Teknik Not
BibTex RIS Kaynak Göster

Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları

Yıl 2025, Cilt: 37 Sayı: 3, 263 - 271, 24.09.2025
https://doi.org/10.7240/jeps.1658571

Öz

Fiber Halka Döngü Sönümleme Spektroskopisi (Fiber Loop Ringdown Spectroscopy (FLRDS)) (FHDSS) tekniği, bir fiber halkayı optik boşluk olarak kullanarak bir sistem içindeki soğurma ve saçılma kayıplarını ölçen ileri düzeyde hassas bir optik algılama tekniğidir. Bu teknik, fiber tabanlı konfigürasyonlara uyarlanmış Kavite Döngü Sönümleme Spektroskopisi (Cavity Ringdown Spectroscopy (CRDS)) (KDSS) tekniğinden türetilmiştir ve kompakt boyut, mekanik dayanıklılık ve maliyet etkinliği gibi birçok avantaj sunmaktadır. FHDSS’nin temel çalışma prensibi, tek bir ışık sinyalinin fiber halka içerisine hapsedilmesi ve bu sinyalin fiber optik içerisinde tam iç yansıma yaparak fiber halka içinde birden fazla tur yapmasından dolayı ölçümlenecek numune ile birden çok kez etkileşimi sayesinde yüksek hassasiyetli ve hızlı öçlüm timeline dayanır. Işık sinyalinin yoğunluğunun üstel olarak azalması analiz edilerek içsel optik kayıplar yüksek hassasiyetle belirlenebilir. FHDSS, optik ve fotonik alanlarında önemli bir eğitim değeri taşımaktadır. Tam iç yansıma, optik boşluk rezonansı ve üstel sönüm dinamikleri gibi temel optik fenomenlerin pratik olarak gösterilmesini sağlar. Ayrıca, öğrencilere ve araştırmacılara ileri düzeyde optik ölçüm teknikleri konusunda uygulamalı deneyim kazandırarak fiber tabanlı algılama sistemlerini daha iyi anlamalarına yardımcı olur. Eğitimsel öneminin ötesinde, FHDSS birçok farklı alanda geniş uygulama imkanına sahiptir. Çevresel algılama alanında, gaz izi takibi ve kirletici izleme için yüksek hassasiyeti sayesinde çok düşük konsantrasyon değişimlerini bile belirleyebilir. Biyomedikal araştırmalarda, biyomoleküler etkileşimleri ve doku soğurma özelliklerini tespit ederek invaziv olmayan tanı süreçlerine katkı sağlar. Ayrıca, endüstriyel kalite kontrol alanında, optik bileşenlerin bütünlüğünü izlemek ve sıvı ile gazlardaki kirleticileri tespit etmek için de kullanılır.

Kaynakça

  • Ai, Y., Li, J., Li, Q., Sun, M., Li, Y., & Wang, C. (2020). Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test. Journal of Breath Research, 14(3), 037101.
  • Gagliardi, G., & Loock, H.-P. (Eds.). (2014). Cavity-enhanced spectroscopy and sensing (Springer Series in Optical Sciences). Springer.
  • Maity, A., Maithani, S., & Pradhan, M. (2020). Cavity ring-down spectroscopy: Recent technological advancements, techniques, and applications. Analytical Chemistry, 93(1), 388–416.
  • Ferraro, J. R., & Nakamoto, K. (1994). Introductory Raman spectroscopy. Academic Press.
  • Stuart, B. (2004). Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons.
  • Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
  • Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2014). Introduction to spectroscopy (5th ed.). Cengage Learning.
  • Wang, C. (2009). Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: Current status and design perspectives. Sensors, 9(10), 7595–7621.
  • Kaya, B. M., Esenkturk, O., Asici, C., Sarac, U., Dindis, G., & Baykul, M. C. (2024). Coating effects of a strain sensor on durability and sensitivity using the fiber loop ringdown spectroscopy technique Phys. Scr. 99, 055511.
  • Loock, H.-P., & Waechtler, T. (2003). Fiber-loop ring-down spectroscopy: A sensitive absorption technique for small liquid samples. Review of Scientific Instruments, 74(11), 4818–4826.
  • Wang, Y., Ma, G. M., Zheng, D., Jiang, J., & Yan, C. (2021). Gas concentration sensing based on fiber loop ring-down spectroscopy: a review. IEEE Transactions on Instrumentation and Measurement, 70, 1-16.
  • Yan, W., Han, Q., Chen, Y., Song, H., Tang, X., & Liu, T. (2018). Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure. Sensors and Actuators B: Chemical, 255.
  • Wang, C., & Scherrer, S. T. (2004). Fiber loop ringdown for physical sensor development: pressure sensor. Applied Optics, 43(35), 6458-6464.
  • Kaya, M., & Esenturk, O. (2020). Highly sensitive fiber optic pressure sensors for wind turbine applications. Turkish Journal of Electrical Engineering & Computer Sciences, 28(5), 2789–2796.
  • Kaya, B. M. (2024). A novel single mode fiber optic temperature sensor combined with the FLRDS technique. Phys. Scr. 99(9), 095405.
  • Kaya, M., & Esenturk, O. (2020). Study of strain measurement by fiber optic sensors with a sensitive fiber loop ringdown spectrometer. Optical Fiber Technology, 54, 102070.
  • Tong, Z., Jakubinek, M., Wright, A., Gillies, A., & Loock, H. P. (2003). Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples. Review of scientific instruments, 74(11), 4818-4826.
  • Qian, X., Zhao, Y., Zhang, Y. N., & Wang, Q. (2016). Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors and Actuators B: Chemical, 228, 665-672.
  • Kaya, M., & Wang, C. (2017). Detection of trace elements in DI water and comparison of several water solutions by using EF-FLRD chemical sensors. AIP Conference Proceedings, 1809(1), 020017.
  • Waechter, H., Litman, J., Cheung, A. H., Barnes, J. A., & Loock, H.-P. (2010). Chemical sensing using fiber cavity ring-down spectroscopy. Sensors, 10(3), 1716–1742.
  • Cengiz, B. (2013). Fiber loop ring-down spectroscopy for trace chemical detection (Master's thesis). Middle East Technical University, Turkey.
  • Herath, C., Wang, C., Kaya, M., & Chevalier, D. (2011). Fiber loop ringdown DNA and bacteria sensors. Journal of Biomedical Optics, 16(5), 050501.
  • Wang, C., Kaya, M., & Wang, C. (2012). Evanescent field-fiber loop ringdown glucose sensor. Journal of Biomedical Optics, 17(3), 037004.
  • Kaya, M., & Wang, C. (2014). Fiber loop ringdown glucose sensors: Initial tests in human diabetic urines. Fiber Optic Sensors and Applications XI, 9098, 120–123.
  • Kaya, B. M., Oz, S., & Esenturk, O. (2024). Application of fiber loop ringdown spectroscopy technique for a new approach to beta-amyloid monitoring for Alzheimer’s disease’s early detection. Biomedical Physics & Engineering Express, 10(3), 035037.
  • Kaya, M., Sahay, P., & Wang, C. (2013). Reproducibly reversible fiber loop ringdown water sensor embedded in concrete and grout for water monitoring. Sensors and Actuators B: Chem. 176, 803–810.
  • Sahay, P., Kaya, M., & Wang, C. (2012). Fiber loop ringdown sensor for potential real-time monitoring of cracks in concrete structures: An exploratory study. Sensors, 13(1), 39–57.
  • Yolalmaz, A., Sadroud, F. H., Danışman, M. F., & Esenturk, O. (2017). Intracavity gas detection with fiber loop ring down spectroscopy. Optics Communications, 396, 141–145.
  • Loock, H.-P., & Wentzell, P. D. (2012). Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical, 173, 157–163.
  • Brown, R. S., Tong, Z., Oleschuk, R. D., & Loock, H.-P. (2002). Fiber-loop ring-down spectroscopy. The Journal of Chemical Physics, 117(23), 10444–10447.

Educational Description of the Fiber Loop Ringdown Spectroscopy Technique: Working Principle and Application Areas

Yıl 2025, Cilt: 37 Sayı: 3, 263 - 271, 24.09.2025
https://doi.org/10.7240/jeps.1658571

Öz

Fiber Loop Ringdown Spectroscopy (FLRDS) is a highly sensitive optical sensing technique that measures absorption and scattering losses within a system by employing an optical fiber loop as the cavity. Derived from Cavity Ringdown Spectroscopy (CRDS)—a well-established method in optical detection—FLRDS adapts the principles of CRDS into a fiber-based configuration, offering numerous advantages such as compactness, mechanical robustness, and cost-effectiveness. The core operating principle of FLRDS is based on trapping a single optical pulse within a fiber loop, allowing the light to undergo multiple internal reflections due to total internal reflection. As the light pulse circulates within the loop, it interacts repeatedly with the sample under investigation, thereby enhancing measurement sensitivity and temporal resolution. By analyzing the exponential decay of the light intensity, intrinsic optical losses can be determined with high precision. FLRDS holds significant pedagogical value in the fields of optics and photonics. It provides a practical platform for demonstrating fundamental optical phenomena such as total internal reflection, optical cavity resonance, and exponential decay dynamics. Furthermore, it equips students and researchers with hands-on experience in advanced optical measurement techniques, thereby fostering a deeper understanding of fiber-based sensing systems. Beyond its educational significance, FLRDS offers a wide range of applications across multiple disciplines. In environmental sensing, it enables the detection of trace gases and monitoring of pollutants with high sensitivity, even at very low concentration levels. In biomedical research, it facilitates non-invasive diagnostics by detecting biomolecular interactions and tissue absorption characteristics. Additionally, in industrial quality control, it is employed for monitoring the integrity of optical components and detecting contaminants in liquids and gases.

Kaynakça

  • Ai, Y., Li, J., Li, Q., Sun, M., Li, Y., & Wang, C. (2020). Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test. Journal of Breath Research, 14(3), 037101.
  • Gagliardi, G., & Loock, H.-P. (Eds.). (2014). Cavity-enhanced spectroscopy and sensing (Springer Series in Optical Sciences). Springer.
  • Maity, A., Maithani, S., & Pradhan, M. (2020). Cavity ring-down spectroscopy: Recent technological advancements, techniques, and applications. Analytical Chemistry, 93(1), 388–416.
  • Ferraro, J. R., & Nakamoto, K. (1994). Introductory Raman spectroscopy. Academic Press.
  • Stuart, B. (2004). Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons.
  • Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
  • Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2014). Introduction to spectroscopy (5th ed.). Cengage Learning.
  • Wang, C. (2009). Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: Current status and design perspectives. Sensors, 9(10), 7595–7621.
  • Kaya, B. M., Esenkturk, O., Asici, C., Sarac, U., Dindis, G., & Baykul, M. C. (2024). Coating effects of a strain sensor on durability and sensitivity using the fiber loop ringdown spectroscopy technique Phys. Scr. 99, 055511.
  • Loock, H.-P., & Waechtler, T. (2003). Fiber-loop ring-down spectroscopy: A sensitive absorption technique for small liquid samples. Review of Scientific Instruments, 74(11), 4818–4826.
  • Wang, Y., Ma, G. M., Zheng, D., Jiang, J., & Yan, C. (2021). Gas concentration sensing based on fiber loop ring-down spectroscopy: a review. IEEE Transactions on Instrumentation and Measurement, 70, 1-16.
  • Yan, W., Han, Q., Chen, Y., Song, H., Tang, X., & Liu, T. (2018). Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure. Sensors and Actuators B: Chemical, 255.
  • Wang, C., & Scherrer, S. T. (2004). Fiber loop ringdown for physical sensor development: pressure sensor. Applied Optics, 43(35), 6458-6464.
  • Kaya, M., & Esenturk, O. (2020). Highly sensitive fiber optic pressure sensors for wind turbine applications. Turkish Journal of Electrical Engineering & Computer Sciences, 28(5), 2789–2796.
  • Kaya, B. M. (2024). A novel single mode fiber optic temperature sensor combined with the FLRDS technique. Phys. Scr. 99(9), 095405.
  • Kaya, M., & Esenturk, O. (2020). Study of strain measurement by fiber optic sensors with a sensitive fiber loop ringdown spectrometer. Optical Fiber Technology, 54, 102070.
  • Tong, Z., Jakubinek, M., Wright, A., Gillies, A., & Loock, H. P. (2003). Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples. Review of scientific instruments, 74(11), 4818-4826.
  • Qian, X., Zhao, Y., Zhang, Y. N., & Wang, Q. (2016). Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors and Actuators B: Chemical, 228, 665-672.
  • Kaya, M., & Wang, C. (2017). Detection of trace elements in DI water and comparison of several water solutions by using EF-FLRD chemical sensors. AIP Conference Proceedings, 1809(1), 020017.
  • Waechter, H., Litman, J., Cheung, A. H., Barnes, J. A., & Loock, H.-P. (2010). Chemical sensing using fiber cavity ring-down spectroscopy. Sensors, 10(3), 1716–1742.
  • Cengiz, B. (2013). Fiber loop ring-down spectroscopy for trace chemical detection (Master's thesis). Middle East Technical University, Turkey.
  • Herath, C., Wang, C., Kaya, M., & Chevalier, D. (2011). Fiber loop ringdown DNA and bacteria sensors. Journal of Biomedical Optics, 16(5), 050501.
  • Wang, C., Kaya, M., & Wang, C. (2012). Evanescent field-fiber loop ringdown glucose sensor. Journal of Biomedical Optics, 17(3), 037004.
  • Kaya, M., & Wang, C. (2014). Fiber loop ringdown glucose sensors: Initial tests in human diabetic urines. Fiber Optic Sensors and Applications XI, 9098, 120–123.
  • Kaya, B. M., Oz, S., & Esenturk, O. (2024). Application of fiber loop ringdown spectroscopy technique for a new approach to beta-amyloid monitoring for Alzheimer’s disease’s early detection. Biomedical Physics & Engineering Express, 10(3), 035037.
  • Kaya, M., Sahay, P., & Wang, C. (2013). Reproducibly reversible fiber loop ringdown water sensor embedded in concrete and grout for water monitoring. Sensors and Actuators B: Chem. 176, 803–810.
  • Sahay, P., Kaya, M., & Wang, C. (2012). Fiber loop ringdown sensor for potential real-time monitoring of cracks in concrete structures: An exploratory study. Sensors, 13(1), 39–57.
  • Yolalmaz, A., Sadroud, F. H., Danışman, M. F., & Esenturk, O. (2017). Intracavity gas detection with fiber loop ring down spectroscopy. Optics Communications, 396, 141–145.
  • Loock, H.-P., & Wentzell, P. D. (2012). Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical, 173, 157–163.
  • Brown, R. S., Tong, Z., Oleschuk, R. D., & Loock, H.-P. (2002). Fiber-loop ring-down spectroscopy. The Journal of Chemical Physics, 117(23), 10444–10447.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sensör Teknolojisi , Elektronik, Sensörler ve Dijital Donanım (Diğer), Fiber Optik Haberleşme Sistemleri ve Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Burak Malik Kaya 0000-0002-1251-6915

Erken Görünüm Tarihi 15 Eylül 2025
Yayımlanma Tarihi 24 Eylül 2025
Gönderilme Tarihi 17 Mart 2025
Kabul Tarihi 21 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kaya, B. M. (2025). Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları. International Journal of Advances in Engineering and Pure Sciences, 37(3), 263-271. https://doi.org/10.7240/jeps.1658571
AMA Kaya BM. Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları. JEPS. Eylül 2025;37(3):263-271. doi:10.7240/jeps.1658571
Chicago Kaya, Burak Malik. “Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları”. International Journal of Advances in Engineering and Pure Sciences 37, sy. 3 (Eylül 2025): 263-71. https://doi.org/10.7240/jeps.1658571.
EndNote Kaya BM (01 Eylül 2025) Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları. International Journal of Advances in Engineering and Pure Sciences 37 3 263–271.
IEEE B. M. Kaya, “Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları”, JEPS, c. 37, sy. 3, ss. 263–271, 2025, doi: 10.7240/jeps.1658571.
ISNAD Kaya, Burak Malik. “Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları”. International Journal of Advances in Engineering and Pure Sciences 37/3 (Eylül2025), 263-271. https://doi.org/10.7240/jeps.1658571.
JAMA Kaya BM. Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları. JEPS. 2025;37:263–271.
MLA Kaya, Burak Malik. “Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları”. International Journal of Advances in Engineering and Pure Sciences, c. 37, sy. 3, 2025, ss. 263-71, doi:10.7240/jeps.1658571.
Vancouver Kaya BM. Fiber Halka Döngü Sönümleme Spektroskopisi Tekniğinin Eğitimsel Tanımı: Çalışma Prensibi ve Uygulama Alanları. JEPS. 2025;37(3):263-71.