Araştırma Makalesi
BibTex RIS Kaynak Göster

ANTALYA BÖLGESİNE YAĞAN SIRALI YAĞMUR ÖRNEKLERİNİN KİMYASAL KOMPOZİSYONLARININ VE MORFOLOJİLERİNİN BELİRLENMESİ

Yıl 2022, , 680 - 697, 30.06.2022
https://doi.org/10.21923/jesd.1050651

Öz

Bu çalışmada, Antalya ili Akdeniz Üniversitesi Kampüs alanında 2020 yılında toplanan fraksiyonel numunelerdeki suda çözünmeyen partiküllerin morfolojik yapılarının, boyut dağılımlarının ve kimyasal bileşimlerinin karakterize edilmesi amaçlanmıştır. Ayrıca her bir yağmur olayının fraksiyonel (sıralı) örneklerinde majör iyonlar ve bu iyonların fraksiyonel dağılımları, nötralizasyon faktörleri belirlenmiş, bulutla taşınan (rainout) ve bulut altı yıkama (washout) mekanizmaları ile hangi oranlarda alıcı ortama geldikleri hesaplanmıştır. Çalışmada kullanılan üç yağmur olayından birisi olan D-serisi, 07.12.2020 tarihinde örneklenmiş ve bu yağmur olayından 4 adet fraksiyonel örnek toplanmıştır. 10.12.2020 tarihli E-serisine karşılık gelen yağmur olayında ise 8 adet ve 12.12.2020 tarihli F-serisi yağmur olayında da 10 adet fraksiyonel yağmur suyu örnekleri toplanmıştır. Elde edilen sonuçlar çeşitli istatistiksel programlar ile değerlendirilerek, çıkan sonuçların veri kaliteleri ve kaynak belirleme çalışmaları yapılmıştır. Örneklerde ortalama pH değerleri 6.06-7.13 aralığında gözlemlenmiş ve herhangi bir şekilde asit yağmuru olasılığına rastlanılmamıştır. Yağmur örneklerinde partikül boyut analiz sonuçlarında D-serisi örneklerde en yüksek ölçülen değer 33.339 µm, E-serisi örneklerde 53.714 µm olarak ölçülmüştür ve F serisi örneklerde ölçüm yapılamamıştır. Örneklenen yağmur olaylarının taşınım bölgelerinin belirlenebilmesi için geri yörünge hesaplamaları yapılmış, kaynak bölgeleri, kaynak türleri ve kirletici içerikleri tartışılmıştır.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2020-8277

Teşekkür

Bu çalışma, Prof. Dr. Muhammet Yunus PAMUKOĞLU danışmanlığında yürütülen ve Murat KILIÇ tarafından hazırlanan "Sıralı yağmur örneklerinde göller bölgesine çökelen partiküllerin boyut dağılımları, morfolojileri ve kompozisyonlarının belirlenmesi" başlıklı Doktora Tezi Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenen FDK-2020-8277 numaralı proje kapsamında yapılmıştır. Göstermiş oldukları maddi destek için çok teşekkür ederiz. Ayrıca Akdeniz Üniversitesi Gıda Güvenliği ve Tarımsal Araştırmalar Merkezine, yapılan çalışmalara desteklerinden dolayı teşekkürlerimizi sunarız.

Kaynakça

  • Alahmr, F.O.M., Othman, M., Wahid, N.B.A., Halim, A.A., Latif, M.T., 2012. Compositions of dust fall around semi-urban areas in Malaysia. Aerosol Air Qual Res 12, 629–642
  • Alastuey, A., Querol, X., Chaves, A., Ruiz, C.R., Carratala, A., Lopez-Soler, A., 1999. Bulk deposition in a rural area located around a large coal-fired power station, northeast Spain. Environ Pollut. 106, 359–367.
  • Al-Khashman, O.A., 2009. Chemical characteristics of rainwater collected at a western site of Jordan. Atmos Res 91, 53–61.
  • Arenas-Lago, D., Veja, F.A., Silva, L.S., Andrade, L., 2013. Soil interaction and fractionation of added cadmium in some Galician soils. Microchem J 110, 681–690.
  • Bayramoğlu-Karşı, M.B., Yenisoy-Karakaş, S., Karakaş, D., 2018. Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment 190, 53–64.
  • Bodor, K., Bodor, Z., Szep, R., 2020. The trend of trace elements (Cd, Ni, Pb) from PM2.5 and PM10 aerosols and its effect on human health in bucharest,. Romania. Rev. Chim 71, 433–439.
  • Boga, R., Bodor, Z., Bodor, K., Tonk, S., Deak, G., Pernyeszi, T., Nita, I.-A., 2019. The influence of evapotranspiration and wet deposition on the variations of PM10 concentration in the ciuc basin. Present environ. Sustain. Dev. 13, 33–44.
  • Bisht, D.S., Srivastava, A.K., Joshi, H., Ram, K., Singh, N., Naja, M., Srivastava, M.K., Tiwari, S., 2017. Chemical characterization of rainwater at a high-altitude site “Nainital” in the central Himalayas, India. Environ Sci Pollut Res 24, 3959–3969.
  • Bravo, A.H., Soto, A.R., Sosa, E.R., Sanchez, A.P., Alarcon, J.A.L., Kahl, J., Ruiz, B., 2006. Effect of acid rain on building materials of the El Tajin archaeological zone in Veracruz, Mexico. Environ Pollut 144, 655–660.
  • Budhavant, K.B., Rao, P.S.P., Safai, P.D., Leck, C., Rodhe, H., 2016. Black carbon in cloudwater and rain water during monsoon season at a high altitude station in India. Atmos Environ 129, 256–264.
  • Cerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci Total Environ 421-422, 220–229.
  • Charlson, R.J., Rodhe, H., 1982. Factors controlling the acidity of natural rainwater. Nature 295, 683–685.
  • Dias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int J Coal Geol 122: 50–60.
  • Flues, M., Hama, P., Lemes, M.J.L., Dantas, E.S.K., Fornaro, A., 2002. Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmos Environ 36, 2397–2404.
  • Garcia, K.O., Teixeira, E.C., Agudelo-Castaneda, D.M., Braga, M., Alabarse, P.G., Wiegand, F.,Kautzmann, R.M., Silva, L.F.O., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci Total Environ 479-480, 57–65.
  • Gromping, A.H.J., Ostapczuk, P., Emons, H., 1997. Wet deposition in Germany: long–term trends and the contribution of heavy metals. Chemosphere 34, 2227–2236.
  • Herut, B., Starinsky, A., Katz, A., Rosenfeld, D., 2000. Relationship between the acidity and chemical composition of rainwater and climatological conditions along a transition zone between large deserts and Mediterranean climate, Israel Atmos Environ 34, 1281–1292.
  • Hower, J.C., O'Keefe, J.M.K., Henke, K.R.,Wagner, N.J., Copley, G., Blake, D.R., Garrison, T.. Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F.O., 2013. Gaseous emissions and sublimates fromthe Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. In. J Coal Geol 116: 63–74.
  • Hu, G.P., Balasubramanian, R., Wu, C.D., 2003. Chemical characterization of rainwater at Singapore. Chemosphere 51, 747–755.
  • Kajino, M., Aikawa, M., 2015. A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan. Atmos Environ 117, 124–134.
  • Keresztesi, Á., Korodi, A., Boga, R., Petres, S., Ghita, G., Ilie, M.., 2017. Chemical characteristics of wet precipitation in the Eastern Carpathians. Romania Ecoterra 14, 52–59.
  • Keresztesi, Á., Nita, I.A., Marius-Victor,Birsan, R.B., Bodor, Z., Szèp, R., 2020. Spatial and long-term analysis of rainwater chemistry over the conterminous United States, Environ Research 188, 109872 .
  • Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., Szèp, R., 2019a. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 31 (50).
  • Keresztesi, Á., Boga, R., Bodor, Z., Bodor, K., Tonk, S., Deak, G., Nita, I.-A., 2019b. The analysis of the chemical composition of precipitation during the driest year from the last decade. Present environ. Sustain. Dev. 13, 19–32.
  • Khan, M.N., Sarwar, A., 2014. Chemical composition of wet precipitation of air pollutants: a case study in Karachi, Pakistan. Atmosfera 27, 35–46.
  • Kilic, S., Yenisoy-Karakas, S., Kilic, M., 2015. Metal Contamination in Fruit Juices in Turkey Method Validation and Uncertainty Budget. Food Anal Met. 8(10), 2487–2495.
  • Kilic, S., Kilic, M., 2019. Determination of Trace Elements and Human HealthRisk Assessment in Bottled Spring Water:Method Validation, Atomic Spec 0195, 5373.
  • Knote, C., Hodzic, A., Jimenez, J.L., 2015. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmos Chem Phys 15, 1–18.
  • Kopáček, J., Hejzlar, J., Krám, P., Oulehle, F., Posch, M., 2016. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103, 30–37.
  • Kronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. SciTotal Environ 456-457, 95–103.
  • Kulshrestha, U.C., Kulshrestha, M.J., Sekar, R., Sastry, G.S.R., Vairamani, M., 2003. Chemical characteristics of rainwater at an urban site of south-central India. Atmos Environ 37, 3019–3026.
  • Lu, X., Li, L.Y., Li, N., Yang, G., Luo, D., Chen, J., 2011. Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos Environ Times 45, 5058–5063.
  • Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, R.M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci Total Environ 470-471, 444–452.
  • Morillas, H., Marcaida, I., Magureguib, M., Carrero, J.A., Madariaga, J.M., 2016. The influence of rainwater composition on the conservation state of cementitious building materials, Sci Total Environ 542, 716–727
  • Nieberding, F., Breuer, B., Braeckevelt, E., Klemm, O., Song, Q., Zhang, Y., 2018. Fog water chemical composition on ailaoshan mountain, Yunnan province, SW China. Aerosol Air Qual Res 18, 37–48.
  • Niu, H., Kang, S., Wang, H., Du, J., Pu, T., Zhang, G., Lu, X., Yan, X., Wang, S., Shi, X., 2020. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environ. Pollut. 257 (113541)
  • Niu, H., Kang, S., Wang, H., Zhang, R., Lu, X., Qian, Y., Paudyal, R., Wang, S., Shi, X., Yan, X., 2018. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmos. Chem. Phys. 18, 6441–6460.
  • Norela, S., Saidah, M.S., Mahmud, M., 2013. Chemical composition of the haze in Malaysia 2005. Atmos Environ 77, 1005–1010.
  • Oduber, F., Calvo AI Castro, A., Blanco-Alegre, C., Alves, C., Barata, J., Nunes, T., Lucarelli, F., Nava, S., Calzolai, G., Cerqueira, M., Martín-Villacorta, J., Esteves, V., Fraile, R., 2020. Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Sci Total Environment 734, 139202.
  • Ostapczuk, P., Pobozy, E., Baade, A., Emons, H., 2002. Ion-chromatographic monitoring of main components of rain water in industrial and rural sites in Germany. Fresenius Environ Bull 11, 326–331.
  • Possanzini, M., Buttini, P., Dipalo, V., 1988. Characterization of a rural area in terms of dry and wet deposition. Sci Total Environ 74, 111–120.
  • Pu, W., Quan, W., Ma, Z., Shi, X., Zhao, X., Zhang, L., Wang, Z., Wang, W., 2017. Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China. Sci Total Environ 580, 1340–1350.
  • Rao, P.S.P., Tiwari, S., Matwale, J.L., Pervez, S., Tunved, P., Safai, P.D., Srivastava, A.K., Bisht, D.S., Singh, S., Hopke, P.K. 2016. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos Environ 146, 90–99.
  • Seinfeld, J.H., Pandis, S.N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley & Sons.
  • Singh, A.K., Mondal, G.C., Kumar, S., Singh, K.K., Kamal, K.P., Sinha, A. 2007. Precipitation chemistry and occurrence of acid rain over Dhnabad, coal city of India. Environ Monit Assess 125 (1), 99–110.
  • Singh, D.K., Gupta, T., 2017. Role of ammonium ion and transition metals in the formation of secondary organic aerosol and metallo-organic complex within fog processed ambient deliquescent submicron particles collected in central part of Indo- Gangetic Plain. Chemosphere 181,725–737.
  • Szèp, R., Bodor, Z., Miklossy, I., Nița, I.A., Oprea, O.A., Keresztesi, A., 2019. Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). Sci. Total Environ. 647, 275–289.
  • Szèp, R., Mateescu, E., Nița, I.A., Birsan, M.V., Bodor, Z., Keresztesi, A., 2018. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmos. Res. 214, 311–328.
  • Taverniers, I., De Loose, M., Bockstaele, E.V., 2004. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem 23(8), 535–552.
  • Tiwari, S., Hopke, P.K., Thimmaiah, D., Dumka, U.C., Srivastava, A.K., Bisht, D.S., Rao, P.S.P., Chate, D.M., Srivastava, M.K., Tripathi, S.N., 2016. Nature and sources of ionic species in precipitation across the indo-gangetic plains, India. Aerosol Air Qual Res 16, 943–957.
  • Walna, B., 2015. Human impact on atmospheric precipitation in a protected area in Western Poland. Results of long–term observations: concentrations, deposition and trends. Atmos Pollut Res 6, 778–787.
  • Wang, H., Han, G., 2011. Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos Res 99, 190–196.
  • White, E.M., Matthew, S.L., Gerald, J.K., James, A.B., 2013. Investigation of mercury wet deposition physicochemistry in the Ohio River Valley through automated sequential sampling. Sci Total Environ 448, 107–119.
  • Wright, R.F., Jenkins, A., 2010. Climate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects. Hydrol Earth Syst Sci 5, 477–486.
  • Xing, J., Song, J., Yuan, H., Li, X., Li, N., Duan, L., Qu, B., Wang, Q., Kang, X., 2017. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China. Atmos Res 190, 10–20.
  • Xu, Z., Wu, Y., Liu, W.J., Liang, C.S., Ji, J., Zhao, T., Zhang, X., 2015. Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China Atmos Res 164, 278–285.
  • Zhang, Y.L., Lee, X.Q., Cao, F., Huang, D.K., 2011. Seasonal Variation and Sources of Low Molecular Weight Organic Acids in Precipitation in The Rural Area of Anshun. Chin Sci Bull, 56, 1005–1010.

DETERMINATION OF CHEMICAL COMPOSITIONS AND MORPHOLOGIES OF SEQUENTIAL RAIN SAMPLES IN ANTALYA REGION

Yıl 2022, , 680 - 697, 30.06.2022
https://doi.org/10.21923/jesd.1050651

Öz

In this study, it was aimed to characterize the morphological structures, size distributions and chemical compositions of the water-insoluble particles in the fractional samples by collecting in the year of 2020 in the Akdeniz University Campus area in Antalya province. In addition, the concentrations of major ions, their fractional distributions and, neutralization factors were determined in the fractional (sequential) samples of each rain event. The effectiveness of in-cloud scavenging (rainout) and the below-cloud scavenging (washout) mechanisms were calculated. D-series, one of the three rain events used in this study, was sampled on July 12, 2020 and 4 fractional samples were collected from this rain event. 8 fractional rainwater samples were collected in the rain event corresponding to the E-series dated on October 12,2020 and 10 in the F-series rain event dated on December 12, 2020. The results obtained were evaluated with various statistical programs, and the data quality of the results and source determination studies were carried out. Average pH values in the sequential rain samples were observed in the range of 6.06-7.13 and an acid rain event was not encountered. In the particle size analysis results of rain samples, the highest value measured in D-series samples was 33,339 µm, and 53.714 µm in E-series samples. Particle size distribution in the F-series samples could not be measured. In order to determine the transport regions of the sampled rain events, backward trajectories were calculated, source regions, source types and pollutant compositions were discussed.

Proje Numarası

FDK-2020-8277

Kaynakça

  • Alahmr, F.O.M., Othman, M., Wahid, N.B.A., Halim, A.A., Latif, M.T., 2012. Compositions of dust fall around semi-urban areas in Malaysia. Aerosol Air Qual Res 12, 629–642
  • Alastuey, A., Querol, X., Chaves, A., Ruiz, C.R., Carratala, A., Lopez-Soler, A., 1999. Bulk deposition in a rural area located around a large coal-fired power station, northeast Spain. Environ Pollut. 106, 359–367.
  • Al-Khashman, O.A., 2009. Chemical characteristics of rainwater collected at a western site of Jordan. Atmos Res 91, 53–61.
  • Arenas-Lago, D., Veja, F.A., Silva, L.S., Andrade, L., 2013. Soil interaction and fractionation of added cadmium in some Galician soils. Microchem J 110, 681–690.
  • Bayramoğlu-Karşı, M.B., Yenisoy-Karakaş, S., Karakaş, D., 2018. Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment 190, 53–64.
  • Bodor, K., Bodor, Z., Szep, R., 2020. The trend of trace elements (Cd, Ni, Pb) from PM2.5 and PM10 aerosols and its effect on human health in bucharest,. Romania. Rev. Chim 71, 433–439.
  • Boga, R., Bodor, Z., Bodor, K., Tonk, S., Deak, G., Pernyeszi, T., Nita, I.-A., 2019. The influence of evapotranspiration and wet deposition on the variations of PM10 concentration in the ciuc basin. Present environ. Sustain. Dev. 13, 33–44.
  • Bisht, D.S., Srivastava, A.K., Joshi, H., Ram, K., Singh, N., Naja, M., Srivastava, M.K., Tiwari, S., 2017. Chemical characterization of rainwater at a high-altitude site “Nainital” in the central Himalayas, India. Environ Sci Pollut Res 24, 3959–3969.
  • Bravo, A.H., Soto, A.R., Sosa, E.R., Sanchez, A.P., Alarcon, J.A.L., Kahl, J., Ruiz, B., 2006. Effect of acid rain on building materials of the El Tajin archaeological zone in Veracruz, Mexico. Environ Pollut 144, 655–660.
  • Budhavant, K.B., Rao, P.S.P., Safai, P.D., Leck, C., Rodhe, H., 2016. Black carbon in cloudwater and rain water during monsoon season at a high altitude station in India. Atmos Environ 129, 256–264.
  • Cerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci Total Environ 421-422, 220–229.
  • Charlson, R.J., Rodhe, H., 1982. Factors controlling the acidity of natural rainwater. Nature 295, 683–685.
  • Dias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int J Coal Geol 122: 50–60.
  • Flues, M., Hama, P., Lemes, M.J.L., Dantas, E.S.K., Fornaro, A., 2002. Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmos Environ 36, 2397–2404.
  • Garcia, K.O., Teixeira, E.C., Agudelo-Castaneda, D.M., Braga, M., Alabarse, P.G., Wiegand, F.,Kautzmann, R.M., Silva, L.F.O., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci Total Environ 479-480, 57–65.
  • Gromping, A.H.J., Ostapczuk, P., Emons, H., 1997. Wet deposition in Germany: long–term trends and the contribution of heavy metals. Chemosphere 34, 2227–2236.
  • Herut, B., Starinsky, A., Katz, A., Rosenfeld, D., 2000. Relationship between the acidity and chemical composition of rainwater and climatological conditions along a transition zone between large deserts and Mediterranean climate, Israel Atmos Environ 34, 1281–1292.
  • Hower, J.C., O'Keefe, J.M.K., Henke, K.R.,Wagner, N.J., Copley, G., Blake, D.R., Garrison, T.. Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F.O., 2013. Gaseous emissions and sublimates fromthe Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. In. J Coal Geol 116: 63–74.
  • Hu, G.P., Balasubramanian, R., Wu, C.D., 2003. Chemical characterization of rainwater at Singapore. Chemosphere 51, 747–755.
  • Kajino, M., Aikawa, M., 2015. A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan. Atmos Environ 117, 124–134.
  • Keresztesi, Á., Korodi, A., Boga, R., Petres, S., Ghita, G., Ilie, M.., 2017. Chemical characteristics of wet precipitation in the Eastern Carpathians. Romania Ecoterra 14, 52–59.
  • Keresztesi, Á., Nita, I.A., Marius-Victor,Birsan, R.B., Bodor, Z., Szèp, R., 2020. Spatial and long-term analysis of rainwater chemistry over the conterminous United States, Environ Research 188, 109872 .
  • Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., Szèp, R., 2019a. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 31 (50).
  • Keresztesi, Á., Boga, R., Bodor, Z., Bodor, K., Tonk, S., Deak, G., Nita, I.-A., 2019b. The analysis of the chemical composition of precipitation during the driest year from the last decade. Present environ. Sustain. Dev. 13, 19–32.
  • Khan, M.N., Sarwar, A., 2014. Chemical composition of wet precipitation of air pollutants: a case study in Karachi, Pakistan. Atmosfera 27, 35–46.
  • Kilic, S., Yenisoy-Karakas, S., Kilic, M., 2015. Metal Contamination in Fruit Juices in Turkey Method Validation and Uncertainty Budget. Food Anal Met. 8(10), 2487–2495.
  • Kilic, S., Kilic, M., 2019. Determination of Trace Elements and Human HealthRisk Assessment in Bottled Spring Water:Method Validation, Atomic Spec 0195, 5373.
  • Knote, C., Hodzic, A., Jimenez, J.L., 2015. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmos Chem Phys 15, 1–18.
  • Kopáček, J., Hejzlar, J., Krám, P., Oulehle, F., Posch, M., 2016. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103, 30–37.
  • Kronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. SciTotal Environ 456-457, 95–103.
  • Kulshrestha, U.C., Kulshrestha, M.J., Sekar, R., Sastry, G.S.R., Vairamani, M., 2003. Chemical characteristics of rainwater at an urban site of south-central India. Atmos Environ 37, 3019–3026.
  • Lu, X., Li, L.Y., Li, N., Yang, G., Luo, D., Chen, J., 2011. Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos Environ Times 45, 5058–5063.
  • Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, R.M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci Total Environ 470-471, 444–452.
  • Morillas, H., Marcaida, I., Magureguib, M., Carrero, J.A., Madariaga, J.M., 2016. The influence of rainwater composition on the conservation state of cementitious building materials, Sci Total Environ 542, 716–727
  • Nieberding, F., Breuer, B., Braeckevelt, E., Klemm, O., Song, Q., Zhang, Y., 2018. Fog water chemical composition on ailaoshan mountain, Yunnan province, SW China. Aerosol Air Qual Res 18, 37–48.
  • Niu, H., Kang, S., Wang, H., Du, J., Pu, T., Zhang, G., Lu, X., Yan, X., Wang, S., Shi, X., 2020. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environ. Pollut. 257 (113541)
  • Niu, H., Kang, S., Wang, H., Zhang, R., Lu, X., Qian, Y., Paudyal, R., Wang, S., Shi, X., Yan, X., 2018. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmos. Chem. Phys. 18, 6441–6460.
  • Norela, S., Saidah, M.S., Mahmud, M., 2013. Chemical composition of the haze in Malaysia 2005. Atmos Environ 77, 1005–1010.
  • Oduber, F., Calvo AI Castro, A., Blanco-Alegre, C., Alves, C., Barata, J., Nunes, T., Lucarelli, F., Nava, S., Calzolai, G., Cerqueira, M., Martín-Villacorta, J., Esteves, V., Fraile, R., 2020. Chemical composition of rainwater under two events of aerosol transport: A Saharan dust outbreak and wildfires. Sci Total Environment 734, 139202.
  • Ostapczuk, P., Pobozy, E., Baade, A., Emons, H., 2002. Ion-chromatographic monitoring of main components of rain water in industrial and rural sites in Germany. Fresenius Environ Bull 11, 326–331.
  • Possanzini, M., Buttini, P., Dipalo, V., 1988. Characterization of a rural area in terms of dry and wet deposition. Sci Total Environ 74, 111–120.
  • Pu, W., Quan, W., Ma, Z., Shi, X., Zhao, X., Zhang, L., Wang, Z., Wang, W., 2017. Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China. Sci Total Environ 580, 1340–1350.
  • Rao, P.S.P., Tiwari, S., Matwale, J.L., Pervez, S., Tunved, P., Safai, P.D., Srivastava, A.K., Bisht, D.S., Singh, S., Hopke, P.K. 2016. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos Environ 146, 90–99.
  • Seinfeld, J.H., Pandis, S.N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley & Sons.
  • Singh, A.K., Mondal, G.C., Kumar, S., Singh, K.K., Kamal, K.P., Sinha, A. 2007. Precipitation chemistry and occurrence of acid rain over Dhnabad, coal city of India. Environ Monit Assess 125 (1), 99–110.
  • Singh, D.K., Gupta, T., 2017. Role of ammonium ion and transition metals in the formation of secondary organic aerosol and metallo-organic complex within fog processed ambient deliquescent submicron particles collected in central part of Indo- Gangetic Plain. Chemosphere 181,725–737.
  • Szèp, R., Bodor, Z., Miklossy, I., Nița, I.A., Oprea, O.A., Keresztesi, A., 2019. Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). Sci. Total Environ. 647, 275–289.
  • Szèp, R., Mateescu, E., Nița, I.A., Birsan, M.V., Bodor, Z., Keresztesi, A., 2018. Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmos. Res. 214, 311–328.
  • Taverniers, I., De Loose, M., Bockstaele, E.V., 2004. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem 23(8), 535–552.
  • Tiwari, S., Hopke, P.K., Thimmaiah, D., Dumka, U.C., Srivastava, A.K., Bisht, D.S., Rao, P.S.P., Chate, D.M., Srivastava, M.K., Tripathi, S.N., 2016. Nature and sources of ionic species in precipitation across the indo-gangetic plains, India. Aerosol Air Qual Res 16, 943–957.
  • Walna, B., 2015. Human impact on atmospheric precipitation in a protected area in Western Poland. Results of long–term observations: concentrations, deposition and trends. Atmos Pollut Res 6, 778–787.
  • Wang, H., Han, G., 2011. Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos Res 99, 190–196.
  • White, E.M., Matthew, S.L., Gerald, J.K., James, A.B., 2013. Investigation of mercury wet deposition physicochemistry in the Ohio River Valley through automated sequential sampling. Sci Total Environ 448, 107–119.
  • Wright, R.F., Jenkins, A., 2010. Climate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects. Hydrol Earth Syst Sci 5, 477–486.
  • Xing, J., Song, J., Yuan, H., Li, X., Li, N., Duan, L., Qu, B., Wang, Q., Kang, X., 2017. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China. Atmos Res 190, 10–20.
  • Xu, Z., Wu, Y., Liu, W.J., Liang, C.S., Ji, J., Zhao, T., Zhang, X., 2015. Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China Atmos Res 164, 278–285.
  • Zhang, Y.L., Lee, X.Q., Cao, F., Huang, D.K., 2011. Seasonal Variation and Sources of Low Molecular Weight Organic Acids in Precipitation in The Rural Area of Anshun. Chin Sci Bull, 56, 1005–1010.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Murat Kılıç 0000-0003-1174-0197

Yunus Pamukoğlu 0000-0003-3337-0860

Proje Numarası FDK-2020-8277
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 29 Aralık 2021
Kabul Tarihi 23 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kılıç, M., & Pamukoğlu, Y. (2022). ANTALYA BÖLGESİNE YAĞAN SIRALI YAĞMUR ÖRNEKLERİNİN KİMYASAL KOMPOZİSYONLARININ VE MORFOLOJİLERİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(2), 680-697. https://doi.org/10.21923/jesd.1050651