onur Ateş in 2025. The authors thank TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) for the calculations by their computational resources used to led this study.

Kaynakça

  • Pelcovits, A., & Niroula, R. (2020). Acute Myeloid Leukemia: A Review.
  • Kishtagari, A., Levine, R. L., & Viny, A. D. (2020). Driver mutations in acute myeloid leukemia.
  • Döhner, H., Weisdorf, D. J., & Bloomfield, C. D. (2015). Acute Myeloid Leukemia. The New England Journal of Medicine, 373(12), 1136–1152.
  • Vosberg, S., & Greif, P. A. (2019). Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes, Chromosomes & Cancer, 58(12), 839–849.
  • Xu, J., & Niu, T. (2020). Natural killer cell-based immunotherapy for acute myeloid leukemia. Journal of Hematology & Oncology 2020 13:1, 13(1), 1–20.
  • DiNardo, C. D., Erba, H. P., Freeman, S. D., & Wei, A. H. (2023). Acute myeloid leukaemia. The Lancet, 401(10393), 2073–2086.
  • Kloetzel, P. M. (2001). Antigen processing by the proteasome. Nature Reviews. Molecular Cell Biology, 2(3), 179–187.
  • Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10(2), 104–115.
  • Rivett, A. J., & Hearn, A. R. (2004). Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. Current Protein & Peptide Science, 5(3), 153–161.
  • Kimura, H., Caturegli, P., Takahashi, M., & Suzuki, K. (2015). New Insights into the Function of the Immunoproteasome in Immune and Nonimmune Cells. Journal of Immunology Research, 2015.
  • Lai, C., Doucette, K., & Norsworthy, K. (2019). Recent drug approvals for acute myeloid leukemia. Journal of Hematology and Oncology, 12(1), 1–20.
  • Agarwal, A. K., Xing, C., Demartino, G. N., Mizrachi, D., Hernandez, M. D., Sousa, A. B., Martínez De Villarreal, L., Dos Santos, H. G., & Garg, A. (2010). PSMB8 Encoding the β5i Proteasome Subunit Is Mutated in Joint Contractures, Muscle Atrophy, Microcytic Anemia, and Panniculitis-Induced Lipodystrophy Syndrome. American Journal of Human Genetics, 87(6), 866.
  • Chang, H. H., Cheng, Y. C., Tsai, W. C., & Chen, Y. (2020). PSMB8 inhibition decreases tumor angiogenesis in glioblastoma through vascular endothelial growth factor A reduction. Cancer Science, 111(11), 4142–4153.
  • Zhang, Y., Xue, S., Hao, Q., Liu, F., Huang, W., & Wang, J. (2021). Galectin-9 and PSMB8 overexpression predict unfavorable prognosis in patients with AML. Journal of Cancer, 12(14), 4257–4263.
  • Lei, M., Jingjing, Z., Tao, J., Jianping, M., Yuanxin, Z., Jifeng, W., Lianguo, X., Lidong, Z., & Ying, W. (2020). LncRNA HCP5 promotes LAML progression via PSMB8-mediated PI3K/AKT pathway activation. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(6), 1025–1032.
  • Tükel, E. Y., Ateş, O., & Kiraz, Y. (2024). In Silico Drug Repurposing Against PSMB8 as a Potential Target for Acute Myeloid Leukemia Treatment. Molecular Biotechnology, 1–11.
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–W102.
  • Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., Johnston, S. E., Vrcic, A., Wong, B., Khan, M., Asiedu, J., Narayan, R., Mader, C. C., Subramanian, A., & Golub, T. R. (2017). The Drug Repurposing Hub: a next-generation drug library and information resource. Nature Medicine, 23(4), 405–408.
  • Sleire, L., Førde-Tislevoll, H. E., Netland, I. A., Leiss, L., Skeie, B. S., & Enger, P. Ø. (2017). Drug repurposing in cancer. Pharmacological Research, 124, 74–91.
  • Xue, H., Li, J., Xie, H., & Wang, Y. (2018). Review of Drug Repositioning Approaches and Resources. International Journal of Biological Sciences, 14(10), 1232.
  • Darici, S., Alkhaldi, H., Horne, G., Jørgensen, H. G., Marmiroli, S., & Huang, X. (2020). Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. Journal of Clinical Medicine, 9(9), 2934.
  • Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. V. (2012). Enalapril-induced Apoptosis of Acute Promyelocytic Leukaemia Cells Involves STAT5A. ANTICANCER RESEARCH, 32(7), 343–354.
  • Fan, Y., Chiu, J. F., Liu, J., Deng, Y., Xu, C., Zhang, J., & Li, G. (2018). Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer, 18(1), 1–10
  • Jenkins, T. W., Downey-Kopyscinski, S. L., Fields, J. L., Rahme, G. J., Colley, W. C., Israel, M. A., Maksimenko, A. V., Fiering, S. N., & Kisselev, A. F. (2021). Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL–AF4 fusion protein. Scientific Reports, 11(1), 10883.
  • Lakshmanan, I., & Batra, S. K. (2013). Protocol for Apoptosis Assay by Flow Cytometry Using Annexin V Staining Method. Bio-Protocol, 3(6), e374.
  • Petsri, K., Yokoya, M., Tungsukruthai, S., Rungrotmongkol, T., Nutho, B., Vinayanuwattikun, C., Saito, N., Takehiro, M., Sato, R., & Chanvorachote, P. (2020). Structure–Activity Relationships and Molecular Docking Analysis of Mcl-1 Targeting Renieramycin T Analogues in Patient-derived Lung Cancer Cells. Cancers, 12(4), 875
  • Ordueri, N. E. G., Elgün, T., Şahin, P., Kuşcu, N., & Özenci, Ç. Ç. (2018). Postnatal fare testis gelişiminde kaspaz-bağımlı ve kaspaz-bağımsız apoptozun değerlendirilmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 44(2), 103–109.

AML Tedavisinde Yeni Bir Hedef Olarak PSMB8 ve PI3K İnhibitörleri ile Sinerjik Potansiyelin Belirlenmesi

Yıl 2025, Cilt: 37 Sayı: 1, 64 - 72, 25.03.2025
https://doi.org/10.7240/jeps.1638390

Öz

Akut miyeloid lösemi (AML), progenitör kan hücrelerindeki genetik mutasyonlar nedeniyle hematopoetik kök hücrelerde meydana gelen düzensizliklerden kaynaklanan bir kemik iliği hastalığıdır. Bu mutasyonlar, malign klonal miyeloid kök hücrelerin kontrolsüz çoğalmasına yol açar. Miyeloid sarkomlar ve lösemi kutisi gibi ekstramedüller belirtiler ortaya çıkabilse de, temel sorun hematolojik hücre üretimindeki bozulmalardır. Yaşlı hastalarda tam remisyon oranı yüksek olmasına rağmen, önemli sayıda hasta üç yıl içinde nüks yaşamaktadır. Bu sorunun üstesinden gelmek için yeni hedeflerin belirlenmesi gerekmektedir. Önceki çalışmamızda, AML hastalarında PSMB8’in yüksek ekspresyon seviyeleri göstermesi ve düşük ekspresyon seviyelerine sahip hastalara kıyasla daha düşük sağkalım oranları ile ilişkilendirilmesi dikkatimizi çekmiştir. Daha önceki çalışmamızda, PSMB8 hedef alınarak sanal ilaç taramaları, ADMET analizi ve ardından Moleküler Dinamik (MD) simülasyonları gerçekleştirilmiştir. Bu çalışmalar sonucunda AML tedavisi için üç potansiyel ilaç adayı belirlenmiştir: Adozelesin, Fiduxosin ve Omipalisib. PI3K/mTOR inhibitörü olarak bilinen Omipalisib, AML gelişiminde PI3K/mTOR yolak proteinlerinin aşırı ekspresyon göstermesi nedeniyle sitotoksisite analizi için dikkatimizi çekmiştir. Sonraki aşamada, HL60 hücre hattında Omipalisib’in sitotoksisitesi, PSMB8 inhibitörü olan ONX-0914 ile karşılaştırılmıştır. Bu araştırma, PSMB8'in Akut Myeloid Lösemi için olası bir hedef olabileceğini ve potansiyel bir ilacın hedefli tedavi için kullanılabileceğini gösterdi.

Proje Numarası

-

Kaynakça

  • Pelcovits, A., & Niroula, R. (2020). Acute Myeloid Leukemia: A Review.
  • Kishtagari, A., Levine, R. L., & Viny, A. D. (2020). Driver mutations in acute myeloid leukemia.
  • Döhner, H., Weisdorf, D. J., & Bloomfield, C. D. (2015). Acute Myeloid Leukemia. The New England Journal of Medicine, 373(12), 1136–1152.
  • Vosberg, S., & Greif, P. A. (2019). Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes, Chromosomes & Cancer, 58(12), 839–849.
  • Xu, J., & Niu, T. (2020). Natural killer cell-based immunotherapy for acute myeloid leukemia. Journal of Hematology & Oncology 2020 13:1, 13(1), 1–20.
  • DiNardo, C. D., Erba, H. P., Freeman, S. D., & Wei, A. H. (2023). Acute myeloid leukaemia. The Lancet, 401(10393), 2073–2086.
  • Kloetzel, P. M. (2001). Antigen processing by the proteasome. Nature Reviews. Molecular Cell Biology, 2(3), 179–187.
  • Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10(2), 104–115.
  • Rivett, A. J., & Hearn, A. R. (2004). Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. Current Protein & Peptide Science, 5(3), 153–161.
  • Kimura, H., Caturegli, P., Takahashi, M., & Suzuki, K. (2015). New Insights into the Function of the Immunoproteasome in Immune and Nonimmune Cells. Journal of Immunology Research, 2015.
  • Lai, C., Doucette, K., & Norsworthy, K. (2019). Recent drug approvals for acute myeloid leukemia. Journal of Hematology and Oncology, 12(1), 1–20.
  • Agarwal, A. K., Xing, C., Demartino, G. N., Mizrachi, D., Hernandez, M. D., Sousa, A. B., Martínez De Villarreal, L., Dos Santos, H. G., & Garg, A. (2010). PSMB8 Encoding the β5i Proteasome Subunit Is Mutated in Joint Contractures, Muscle Atrophy, Microcytic Anemia, and Panniculitis-Induced Lipodystrophy Syndrome. American Journal of Human Genetics, 87(6), 866.
  • Chang, H. H., Cheng, Y. C., Tsai, W. C., & Chen, Y. (2020). PSMB8 inhibition decreases tumor angiogenesis in glioblastoma through vascular endothelial growth factor A reduction. Cancer Science, 111(11), 4142–4153.
  • Zhang, Y., Xue, S., Hao, Q., Liu, F., Huang, W., & Wang, J. (2021). Galectin-9 and PSMB8 overexpression predict unfavorable prognosis in patients with AML. Journal of Cancer, 12(14), 4257–4263.
  • Lei, M., Jingjing, Z., Tao, J., Jianping, M., Yuanxin, Z., Jifeng, W., Lianguo, X., Lidong, Z., & Ying, W. (2020). LncRNA HCP5 promotes LAML progression via PSMB8-mediated PI3K/AKT pathway activation. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(6), 1025–1032.
  • Tükel, E. Y., Ateş, O., & Kiraz, Y. (2024). In Silico Drug Repurposing Against PSMB8 as a Potential Target for Acute Myeloid Leukemia Treatment. Molecular Biotechnology, 1–11.
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–W102.
  • Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., Johnston, S. E., Vrcic, A., Wong, B., Khan, M., Asiedu, J., Narayan, R., Mader, C. C., Subramanian, A., & Golub, T. R. (2017). The Drug Repurposing Hub: a next-generation drug library and information resource. Nature Medicine, 23(4), 405–408.
  • Sleire, L., Førde-Tislevoll, H. E., Netland, I. A., Leiss, L., Skeie, B. S., & Enger, P. Ø. (2017). Drug repurposing in cancer. Pharmacological Research, 124, 74–91.
  • Xue, H., Li, J., Xie, H., & Wang, Y. (2018). Review of Drug Repositioning Approaches and Resources. International Journal of Biological Sciences, 14(10), 1232.
  • Darici, S., Alkhaldi, H., Horne, G., Jørgensen, H. G., Marmiroli, S., & Huang, X. (2020). Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. Journal of Clinical Medicine, 9(9), 2934.
  • Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. V. (2012). Enalapril-induced Apoptosis of Acute Promyelocytic Leukaemia Cells Involves STAT5A. ANTICANCER RESEARCH, 32(7), 343–354.
  • Fan, Y., Chiu, J. F., Liu, J., Deng, Y., Xu, C., Zhang, J., & Li, G. (2018). Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer, 18(1), 1–10
  • Jenkins, T. W., Downey-Kopyscinski, S. L., Fields, J. L., Rahme, G. J., Colley, W. C., Israel, M. A., Maksimenko, A. V., Fiering, S. N., & Kisselev, A. F. (2021). Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL–AF4 fusion protein. Scientific Reports, 11(1), 10883.
  • Lakshmanan, I., & Batra, S. K. (2013). Protocol for Apoptosis Assay by Flow Cytometry Using Annexin V Staining Method. Bio-Protocol, 3(6), e374.
  • Petsri, K., Yokoya, M., Tungsukruthai, S., Rungrotmongkol, T., Nutho, B., Vinayanuwattikun, C., Saito, N., Takehiro, M., Sato, R., & Chanvorachote, P. (2020). Structure–Activity Relationships and Molecular Docking Analysis of Mcl-1 Targeting Renieramycin T Analogues in Patient-derived Lung Cancer Cells. Cancers, 12(4), 875
  • Ordueri, N. E. G., Elgün, T., Şahin, P., Kuşcu, N., & Özenci, Ç. Ç. (2018). Postnatal fare testis gelişiminde kaspaz-bağımlı ve kaspaz-bağımsız apoptozun değerlendirilmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 44(2), 103–109.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Biyolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Onur Ates 0009-0008-3628-0450

Yağmur Kiraz 0000-0003-3508-5617

Proje Numarası -
Erken Görünüm Tarihi 19 Mart 2025
Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 12 Şubat 2025
Kabul Tarihi 4 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Ates, O., & Kiraz, Y. (2025). PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors. International Journal of Advances in Engineering and Pure Sciences, 37(1), 64-72. https://doi.org/10.7240/jeps.1638390
AMA Ates O, Kiraz Y. PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors. JEPS. Mart 2025;37(1):64-72. doi:10.7240/jeps.1638390
Chicago Ates, Onur, ve Yağmur Kiraz. “PSMB8 As a Novel Target for AML Therapy: Uncovering Synergistic Potential With PI3K Inhibitors”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 1 (Mart 2025): 64-72. https://doi.org/10.7240/jeps.1638390.
EndNote Ates O, Kiraz Y (01 Mart 2025) PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors. International Journal of Advances in Engineering and Pure Sciences 37 1 64–72.
IEEE O. Ates ve Y. Kiraz, “PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors”, JEPS, c. 37, sy. 1, ss. 64–72, 2025, doi: 10.7240/jeps.1638390.
ISNAD Ates, Onur - Kiraz, Yağmur. “PSMB8 As a Novel Target for AML Therapy: Uncovering Synergistic Potential With PI3K Inhibitors”. International Journal of Advances in Engineering and Pure Sciences 37/1 (Mart 2025), 64-72. https://doi.org/10.7240/jeps.1638390.
JAMA Ates O, Kiraz Y. PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors. JEPS. 2025;37:64–72.
MLA Ates, Onur ve Yağmur Kiraz. “PSMB8 As a Novel Target for AML Therapy: Uncovering Synergistic Potential With PI3K Inhibitors”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 1, 2025, ss. 64-72, doi:10.7240/jeps.1638390.
Vancouver Ates O, Kiraz Y. PSMB8 as a Novel Target for AML Therapy: Uncovering Synergistic Potential with PI3K Inhibitors. JEPS. 2025;37(1):64-72.